workshops.ift.uam-csic.es · Introduction Effective Lagrangian approach to the EWSB sector The...

55
Effective Lagrangian approach to the EWSB sector Juan González Fraile Universitat de Barcelona Tyler Corbett, O. J. P. Éboli, J. G–F and M. C. Gonzalez–Garcia arXiv:1207.1344, 1211.4580, 1304.1151 Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 1 / 19

Transcript of workshops.ift.uam-csic.es · Introduction Effective Lagrangian approach to the EWSB sector The...

  • Effective Lagrangian approach to the EWSBsector

    Juan González Fraile

    Universitat de Barcelona

    Tyler Corbett, O. J. P. Éboli, J. G–F and M. C. Gonzalez–Garcia

    arXiv:1207.1344, 1211.4580, 1304.1151

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 1 / 19

  • Introduction

    Effective Lagrangian approach to the EWSB sector

    The common idea during ∼ O(30) years: the SM remarkable success (lack of unexpectedparticles) motivates a model independent parametrization to look for NP→ Leff

    Two main routes have been followed during these last decades:

    � Assume there is no light Higgs→ Non–linear or chiral effective Lagrangian (Stronginteracting EWSB sector).

    � Assume there is a light Higgs→ linear Effective Lagrangian.

    The talk is focused on the linear:

    Leff = LSM0 +∞∑m=1

    ∑n

    f(4+m)n

    ΛmO(4+m)n

    Let me start with a brief historical review1...

    1

    Apologies for the ones unintentionally missed.

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 2 / 19

  • Introduction

    Effective Lagrangian approach to the EWSB sector

    The common idea during ∼ O(30) years: the SM remarkable success (lack of unexpectedparticles) motivates a model independent parametrization to look for NP→ Leff

    Two main routes have been followed during these last decades:

    � Assume there is no light Higgs→ Non–linear or chiral effective Lagrangian (Stronginteracting EWSB sector).

    � Assume there is a light Higgs→ linear Effective Lagrangian.

    The talk is focused on the linear:

    Leff = LSM0 +∞∑m=1

    ∑n

    f(4+m)n

    ΛmO(4+m)n

    Let me start with a brief historical review1...

    1

    Apologies for the ones unintentionally missed.

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 2 / 19

  • Introduction

    Effective Lagrangian approach to the EWSB sector

    The common idea during ∼ O(30) years: the SM remarkable success (lack of unexpectedparticles) motivates a model independent parametrization to look for NP→ Leff

    Two main routes have been followed during these last decades:

    � Assume there is no light Higgs→ Non–linear or chiral effective Lagrangian (Stronginteracting EWSB sector).

    � Assume there is a light Higgs→ linear Effective Lagrangian.

    The talk is focused on the linear:

    Leff = LSM0 +∞∑m=1

    ∑n

    f(4+m)n

    ΛmO(4+m)n

    Let me start with a brief historical review1...

    1

    Apologies for the ones unintentionally missed.

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 2 / 19

  • Introduction

    Effective Lagrangian approach to the EWSB sector

    The common idea during ∼ O(30) years: the SM remarkable success (lack of unexpectedparticles) motivates a model independent parametrization to look for NP→ Leff

    Two main routes have been followed during these last decades:

    � Assume there is no light Higgs→ Non–linear or chiral effective Lagrangian (Stronginteracting EWSB sector).

    � Assume there is a light Higgs→ linear Effective Lagrangian.

    The talk is focused on the linear:

    Leff = LSM0 +∞∑m=1

    ∑n

    f(4+m)n

    ΛmO(4+m)n

    Let me start with a brief historical review1...

    1Apologies for the ones unintentionally missed.

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 2 / 19

  • Introduction

    pre-HEFT: a biased review. Part I.

    The common idea remains (model independent parametrization to look for NP), but the contextchanges:

    � First lists→ motivation from flavor!Burguess and Schnitzer (1983), Leung, Love and Rao (1986) (hγZ, hγγ),Buchmuller and Wyler (1986) (dim–6 list reduced to 109).

    � After first LEP EWPD, what could happen with LEP2 (and TGV)?De Rújula, Gavela, Hernández and Massó (1992) (EWPD–TGV, EOM’s, blind directions...),Hernández and Vegas (1993), Hagiwara, Ishihara, Szalapski and Zeppenfeld (1992 and 1993).

    � EWPD and other aspects of Leff :Artz, Einhorn and Wudka (1992), Wudka (1994),Politzer (1980), Georgi (1991), Arzt (1994) and Simma (1994) (S-matrix equivalence),Gounaris and Renard (1996) idem plus Layssac (1996) (gauge boson scatterings),Gounaris, Layssac and Renard (1994, 1995) idem plus Paschalis (1995) (unitarity),Hagiwara, Matsumoto and Szalapski (1995) (EWPD revisited),and Alam, Dawson and Szalapski (1998) (EWPD revisited),Éboli, Lietti, Gonzalez–Garcia and Novaes (1998) (EWPD bounds on aTGV),

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 3 / 19

  • Introduction

    pre-HEFT: a biased review. Part I.

    The common idea remains (model independent parametrization to look for NP), but the contextchanges:

    � First lists→ motivation from flavor!Burguess and Schnitzer (1983), Leung, Love and Rao (1986) (hγZ, hγγ),Buchmuller and Wyler (1986) (dim–6 list reduced to 109).

    � After first LEP EWPD, what could happen with LEP2 (and TGV)?De Rújula, Gavela, Hernández and Massó (1992) (EWPD–TGV, EOM’s, blind directions...),Hernández and Vegas (1993), Hagiwara, Ishihara, Szalapski and Zeppenfeld (1992 and 1993).

    � EWPD and other aspects of Leff :Artz, Einhorn and Wudka (1992), Wudka (1994),Politzer (1980), Georgi (1991), Arzt (1994) and Simma (1994) (S-matrix equivalence),Gounaris and Renard (1996) idem plus Layssac (1996) (gauge boson scatterings),Gounaris, Layssac and Renard (1994, 1995) idem plus Paschalis (1995) (unitarity),Hagiwara, Matsumoto and Szalapski (1995) (EWPD revisited),and Alam, Dawson and Szalapski (1998) (EWPD revisited),Éboli, Lietti, Gonzalez–Garcia and Novaes (1998) (EWPD bounds on aTGV),

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 3 / 19

  • Introduction

    pre-HEFT: a biased review. Part I.

    The common idea remains (model independent parametrization to look for NP), but the contextchanges:

    � First lists→ motivation from flavor!Burguess and Schnitzer (1983), Leung, Love and Rao (1986) (hγZ, hγγ),Buchmuller and Wyler (1986) (dim–6 list reduced to 109).

    � After first LEP EWPD, what could happen with LEP2 (and TGV)?De Rújula, Gavela, Hernández and Massó (1992) (EWPD–TGV, EOM’s, blind directions...),Hernández and Vegas (1993), Hagiwara, Ishihara, Szalapski and Zeppenfeld (1992 and 1993).

    � EWPD and other aspects of Leff :Artz, Einhorn and Wudka (1992), Wudka (1994),Politzer (1980), Georgi (1991), Arzt (1994) and Simma (1994) (S-matrix equivalence),Gounaris and Renard (1996) idem plus Layssac (1996) (gauge boson scatterings),Gounaris, Layssac and Renard (1994, 1995) idem plus Paschalis (1995) (unitarity),Hagiwara, Matsumoto and Szalapski (1995) (EWPD revisited),and Alam, Dawson and Szalapski (1998) (EWPD revisited),Éboli, Lietti, Gonzalez–Garcia and Novaes (1998) (EWPD bounds on aTGV),

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 3 / 19

  • Introduction

    pre-HEFT: a biased review. Part I.

    The common idea remains (model independent parametrization to look for NP), but the contextchanges:

    � First lists→ motivation from flavor!Burguess and Schnitzer (1983), Leung, Love and Rao (1986) (hγZ, hγγ),Buchmuller and Wyler (1986) (dim–6 list reduced to 109).

    � After first LEP EWPD, what could happen with LEP2 (and TGV)?De Rújula, Gavela, Hernández and Massó (1992) (EWPD–TGV, EOM’s, blind directions...),Hernández and Vegas (1993), Hagiwara, Ishihara, Szalapski and Zeppenfeld (1992 and 1993).

    � EWPD and other aspects of Leff :Artz, Einhorn and Wudka (1992), Wudka (1994),Politzer (1980), Georgi (1991), Arzt (1994) and Simma (1994) (S-matrix equivalence),Gounaris and Renard (1996) idem plus Layssac (1996) (gauge boson scatterings),Gounaris, Layssac and Renard (1994, 1995) idem plus Paschalis (1995) (unitarity),Hagiwara, Matsumoto and Szalapski (1995) (EWPD revisited),and Alam, Dawson and Szalapski (1998) (EWPD revisited),Éboli, Lietti, Gonzalez–Garcia and Novaes (1998) (EWPD bounds on aTGV),

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 3 / 19

  • Introduction

    pre-HEFT: a biased review. Part II.

    The focus moved from flavor, to EWPD, to TGV... but the SM standed... so...

    � First Higgs analysis (considering the open space from EWPD):Hagiwara, Szalapski and Zeppenfeld (1993)

    Followed by many interesting LEP-pheno Higgs studies (kinematics, observables, differentchannels/operators, TGV, SM tree vrs. loop...)

    Hagiwara and Stong (1994), Grzadkowski and Wudka (1995), Hagiwara, Hatsukano, Ishiharaand Szalapski (1996) Killian, Kramer and Zerwas (1996), Lietti, Novaes and Rosenfeld (1996),idem plus De Campos (1996 and 1997), Lietti and Novaes (1997),Éboli, Gonzalez–Garcia, Lietti and Novaes (1998) (LEP data to bound TGV)

    � then Tevatron-pheno:De Campos, Gonzalez–Garcia and Novaes (1997) (1st study using experiment (Tevatron) toanalyze open space on TGV),Gonzalez-Garcia, Lietti and Novaes (1998), idem plus de Campos and Rosenfeld (1998).

    � and LHC–pheno:

    Éboli, Gonzalez–Garcia, Lietti and Novaes (1999)

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 4 / 19

  • Introduction

    pre-HEFT: a biased review. Part II.

    The focus moved from flavor, to EWPD, to TGV... but the SM standed... so...

    � First Higgs analysis (considering the open space from EWPD):Hagiwara, Szalapski and Zeppenfeld (1993)

    Followed by many interesting LEP-pheno Higgs studies (kinematics, observables, differentchannels/operators, TGV, SM tree vrs. loop...)

    Hagiwara and Stong (1994), Grzadkowski and Wudka (1995), Hagiwara, Hatsukano, Ishiharaand Szalapski (1996) Killian, Kramer and Zerwas (1996), Lietti, Novaes and Rosenfeld (1996),idem plus De Campos (1996 and 1997), Lietti and Novaes (1997),Éboli, Gonzalez–Garcia, Lietti and Novaes (1998) (LEP data to bound TGV)

    � then Tevatron-pheno:De Campos, Gonzalez–Garcia and Novaes (1997) (1st study using experiment (Tevatron) toanalyze open space on TGV),Gonzalez-Garcia, Lietti and Novaes (1998), idem plus de Campos and Rosenfeld (1998).

    � and LHC–pheno:

    Éboli, Gonzalez–Garcia, Lietti and Novaes (1999)

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 4 / 19

  • Introduction

    pre-HEFT: a biased review. Part II.

    The focus moved from flavor, to EWPD, to TGV... but the SM standed... so...

    � First Higgs analysis (considering the open space from EWPD):Hagiwara, Szalapski and Zeppenfeld (1993)

    Followed by many interesting LEP-pheno Higgs studies (kinematics, observables, differentchannels/operators, TGV, SM tree vrs. loop...)

    Hagiwara and Stong (1994), Grzadkowski and Wudka (1995), Hagiwara, Hatsukano, Ishiharaand Szalapski (1996) Killian, Kramer and Zerwas (1996), Lietti, Novaes and Rosenfeld (1996),idem plus De Campos (1996 and 1997), Lietti and Novaes (1997),Éboli, Gonzalez–Garcia, Lietti and Novaes (1998) (LEP data to bound TGV)

    � then Tevatron-pheno:De Campos, Gonzalez–Garcia and Novaes (1997) (1st study using experiment (Tevatron) toanalyze open space on TGV),Gonzalez-Garcia, Lietti and Novaes (1998), idem plus de Campos and Rosenfeld (1998).

    � and LHC–pheno:

    Éboli, Gonzalez–Garcia, Lietti and Novaes (1999)

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 4 / 19

  • Introduction

    pre-HEFT: a biased review. Part II.

    The focus moved from flavor, to EWPD, to TGV... but the SM standed... so...

    � First Higgs analysis (considering the open space from EWPD):Hagiwara, Szalapski and Zeppenfeld (1993)

    Followed by many interesting LEP-pheno Higgs studies (kinematics, observables, differentchannels/operators, TGV, SM tree vrs. loop...)

    Hagiwara and Stong (1994), Grzadkowski and Wudka (1995), Hagiwara, Hatsukano, Ishiharaand Szalapski (1996) Killian, Kramer and Zerwas (1996), Lietti, Novaes and Rosenfeld (1996),idem plus De Campos (1996 and 1997), Lietti and Novaes (1997),Éboli, Gonzalez–Garcia, Lietti and Novaes (1998) (LEP data to bound TGV)

    � then Tevatron-pheno:De Campos, Gonzalez–Garcia and Novaes (1997) (1st study using experiment (Tevatron) toanalyze open space on TGV),Gonzalez-Garcia, Lietti and Novaes (1998), idem plus de Campos and Rosenfeld (1998).

    � and LHC–pheno:

    Éboli, Gonzalez–Garcia, Lietti and Novaes (1999)

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 4 / 19

  • Introduction

    pre-HEFT: a biased review. Part II.

    The focus moved from flavor, to EWPD, to TGV... but the SM standed... so...

    � First Higgs analysis (considering the open space from EWPD):Hagiwara, Szalapski and Zeppenfeld (1993)

    Followed by many interesting LEP-pheno Higgs studies (kinematics, observables, differentchannels/operators, TGV, SM tree vrs. loop...)

    Hagiwara and Stong (1994), Grzadkowski and Wudka (1995), Hagiwara, Hatsukano, Ishiharaand Szalapski (1996) Killian, Kramer and Zerwas (1996), Lietti, Novaes and Rosenfeld (1996),idem plus De Campos (1996 and 1997), Lietti and Novaes (1997),Éboli, Gonzalez–Garcia, Lietti and Novaes (1998) (LEP data to bound TGV)

    � then Tevatron-pheno:De Campos, Gonzalez–Garcia and Novaes (1997) (1st study using experiment (Tevatron) toanalyze open space on TGV),Gonzalez-Garcia, Lietti and Novaes (1998), idem plus de Campos and Rosenfeld (1998).

    � and LHC–pheno:

    Éboli, Gonzalez–Garcia, Lietti and Novaes (1999)

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 4 / 19

  • Introduction

    HEFT: back to the present.Together with many other aspects of Leff

    D’Ambrosio, Giudice, Isidori and Strumia (2002)(MFV), Barger, Han, Langacker, McElrath andZerwas (2003) (future machines), Horejsi and Kampf (2004) (hγγ), Barbieri, Pomarol, Rattazziand Strumia (2004), Han and Skiba (2004), Han (2005), Manohar and Wise (2006)(LHC–pheno), Hamkele, Klamke, Zeppenfeld and Figy (2006), Pierce, Thaler and Wang (2006),Giudice, Grojean, Pomarol and Rattazzi (2007) (SILH), Kanemura and Tsumura (2008), Qi,Kuang, Liu and Zhang (2008), Del Aguila, De Blas and Perez–Victoria (2008, 2010), idem plusLangacker (2011), Low, Rattazzi and Vichi (2009), Grzadkowski, Iskrzynski, Misiak andRosiek (2010) (59!), Bonnet, Gavela, Ota and Winter (2011), Domenech, Pomarol and Serra(2012), Blankenburg and Ellis (2012), Degrande, Gerard, Grojean, Maltoni and Servant (2012)and many more...

    The Higgs discovery

    First Leff analysis using Higgs experimental results:

    Corbett, Éboli, G–F and Gonzalez–Garcia (2012) (arXiv:1207.1344)

    Updated and extended in 1211.4580 and 1304.1151.

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 5 / 19

  • Introduction

    HEFT: back to the present.Together with many other aspects of Leff

    D’Ambrosio, Giudice, Isidori and Strumia (2002)(MFV), Barger, Han, Langacker, McElrath andZerwas (2003) (future machines), Horejsi and Kampf (2004) (hγγ), Barbieri, Pomarol, Rattazziand Strumia (2004), Han and Skiba (2004), Han (2005), Manohar and Wise (2006)(LHC–pheno), Hamkele, Klamke, Zeppenfeld and Figy (2006), Pierce, Thaler and Wang (2006),Giudice, Grojean, Pomarol and Rattazzi (2007) (SILH), Kanemura and Tsumura (2008), Qi,Kuang, Liu and Zhang (2008), Del Aguila, De Blas and Perez–Victoria (2008, 2010), idem plusLangacker (2011), Low, Rattazzi and Vichi (2009), Grzadkowski, Iskrzynski, Misiak andRosiek (2010) (59!), Bonnet, Gavela, Ota and Winter (2011), Domenech, Pomarol and Serra(2012), Blankenburg and Ellis (2012), Degrande, Gerard, Grojean, Maltoni and Servant (2012)and many more...

    The Higgs discovery

    First Leff analysis using Higgs experimental results:

    Corbett, Éboli, G–F and Gonzalez–Garcia (2012) (arXiv:1207.1344)

    Updated and extended in 1211.4580 and 1304.1151.

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 5 / 19

  • Introduction

    HEFT: back to the present.Together with many other aspects of Leff

    D’Ambrosio, Giudice, Isidori and Strumia (2002)(MFV), Barger, Han, Langacker, McElrath andZerwas (2003) (future machines), Horejsi and Kampf (2004) (hγγ), Barbieri, Pomarol, Rattazziand Strumia (2004), Han and Skiba (2004), Han (2005), Manohar and Wise (2006)(LHC–pheno), Hamkele, Klamke, Zeppenfeld and Figy (2006), Pierce, Thaler and Wang (2006),Giudice, Grojean, Pomarol and Rattazzi (2007) (SILH), Kanemura and Tsumura (2008), Qi,Kuang, Liu and Zhang (2008), Del Aguila, De Blas and Perez–Victoria (2008, 2010), idem plusLangacker (2011), Low, Rattazzi and Vichi (2009), Grzadkowski, Iskrzynski, Misiak andRosiek (2010) (59!), Bonnet, Gavela, Ota and Winter (2011), Domenech, Pomarol and Serra(2012), Blankenburg and Ellis (2012), Degrande, Gerard, Grojean, Maltoni and Servant (2012)and many more...

    The Higgs discovery

    First Leff analysis using Higgs experimental results:

    Corbett, Éboli, G–F and Gonzalez–Garcia (2012) (arXiv:1207.1344)

    Updated and extended in 1211.4580 and 1304.1151.

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 5 / 19

  • Introduction

    Outline: accessing the EWSB mechanism

    • Higgs boson discovery→ A particle directly related to the EWSB.Its study is an alternative to the direct seek for new resonances.

    • Huge variety of data→ Higgs analysis, TGV, EWPD...

    • Main ingredients of Leff studied during the last O(30) years

    • Apply to decipher the nature of the observed state→ deviations, (de)correlations betweeninteractions, special kinematics, new signals

    Studying the Higgs interactions may be the fastest track to understand the origin of EWSB.

    Indirect approach

    Model independentparametrization

    → EFFECTIVE LAGRANGIANAPPROACH!Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 6 / 19

  • Effective Lagrangian for Higgs Interactions

    Effective Lagrangian: the linear realization

    Bottom-up model-independent effective Lagrangian approach:

    Leff = LSM0 +∞∑m=1

    ∑n

    f(4+m)n

    ΛmO(4+m)n

    • Particle content: There is no undiscovered low energy particle.Observed state: scalar, SU(2) doublet, CP-even, narrow and no overlapping resonances.

    • Symmetries: SU(3)c ⊗ SU(2)L ⊗ U(1)Y SM local symmetry (linearly realized).Global symmetries: lepton and baryon number conservation.

    59 dimension-6 operators are enough...

    � Reduced set considering only C and P even2.� EOM to eliminate/choose the basis.� Huge variety of data to make the choice and reduce the LHC studied set: DATA–DRIVEN.

    2Non–linear CP–odd→arxiv:1406.6367.

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 7 / 19

  • Effective Lagrangian for Higgs Interactions

    Effective Lagrangian: the linear realization

    Bottom-up model-independent effective Lagrangian approach:

    Leff = LSM0 +∞∑m=1

    ∑n

    f(4+m)n

    ΛmO(4+m)n → Ld=6 =

    ∑n

    fn

    Λ2On

    • Particle content: There is no undiscovered low energy particle.Observed state: scalar, SU(2) doublet, CP-even, narrow and no overlapping resonances.

    • Symmetries: SU(3)c ⊗ SU(2)L ⊗ U(1)Y SM local symmetry (linearly realized).Global symmetries: lepton and baryon number conservation.

    59 dimension-6 operators are enough...

    � Reduced set considering only C and P even2.� EOM to eliminate/choose the basis.� Huge variety of data to make the choice and reduce the LHC studied set: DATA–DRIVEN.

    2Non–linear CP–odd→arxiv:1406.6367.

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 7 / 19

  • Effective Lagrangian for Higgs Interactions

    Effective Lagrangian: the linear realization

    Bottom-up model-independent effective Lagrangian approach:

    Leff = LSM0 +∞∑m=1

    ∑n

    f(4+m)n

    ΛmO(4+m)n → Ld=6 =

    ∑n

    fn

    Λ2On

    • Particle content: There is no undiscovered low energy particle.Observed state: scalar, SU(2) doublet, CP-even, narrow and no overlapping resonances.

    • Symmetries: SU(3)c ⊗ SU(2)L ⊗ U(1)Y SM local symmetry (linearly realized).Global symmetries: lepton and baryon number conservation.

    59 dimension-6 operators are enough...

    � Reduced set considering only C and P even2.� EOM to eliminate/choose the basis.� Huge variety of data to make the choice and reduce the LHC studied set: DATA–DRIVEN.

    2Non–linear CP–odd→arxiv:1406.6367.

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 7 / 19

  • Effective Lagrangian for Higgs Interactions

    The right of choiceHiggs interactions with gauge bosons3:

    OGG = Φ†Φ GaµνGaµν , OWW = Φ†ŴµνŴµνΦ , OBB = Φ†B̂µν B̂µνΦ ,

    OBW = Φ†B̂µνŴµνΦ , OW = (DµΦ)†Ŵµν(DνΦ) , OB = (DµΦ)†B̂µν(DνΦ) ,

    OΦ,1 =(DµΦ

    )† Φ Φ† (DµΦ) , OΦ,2 = 12 ∂µ (Φ†Φ) ∂µ (Φ†Φ) , OΦ,4 = (DµΦ)† (DµΦ) (Φ†Φ) ,Higgs interactions with fermions:

    OeΦ,ij = (Φ†Φ)(L̄iΦeRj ) O(1)ΦL,ij

    = Φ†(i↔DµΦ)(L̄iγ

    µLj) O(3)ΦL,ij

    = Φ†(i↔DaµΦ)(L̄iγ

    µσaLj)

    OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ) O(1)ΦQ,ij

    = Φ†(i↔DµΦ)(Q̄iγ

    µQj) O(3)ΦQ,ij

    = Φ†(i↔DaµΦ)(Q̄iγ

    µσaQj)

    OdΦ,ij = (Φ†Φ)(Q̄iΦdRj) O(1)Φe,ij = Φ

    †(i↔DµΦ)(ēRiγ

    µeRj )

    O(1)Φu,ij = Φ†(i

    ↔DµΦ)(ūRiγ

    µuRj )

    O(1)Φd,ij

    = Φ†(i↔DµΦ)(d̄Riγ

    µdRj )

    O(1)Φud,ij

    = Φ̃†(i↔DµΦ)(ūRiγ

    µdRj )

    In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

    TGV, Z properties, W decays, low energy ν scattering, atomic P , FCNC, Moller scattering P and e+e− → ff̄ at LEP2 and

    tree level contribution to the oblique parameters: must avoid blind directions.

    3DµΦ =

    (∂µ + i

    12g′Bµ + ig

    σa2Waµ

    )Φ, B̂µν = i

    g′2Bµν , Ŵµν = i

    g2σaWaµν

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 8 / 19

  • Effective Lagrangian for Higgs Interactions

    The right of choiceHiggs interactions with gauge bosons3:

    OGG = Φ†Φ GaµνGaµν , OWW = Φ†ŴµνŴµνΦ , OBB = Φ†B̂µν B̂µνΦ ,

    OBW = Φ†B̂µνŴµνΦ , OW = (DµΦ)†Ŵµν(DνΦ) , OB = (DµΦ)†B̂µν(DνΦ) ,

    OΦ,1 =(DµΦ

    )† Φ Φ† (DµΦ) , OΦ,2 = 12 ∂µ (Φ†Φ) ∂µ (Φ†Φ) , OΦ,4 = (DµΦ)† (DµΦ) (Φ†Φ) ,

    Also to HV V andOBW to ∆S and V V V .

    3DµΦ =

    (∂µ + i

    12g′Bµ + ig

    σa2Waµ

    )Φ, B̂µν = i

    g′2Bµν , Ŵµν = i

    g2σaWaµν

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 8 / 19

  • Effective Lagrangian for Higgs Interactions

    The right of choiceHiggs interactions with gauge bosons3:

    OGG = Φ†Φ GaµνGaµν , OWW = Φ†ŴµνŴµνΦ , OBB = Φ†B̂µν B̂µνΦ ,

    OBW = Φ†B̂µνŴµνΦ , OW = (DµΦ)†Ŵµν(DνΦ) , OB = (DµΦ)†B̂µν(DνΦ) ,

    OΦ,1 =(DµΦ

    )† Φ Φ† (DµΦ) , OΦ,2 = 12 ∂µ (Φ†Φ) ∂µ (Φ†Φ) , OΦ,4 = (DµΦ)† (DµΦ) (Φ†Φ) ,

    Also to HV V andOBW to ∆S and V V V .

    3DµΦ =

    (∂µ + i

    12g′Bµ + ig

    σa2Waµ

    )Φ, B̂µν = i

    g′2Bµν , Ŵµν = i

    g2σaWaµν

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 8 / 19

  • Effective Lagrangian for Higgs Interactions

    The right of choiceHiggs interactions with gauge bosons3:

    OGG = Φ†Φ GaµνGaµν , OWW = Φ†ŴµνŴµνΦ , OBB = Φ†B̂µν B̂µνΦ ,

    OBW = Φ†B̂µνŴµνΦ , OW = (DµΦ)†Ŵµν(DνΦ) , OB = (DµΦ)†B̂µν(DνΦ) ,

    OΦ,1 =(DµΦ

    )† Φ Φ† (DµΦ) , OΦ,2 = 12 ∂µ (Φ†Φ) ∂µ (Φ†Φ) , OΦ,4 = (DµΦ)† (DµΦ) (Φ†Φ) ,

    � Contribute to HV V , V V V and V V V V

    � Redefine Scalar field:

    H = h

    [1 +

    v2

    2Λ2

    (fΦ,1 + 2fΦ,2 + fΦ,4)

    )]

    ⇒ Rescale of all the Couplings of the Higgs.

    � In additionOφ,1 contributes to ∆T

    3DµΦ =

    (∂µ + i

    12g′Bµ + ig

    σa2Waµ

    )Φ, B̂µν = i

    g′2Bµν , Ŵµν = i

    g2σaWaµν

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 8 / 19

  • Effective Lagrangian for Higgs Interactions

    The right of choiceHiggs interactions with gauge bosons3:

    OGG = Φ†Φ GaµνGaµν , OWW = Φ†ŴµνŴµνΦ , OBB = Φ†B̂µν B̂µνΦ ,

    OBW = Φ†B̂µνŴµνΦ , OW = (DµΦ)†Ŵµν(DνΦ) , OB = (DµΦ)†B̂µν(DνΦ) ,

    OΦ,1 =(DµΦ

    )† Φ Φ† (DµΦ) , OΦ,2 = 12 ∂µ (Φ†Φ) ∂µ (Φ†Φ) , OΦ,4 = (DµΦ)† (DµΦ) (Φ†Φ) ,

    � Contribute to HV V , V V V and V V V V

    � Redefine Scalar field:

    H = h

    [1 +

    v2

    2Λ2

    (fΦ,1 + 2fΦ,2 + fΦ,4)

    )]

    ⇒ Rescale of all the Couplings of the Higgs.

    � In additionOφ,1 contributes to ∆T

    3DµΦ =

    (∂µ + i

    12g′Bµ + ig

    σa2Waµ

    )Φ, B̂µν = i

    g′2Bµν , Ŵµν = i

    g2σaWaµν

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 8 / 19

  • Effective Lagrangian for Higgs Interactions

    The right of choiceHiggs interactions with gauge bosons3:

    OGG = Φ†Φ GaµνGaµν , OWW = Φ†ŴµνŴµνΦ , OBB = Φ†B̂µν B̂µνΦ ,

    OBW = Φ†B̂µνŴµνΦ , OW = (DµΦ)†Ŵµν(DνΦ) , OB = (DµΦ)†B̂µν(DνΦ) ,

    OΦ,1 =(DµΦ

    )† Φ Φ† (DµΦ) , OΦ,2 = 12 ∂µ (Φ†Φ) ∂µ (Φ†Φ) , OΦ,4 = (DµΦ)† (DµΦ) (Φ†Φ) ,Higgs interactions with fermions:

    OeΦ,ij = (Φ†Φ)(L̄iΦeRj ) O(1)ΦL,ij

    = Φ†(i↔DµΦ)(L̄iγ

    µLj) O(3)ΦL,ij

    = Φ†(i↔DaµΦ)(L̄iγ

    µσaLj)

    OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ) O(1)ΦQ,ij

    = Φ†(i↔DµΦ)(Q̄iγ

    µQj) O(3)ΦQ,ij

    = Φ†(i↔DaµΦ)(Q̄iγ

    µσaQj)

    OdΦ,ij = (Φ†Φ)(Q̄iΦdRj) O(1)Φe,ij = Φ

    †(i↔DµΦ)(ēRiγ

    µeRj )

    O(1)Φu,ij = Φ†(i

    ↔DµΦ)(ūRiγ

    µuRj )

    O(1)Φd,ij

    = Φ†(i↔DµΦ)(d̄Riγ

    µdRj )

    O(1)Φud,ij

    = Φ̃†(i↔DµΦ)(ūRiγ

    µdRj )

    In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

    TGV, Z properties, W decays, low energy ν scattering, atomic P , FCNC, Moller scattering P and e+e− → ff̄ at LEP2 and

    tree level contribution to the oblique parameters: must avoid blind directions.

    3DµΦ =

    (∂µ + i

    12g′Bµ + ig

    σa2Waµ

    )Φ, B̂µν = i

    g′2Bµν , Ŵµν = i

    g2σaWaµν

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 8 / 19

  • Effective Lagrangian for Higgs Interactions

    The right of choiceHiggs interactions with gauge bosons3:

    OGG = Φ†Φ GaµνGaµν , OWW = Φ†ŴµνŴµνΦ , OBB = Φ†B̂µν B̂µνΦ ,

    OBW = Φ†B̂µνŴµνΦ , OW = (DµΦ)†Ŵµν(DνΦ) , OB = (DµΦ)†B̂µν(DνΦ) ,

    OΦ,1 =(DµΦ

    )† Φ Φ† (DµΦ) , OΦ,2 = 12 ∂µ (Φ†Φ) ∂µ (Φ†Φ) , OΦ,4 = (DµΦ)† (DµΦ) (Φ†Φ) ,Higgs interactions with fermions:

    OeΦ,ij = (Φ†Φ)(L̄iΦeRj ) O(1)ΦL,ij

    = Φ†(i↔DµΦ)(L̄iγ

    µLj) O(3)ΦL,ij

    = Φ†(i↔DaµΦ)(L̄iγ

    µσaLj)

    OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ) O(1)ΦQ,ij

    = Φ†(i↔DµΦ)(Q̄iγ

    µQj) O(3)ΦQ,ij

    = Φ†(i↔DaµΦ)(Q̄iγ

    µσaQj)

    OdΦ,ij = (Φ†Φ)(Q̄iΦdRj) O(1)Φe,ij = Φ

    †(i↔DµΦ)(ēRiγ

    µeRj )

    O(1)Φu,ij = Φ†(i

    ↔DµΦ)(ūRiγ

    µuRj )

    O(1)Φd,ij

    = Φ†(i↔DµΦ)(d̄Riγ

    µdRj )

    O(1)Φud,ij

    = Φ̃†(i↔DµΦ)(ūRiγ

    µdRj )

    In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

    TGV, Z properties, W decays, low energy ν scattering, atomic P , FCNC, Moller scattering P and e+e− → ff̄ at LEP2 and

    tree level contribution to the oblique parameters: must avoid blind directions.

    3DµΦ =

    (∂µ + i

    12g′Bµ + ig

    σa2Waµ

    )Φ, B̂µν = i

    g′2Bµν , Ŵµν = i

    g2σaWaµν

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 8 / 19

  • Effective Lagrangian for Higgs Interactions

    The right of choiceHiggs interactions with gauge bosons3:

    OGG = Φ†Φ GaµνGaµν , OWW = Φ†ŴµνŴµνΦ , OBB = Φ†B̂µν B̂µνΦ ,

    OBW = Φ†B̂µνŴµνΦ , OW = (DµΦ)†Ŵµν(DνΦ) , OB = (DµΦ)†B̂µν(DνΦ) ,

    OΦ,1 =(DµΦ

    )† Φ Φ† (DµΦ) , OΦ,2 = 12 ∂µ (Φ†Φ) ∂µ (Φ†Φ) , OΦ,4 = (DµΦ)† (DµΦ) (Φ†Φ) ,Higgs interactions with fermions:

    OeΦ,ij = (Φ†Φ)(L̄iΦeRj ) O(1)ΦL,ij

    = Φ†(i↔DµΦ)(L̄iγ

    µLj) O(3)ΦL,ij

    = Φ†(i↔DaµΦ)(L̄iγ

    µσaLj)

    OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ) O(1)ΦQ,ij

    = Φ†(i↔DµΦ)(Q̄iγ

    µQj) O(3)ΦQ,ij

    = Φ†(i↔DaµΦ)(Q̄iγ

    µσaQj)

    OdΦ,ij = (Φ†Φ)(Q̄iΦdRj) O(1)Φe,ij = Φ

    †(i↔DµΦ)(ēRiγ

    µeRj )

    O(1)Φu,ij = Φ†(i

    ↔DµΦ)(ūRiγ

    µuRj )

    O(1)Φd,ij

    = Φ†(i↔DµΦ)(d̄Riγ

    µdRj )

    O(1)Φud,ij

    = Φ̃†(i↔DµΦ)(ūRiγ

    µdRj )

    In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

    TGV,

    Z properties, W decays, low energy ν scattering, atomic P , FCNC, Moller scattering P and e+e− → ff̄ at LEP2 and

    tree level contribution to the oblique parameters: must avoid blind directions.

    3DµΦ =

    (∂µ + i

    12g′Bµ + ig

    σa2Waµ

    )Φ, B̂µν = i

    g′2Bµν , Ŵµν = i

    g2σaWaµν

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 8 / 19

  • Effective Lagrangian for Higgs Interactions

    The right of choiceHiggs interactions with gauge bosons3:

    OGG = Φ†Φ GaµνGaµν , OWW = Φ†ŴµνŴµνΦ , OBB = Φ†B̂µν B̂µνΦ ,

    OBW = Φ†B̂µνŴµνΦ , OW = (DµΦ)†Ŵµν(DνΦ) , OB = (DµΦ)†B̂µν(DνΦ) ,

    OΦ,1 =(DµΦ

    )† Φ Φ† (DµΦ) , OΦ,2 = 12 ∂µ (Φ†Φ) ∂µ (Φ†Φ) , OΦ,4 = (DµΦ)† (DµΦ) (Φ†Φ) ,Higgs interactions with fermions:

    OeΦ,ij = (Φ†Φ)(L̄iΦeRj ) O(1)ΦL,ij

    = Φ†(i↔DµΦ)(L̄iγ

    µLj) O(3)ΦL,ij

    = Φ†(i↔DaµΦ)(L̄iγ

    µσaLj)

    OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ) O(1)ΦQ,ij

    = Φ†(i↔DµΦ)(Q̄iγ

    µQj) O(3)ΦQ,ij

    = Φ†(i↔DaµΦ)(Q̄iγ

    µσaQj)

    OdΦ,ij = (Φ†Φ)(Q̄iΦdRj) O(1)Φe,ij = Φ

    †(i↔DµΦ)(ēRiγ

    µeRj )

    O(1)Φu,ij = Φ†(i

    ↔DµΦ)(ūRiγ

    µuRj )

    O(1)Φd,ij

    = Φ†(i↔DµΦ)(d̄Riγ

    µdRj )

    O(1)Φud,ij

    = Φ̃†(i↔DµΦ)(ūRiγ

    µdRj )

    In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

    TGV, Z properties, W decays, low energy ν scattering, atomic P , FCNC, Moller scattering P and e+e− → ff̄ at LEP2 and

    tree level contribution to the oblique parameters: must avoid blind directions.

    3DµΦ =

    (∂µ + i

    12g′Bµ + ig

    σa2Waµ

    )Φ, B̂µν = i

    g′2Bµν , Ŵµν = i

    g2σaWaµν

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 8 / 19

  • Effective Lagrangian for Higgs Interactions

    The right of choiceHiggs interactions with gauge bosons3:

    OGG = Φ†Φ GaµνGaµν , OWW = Φ†ŴµνŴµνΦ , OBB = Φ†B̂µν B̂µνΦ ,

    OBW = Φ†B̂µνŴµνΦ ,

    OW = (DµΦ)†Ŵµν(DνΦ) , OB = (DµΦ)†B̂µν(DνΦ) ,

    OΦ,1 =(DµΦ

    )† Φ Φ† (DµΦ) ,

    OΦ,2 = 12 ∂µ(Φ†Φ

    )∂µ

    (Φ†Φ

    ),

    OΦ,4 =(DµΦ

    )† (DµΦ) (Φ†Φ) ,

    Higgs interactions with fermions:

    OeΦ,33 = (Φ†Φ)(L̄3ΦeR3 )

    O(1)ΦL,ij

    = Φ†(i↔DµΦ)(L̄iγ

    µLj) O(3)ΦL,ij

    = Φ†(i↔DaµΦ)(L̄iγ

    µσaLj)

    OuΦ,ij = (Φ†Φ)(Q̄iΦ̃uRj ) O(1)ΦQ,ij

    = Φ†(i↔DµΦ)(Q̄iγ

    µQj) O(3)ΦQ,ij

    = Φ†(i↔DaµΦ)(Q̄iγ

    µσaQj)

    OdΦ,33 = (Φ†Φ)(Q̄3ΦdR3)

    O(1)Φe,ij = Φ†(i

    ↔DµΦ)(ēRiγ

    µeRj )

    O(1)Φu,ij = Φ†(i

    ↔DµΦ)(ūRiγ

    µuRj )

    O(1)Φd,ij

    = Φ†(i↔DµΦ)(d̄Riγ

    µdRj )

    O(1)Φud,ij

    = Φ̃†(i↔DµΦ)(ūRiγ

    µdRj )

    In the absence of theoretical prejudice chose a basis where the operators are more directly related to the existing data

    TGV, Z properties, W decays, low energy ν scattering, atomic P , FCNC, Moller scattering P and e+e− → ff̄ at LEP2 and

    tree level contribution to the oblique parameters: must avoid blind directions.

    3DµΦ =

    (∂µ + i

    12g′Bµ + ig

    σa2Waµ

    )Φ, B̂µν = i

    g′2Bµν , Ŵµν = i

    g2σaWaµν

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 8 / 19

  • Effective Lagrangian for Higgs Interactions

    Effective Lagrangian for Higgs Interactions

    Leff = −αsv

    fg

    Λ2OGG+

    fΦ,2

    Λ2OΦ,2+

    fBB

    Λ2OBB+

    fWW

    Λ2OWW+

    fB

    Λ2OB +

    fW

    Λ2OW+

    Λ2OeΦ,33 +

    fbot

    Λ2OdΦ,33

    Unitary gauge:

    LHVVeff = gHgg HGaµνG

    aµν+ gHγγ HAµνA

    µν+ g

    (1)HZγ

    AµνZµ∂νH + g

    (2)HZγ

    HAµνZµν

    + g(1)HZZ

    ZµνZµ∂νH + g

    (2)HZZ

    HZµνZµν

    + g(3)HZZ

    HZµZµ

    + +g(1)HWW

    (W

    +µνW

    −µ∂νH + h.c.

    )+ g

    (2)HWW

    HW+µνW

    −µν+ g

    (3)HWW

    HW+µ W

    −µ

    LHffeff

    = gfHij

    f̄′Lf′RH + h.c.

    gHgg = −αs

    fgv

    Λ2, gHγγ = −

    (g2vs2

    2Λ2

    )fWW + fBB

    2,

    g(1)HZγ

    =

    (g2v

    2Λ2

    )s(fW − fB)

    2c, g

    (2)HZγ

    =

    (g2v

    2Λ2

    )s[2s2fBB − 2c2fWW ]

    2c,

    g(1)HZZ

    =

    (g2v

    2Λ2

    )c2fW + s

    2fB

    2c2, g

    (2)HZZ

    = −(g2v

    2Λ2

    )s4fBB + c

    4fWW

    2c2,

    g(1)HWW

    =

    (g2v

    2Λ2

    )fW

    2, g

    (2)HWW

    = −(g2v

    2Λ2

    )fWW ,

    gfHij

    = −mfi

    vδij +

    v2

    √2Λ2

    f′fΦ,ij , g

    Φ,2Hxx

    = gSMHxx

    (1−

    v2

    2

    fΦ,2

    Λ2

    )Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 9 / 19

  • Effective Lagrangian for Higgs Interactions

    Effective Lagrangian for Higgs Interactions

    Leff = −αsv

    fg

    Λ2OGG+

    fΦ,2

    Λ2OΦ,2+

    fBB

    Λ2OBB+

    fWW

    Λ2OWW+

    fB

    Λ2OB +

    fW

    Λ2OW+

    Λ2OeΦ,33 +

    fbot

    Λ2OdΦ,33

    Unitary gauge:

    LHVVeff = gHgg HGaµνG

    aµν+ gHγγ HAµνA

    µν+ g

    (1)HZγ

    AµνZµ∂νH + g

    (2)HZγ

    HAµνZµν

    + g(1)HZZ

    ZµνZµ∂νH + g

    (2)HZZ

    HZµνZµν

    + g(3)HZZ

    HZµZµ

    + +g(1)HWW

    (W

    +µνW

    −µ∂νH + h.c.

    )+ g

    (2)HWW

    HW+µνW

    −µν+ g

    (3)HWW

    HW+µ W

    −µ

    LHffeff

    = gfHij

    f̄′Lf′RH + h.c.

    gHgg = −αs

    fgv

    Λ2, gHγγ = −

    (g2vs2

    2Λ2

    )fWW + fBB

    2,

    g(1)HZγ

    =

    (g2v

    2Λ2

    )s(fW − fB)

    2c, g

    (2)HZγ

    =

    (g2v

    2Λ2

    )s[2s2fBB − 2c2fWW ]

    2c,

    g(1)HZZ

    =

    (g2v

    2Λ2

    )c2fW + s

    2fB

    2c2, g

    (2)HZZ

    = −(g2v

    2Λ2

    )s4fBB + c

    4fWW

    2c2,

    g(1)HWW

    =

    (g2v

    2Λ2

    )fW

    2, g

    (2)HWW

    = −(g2v

    2Λ2

    )fWW ,

    gfHij

    = −mfi

    vδij +

    v2

    √2Λ2

    f′fΦ,ij , g

    Φ,2Hxx

    = gSMHxx

    (1−

    v2

    2

    fΦ,2

    Λ2

    )Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 9 / 19

  • Effective Lagrangian for Higgs Interactions

    Effective Lagrangian for Higgs Interactions

    Leff = −αsv

    fg

    Λ2OGG+

    fΦ,2

    Λ2OΦ,2+

    fBB

    Λ2OBB+

    fWW

    Λ2OWW+

    fB

    Λ2OB +

    fW

    Λ2OW+

    Λ2OeΦ,33 +

    fbot

    Λ2OdΦ,33

    Unitary gauge:

    LHVVeff = gHgg HGaµνG

    aµν+ gHγγ HAµνA

    µν+ g

    (1)HZγ

    AµνZµ∂νH + g

    (2)HZγ

    HAµνZµν

    + g(1)HZZ

    ZµνZµ∂νH + g

    (2)HZZ

    HZµνZµν

    + g(3)HZZ

    HZµZµ

    + +g(1)HWW

    (W

    +µνW

    −µ∂νH + h.c.

    )+ g

    (2)HWW

    HW+µνW

    −µν+ g

    (3)HWW

    HW+µ W

    −µ

    LHffeff

    = gfHij

    f̄′Lf′RH + h.c.

    gHgg = −αs

    fgv

    Λ2, gHγγ = −

    (g2vs2

    2Λ2

    )fWW + fBB

    2,

    g(1)HZγ

    =

    (g2v

    2Λ2

    )s(fW − fB)

    2c, g

    (2)HZγ

    =

    (g2v

    2Λ2

    )s[2s2fBB − 2c2fWW ]

    2c,

    g(1)HZZ

    =

    (g2v

    2Λ2

    )c2fW + s

    2fB

    2c2, g

    (2)HZZ

    = −(g2v

    2Λ2

    )s4fBB + c

    4fWW

    2c2,

    g(1)HWW

    =

    (g2v

    2Λ2

    )fW

    2, g

    (2)HWW

    = −(g2v

    2Λ2

    )fWW ,

    gfHij

    = −mfi

    vδij +

    v2

    √2Λ2

    f′fΦ,ij , g

    Φ,2Hxx

    = gSMHxx

    (1−

    v2

    2

    fΦ,2

    Λ2

    )Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 9 / 19

  • Effective Lagrangian for Higgs Interactions

    Effective Lagrangian for Higgs Interactions

    Leff = −αsv

    fg

    Λ2OGG+

    fΦ,2

    Λ2OΦ,2+

    fBB

    Λ2OBB+

    fWW

    Λ2OWW+

    fB

    Λ2OB +

    fW

    Λ2OW+

    Λ2OeΦ,33 +

    fbot

    Λ2OdΦ,33

    Unitary gauge:

    LHVVeff = gHgg HGaµνG

    aµν+ gHγγ HAµνA

    µν+ g

    (1)HZγ

    AµνZµ∂νH + g

    (2)HZγ

    HAµνZµν

    + g(1)HZZ

    ZµνZµ∂νH + g

    (2)HZZ

    HZµνZµν

    + g(3)HZZ

    HZµZµ

    + +g(1)HWW

    (W

    +µνW

    −µ∂νH + h.c.

    )+ g

    (2)HWW

    HW+µνW

    −µν+ g

    (3)HWW

    HW+µ W

    −µ

    LHffeff

    = gfHij

    f̄′Lf′RH + h.c.

    gHgg = −αs

    fgv

    Λ2, gHγγ = −

    (g2vs2

    2Λ2

    )fWW + fBB

    2,

    g(1)HZγ

    =

    (g2v

    2Λ2

    )s(fW − fB)

    2c, g

    (2)HZγ

    =

    (g2v

    2Λ2

    )s[2s2fBB − 2c2fWW ]

    2c,

    g(1)HZZ

    =

    (g2v

    2Λ2

    )c2fW + s

    2fB

    2c2, g

    (2)HZZ

    = −(g2v

    2Λ2

    )s4fBB + c

    4fWW

    2c2,

    g(1)HWW

    =

    (g2v

    2Λ2

    )fW

    2, g

    (2)HWW

    = −(g2v

    2Λ2

    )fWW ,

    gfHij

    = −mfi

    vδij +

    v2

    √2Λ2

    f′fΦ,ij , g

    Φ,2Hxx

    = gSMHxx

    (1−

    v2

    2

    fΦ,2

    Λ2

    )Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 9 / 19

  • Effective Lagrangian for Higgs Interactions

    Effective Lagrangian for Higgs Interactions

    Leff = −αsv

    fg

    Λ2OGG+

    fΦ,2

    Λ2OΦ,2+

    fBB

    Λ2OBB+

    fWW

    Λ2OWW+

    fB

    Λ2OB +

    fW

    Λ2OW+

    Λ2OeΦ,33 +

    fbot

    Λ2OdΦ,33

    Unitary gauge:

    LHVVeff = gHgg HGaµνG

    aµν+ gHγγ HAµνA

    µν+ g

    (1)HZγ

    AµνZµ∂νH + g

    (2)HZγ

    HAµνZµν

    + g(1)HZZ

    ZµνZµ∂νH + g

    (2)HZZ

    HZµνZµν

    + g(3)HZZ

    HZµZµ

    + +g(1)HWW

    (W

    +µνW

    −µ∂νH + h.c.

    )+ g

    (2)HWW

    HW+µνW

    −µν+ g

    (3)HWW

    HW+µ W

    −µ

    LHffeff

    = gfHij

    f̄′Lf′RH + h.c.

    gHgg = −αs

    fgv

    Λ2, gHγγ = −

    (g2vs2

    2Λ2

    )fWW + fBB

    2,

    g(1)HZγ

    =

    (g2v

    2Λ2

    )s(fW − fB)

    2c, g

    (2)HZγ

    =

    (g2v

    2Λ2

    )s[2s2fBB − 2c2fWW ]

    2c,

    g(1)HZZ

    =

    (g2v

    2Λ2

    )c2fW + s

    2fB

    2c2, g

    (2)HZZ

    = −(g2v

    2Λ2

    )s4fBB + c

    4fWW

    2c2,

    g(1)HWW

    =

    (g2v

    2Λ2

    )fW

    2, g

    (2)HWW

    = −(g2v

    2Λ2

    )fWW ,

    gfHij

    = −mfi

    vδij +

    v2

    √2Λ2

    f′fΦ,ij , g

    Φ,2Hxx

    = gSMHxx

    (1−

    v2

    2

    fΦ,2

    Λ2

    )Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 9 / 19

  • Effective Lagrangian for Higgs Interactions

    Effective Lagrangian for Higgs Interactions

    Leff = −αsv

    fg

    Λ2OGG+

    fΦ,2

    Λ2OΦ,2+

    fBB

    Λ2OBB+

    fWW

    Λ2OWW+

    fB

    Λ2OB +

    fW

    Λ2OW+

    Λ2OeΦ,33 +

    fbot

    Λ2OdΦ,33

    Unitary gauge:

    LHVVeff = gHgg HGaµνG

    aµν+ gHγγ HAµνA

    µν+ g

    (1)HZγ

    AµνZµ∂νH + g

    (2)HZγ

    HAµνZµν

    + g(1)HZZ

    ZµνZµ∂νH + g

    (2)HZZ

    HZµνZµν

    + g(3)HZZ

    HZµZµ

    + +g(1)HWW

    (W

    +µνW

    −µ∂νH + h.c.

    )+ g

    (2)HWW

    HW+µνW

    −µν+ g

    (3)HWW

    HW+µ W

    −µ

    LHffeff

    = gfHij

    f̄′Lf′RH + h.c.

    gHgg = −αs

    fgv

    Λ2, gHγγ = −

    (g2vs2

    2Λ2

    )fWW + fBB

    2,

    g(1)HZγ

    =

    (g2v

    2Λ2

    )s(fW − fB)

    2c, g

    (2)HZγ

    =

    (g2v

    2Λ2

    )s[2s2fBB − 2c2fWW ]

    2c,

    g(1)HZZ

    =

    (g2v

    2Λ2

    )c2fW + s

    2fB

    2c2, g

    (2)HZZ

    = −(g2v

    2Λ2

    )s4fBB + c

    4fWW

    2c2,

    g(1)HWW

    =

    (g2v

    2Λ2

    )fW

    2, g

    (2)HWW

    = −(g2v

    2Λ2

    )fWW ,

    gfHij

    = −mfi

    vδij +

    v2

    √2Λ2

    f′fΦ,ij , g

    Φ,2Hxx

    = gSMHxx

    (1−

    v2

    2

    fΦ,2

    Λ2

    )Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 9 / 19

  • Analysis Framework

    Higgs collider data

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 10 / 19

  • Analysis Framework

    Higgs collider data

    χ2 = minξpull

    ∑j

    (µj − µexpj )2

    σ2j+∑pull

    (ξpull

    σpull

    )2Where

    µF =�Fggσ

    anogg + �

    FV BF σ

    anoV BF + �

    FWHσ

    anoWH + �

    FZHσ

    anoZH + �

    Ftt̄H

    σanott̄H

    �FggσSMgg + �

    FV BF σ

    SMVBF + �

    FWHσ

    SMWH + �

    FZHσ

    SMZH + �

    Ftt̄H

    σSMtt̄H

    ⊗BRano[h→ F ]BRSM [h→ F ]

    .

    where σanox = σanox (1 + ξx).

    For the anomalous calculations:

    σanoY =σanoYσSMY

    ∣∣∣∣∣tree

    σSMY

    ∣∣∣soa

    and

    Γano(h→ X) =Γano(h→ X)ΓSM (h→ X)

    ∣∣∣∣tree

    ΓSM (h→ X)∣∣∣soa

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 11 / 19

  • Analysis Framework

    TGV and EWPDTGV:

    LWWV = −igWWV

    {gV1

    (W

    +µνW

    −µVν −W+µ VνW

    −µν)

    + κVW+µ W

    −ν V

    µν+

    λV

    m2W

    W+µνW

    − νρVµρ

    }

    ∆gZ1 = gZ1 − 1 =

    g2v2

    8c2Λ2fW ,

    ∆κγ = κγ − 1 =g2v2

    8Λ2

    (fW + fB

    ), ↔

    ∆κZ = κZ − 1 =g2v2

    8c2Λ2

    (c2fW − s2fB

    ).

    gZ1 = 0.984+0.049−0.049 LEP

    κγ = 1.004+0.024−0.025 ρ = 0.11

    EWPD:

    ∆S = 0.00± 0.10 ∆T = 0.02± 0.11 ∆U = 0.03± 0.09

    ρ =

    1 0.89 −0.550.89 1 −0.8−0.55 −0.8 1

    OBW and OΦ,1 can already be neglected for the LHC analysis:

    α∆S = e2v2

    Λ2fBW and α∆T =

    1

    2

    v2

    Λ2fΦ,1 .

    We add the rest of one–loop contributions in parts of the analysis.

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 12 / 19

  • Analysis Framework

    S,T,U Parameters

    α∆S =1

    6

    e2

    16π2

    {3(fW + fB)

    m2H

    Λ2log

    (Λ2

    m2H

    )+

    + 2[(5c

    2 − 2)fW − (5c2 − 3)fB

    ]m2ZΛ2

    log

    (Λ2

    m2H

    )

    −[(22c

    2 − 1)fW − (30c2

    + 1)fB

    ]m2ZΛ2

    log

    (Λ2

    m2Z

    )

    − 24c2fWWm2Z

    Λ2log

    (Λ2

    m2H

    )+ 2fΦ,2

    v2

    Λ2log

    (Λ2

    m2H

    )},

    α∆T =3

    4c2

    e2

    16π2

    {fB

    m2H

    Λ2log

    (Λ2

    m2H

    )

    + (c2fW + fB)

    m2Z

    Λ2log

    (Λ2

    m2H

    )

    +[2c

    2fW + (3c

    2 − 1)fB]m2Z

    Λ2log

    (Λ2

    m2Z

    )− fΦ,2

    v2

    Λ2log

    (Λ2

    m2H

    )},

    α∆U = −1

    3

    e2s2

    16π2

    {(−4fW + 5fB)

    m2Z

    Λ2log

    (Λ2

    m2H

    )

    + (2fW − 5fB)m2Z

    Λ2log

    (Λ2

    m2Z

    )}

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 13 / 19

  • Present Status

    ∆χ2 vrs fX

    arXiv:1207.1344, 1211.4580http://hep.if.usp.br/Higgs

    OGG OWW OBB OW OB OΦ,2 Obot Oτ

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 14 / 19

  • Present Status

    ∆χ2 vrs fX

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 14 / 19

  • Present Status

    ∆χ2 vrs fX

    arXiv:1207.1344, 1211.4580http://hep.if.usp.br/Higgs

    OGG OWW OBB OW OB OΦ,2 Obot Oτ

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 14 / 19

  • Present Status

    BRs and production CS

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 15 / 19

  • Present Status

    BRs and production CS

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 15 / 19

  • Determining TGV from Higgs data

    Determining TGV from Higgs data arxiv:1304.1151• Gauge Invariance→ TGV4 and Higgs couplings related: OW and OB• Complementarity in experimental searches: Higgs data bounds onfW ⊗ fB ≡ ∆κγ ⊗∆gZ1

    ∆gZ1 = g

    Z1 − 1 =

    g2v2

    8c2Λ2fW ,

    ∆κγ = κγ − 1 =g2v2

    8Λ2

    (fW + fB

    ),

    ∆κZ = κZ − 1 =g2v2

    8c2Λ2

    (c2fW − s

    2fB

    ).

    (Non–linear decorrelation→ Ilaria’s talk)

    4TGV = Triple Gauge boson Vertex (WWZ, WWγ)Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 16 / 19

  • Determining TGV from Higgs data

    Determining TGV from Higgs data arxiv:1304.1151• Gauge Invariance→ TGV4 and Higgs couplings related: OW and OB• Complementarity in experimental searches: Higgs data bounds onfW ⊗ fB ≡ ∆κγ ⊗∆gZ1

    ∆gZ1 = g

    Z1 − 1 =

    g2v2

    8c2Λ2fW ,

    ∆κγ = κγ − 1 =g2v2

    8Λ2

    (fW + fB

    ),

    ∆κZ = κZ − 1 =g2v2

    8c2Λ2

    (c2fW − s

    2fB

    ).

    (Non–linear decorrelation→ Ilaria’s talk)

    4TGV = Triple Gauge boson Vertex (WWZ, WWγ)Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 16 / 19

  • Outlook

    Exploiting kinematics.LWWV = −igWWV

    {gV1

    (W

    +µνW

    −µVν

    −W+µ VνW−µν

    )+ κVW

    +µ W

    −ν V

    µν

    }∆g

    Z1 =

    g2v2

    8c2Λ2fW ,

    ∆κγ =g2v2

    8Λ2

    (fW + fB

    ),

    ∆κZ =g2v2

    8c2Λ2

    (c2fW − s

    2fB

    ).

    LHWWeff = +g(1)HWW

    (W

    +µνW

    −µ∂νH + h.c.

    )+g

    (2)HWW

    HW+µνW

    −µν+ g

    (3)HWW

    HW+µ W

    −µ

    g(1)HWW

    =

    (g2v

    2Λ2

    )fW

    2,

    g(2)HWW

    = −(g2v

    2Λ2

    )fWW ,

    g(3)HWW

    = gSMHWW

    (1−

    v2

    2

    fΦ,2

    Λ2

    )

    Assume: LHC see deviation to TGV within 95% CLbound verifying ∆κγ = ∆κZ = cos2 θW∆g

    Z1

    e. g.fW

    Λ2= −6.5 TeV−2

    Leading to the excess

    σ(pp→ WH) = 1.65σSM (pp→ WH)

    ⇒ but with a distorted H pT spectrum!

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 17 / 19

  • Relaxing assumptions

    Relaxing assumptions: CP–oddM.B. Gavela, J. G–F, M. C. Gonzalez–Garcia, L. Merlo, S. Rigolin and J. Yepes→ arxiv:1406.1823

    • List & applications of CP–odd non–linear operators:Lchiral = LSM + ∆L/CP ,

    ∆L/CP = cB̃ SB̃(h) + cW̃ SW̃ (h) + cG̃ SG̃(h) + c2D S2D(h) +16∑i=1

    ci Si(h) .

    • Use CP–odd sensitive signals

    :

    Fermionic EDMs (sensitive to κ̃γ , g̃hγγ )

    γ

    W W

    f ff ′

    q

    p2p1

    CP–violating TGV

    CP–violation on Higgs physics: h→ ZZ, e. g. CMS analysis:

    A(h→ ZZ) = v−1(d1m

    2Z�∗1�∗2 + d2f

    ∗(1)µν f

    µν∗(2)+ d3f

    ∗(1)µν f̃

    µν∗(2)),

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 18 / 19

  • Relaxing assumptions

    Relaxing assumptions: CP–oddM.B. Gavela, J. G–F, M. C. Gonzalez–Garcia, L. Merlo, S. Rigolin and J. Yepes→ arxiv:1406.1823

    • List & applications of CP–odd non–linear operators:Lchiral = LSM + ∆L/CP ,

    ∆L/CP = cB̃ SB̃(h) + cW̃ SW̃ (h) + cG̃ SG̃(h) + c2D S2D(h) +16∑i=1

    ci Si(h) .

    • Use CP–odd sensitive signals:Fermionic EDMs (sensitive to κ̃γ , g̃hγγ )

    γ

    W W

    f ff ′

    q

    p2p1

    CP–violating TGV

    CP–violation on Higgs physics: h→ ZZ, e. g. CMS analysis:

    A(h→ ZZ) = v−1(d1m

    2Z�∗1�∗2 + d2f

    ∗(1)µν f

    µν∗(2)+ d3f

    ∗(1)µν f̃

    µν∗(2)),

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 18 / 19

  • Relaxing assumptions

    Relaxing assumptions: CP–oddM.B. Gavela, J. G–F, M. C. Gonzalez–Garcia, L. Merlo, S. Rigolin and J. Yepes→ arxiv:1406.1823

    • List & applications of CP–odd non–linear operators:Lchiral = LSM + ∆L/CP ,

    ∆L/CP = cB̃ SB̃(h) + cW̃ SW̃ (h) + cG̃ SG̃(h) + c2D S2D(h) +16∑i=1

    ci Si(h) .

    • Use CP–odd sensitive signals:Fermionic EDMs (sensitive to κ̃γ , g̃hγγ )

    γ

    W W

    f ff ′

    q

    p2p1

    CP–violating TGV

    CP–violation on Higgs physics: h→ ZZ, e. g. CMS analysis:

    A(h→ ZZ) = v−1(d1m

    2Z�∗1�∗2 + d2f

    ∗(1)µν f

    µν∗(2)+ d3f

    ∗(1)µν f̃

    µν∗(2)),

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 18 / 19

  • Relaxing assumptions

    Relaxing assumptions: CP–oddM.B. Gavela, J. G–F, M. C. Gonzalez–Garcia, L. Merlo, S. Rigolin and J. Yepes→ arxiv:1406.1823

    • List & applications of CP–odd non–linear operators:Lchiral = LSM + ∆L/CP ,

    ∆L/CP = cB̃ SB̃(h) + cW̃ SW̃ (h) + cG̃ SG̃(h) + c2D S2D(h) +16∑i=1

    ci Si(h) .

    • Use CP–odd sensitive signals:Fermionic EDMs (sensitive to κ̃γ , g̃hγγ )

    γ

    W W

    f ff ′

    q

    p2p1

    CP–violating TGV

    CP–violation on Higgs physics: h→ ZZ, e. g. CMS analysis:

    A(h→ ZZ) = v−1(d1m

    2Z�∗1�∗2 + d2f

    ∗(1)µν f

    µν∗(2)+ d3f

    ∗(1)µν f̃

    µν∗(2)),

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 18 / 19

  • Conclusions

    Conclusions

    THANK YOU!

    • Model independent analysis where the effects of new physics in the Higgs couplings areparametrized in Leff . If SU(2)L doublet→ SU(2)L × U(1)Y gauge symmetry linearlyrealized:

    Leff =∑n

    fn

    Λ2On ,

    • Power to the data→ operators whose coefficients are more easily related to existing data.So far→ Higgs boson SM–like.

    • Exploit interesting complementarity between experimental searches: TGV and Higgsdata.

    arXiv:1207.1344, 1211.4580, 1304.1151

    Outlook:

    � Study non–linear CP-odd operators→ Recently finished: arxiv:1406.6367� Combine the full Higgs and TGV 7+8 TeV sets of data in this framework.� Jump from signal strengths to exploit the kinematic structures

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 19 / 19

  • Conclusions

    Conclusions THANK YOU!• Model independent analysis where the effects of new physics in the Higgs couplings are

    parametrized in Leff . If SU(2)L doublet→ SU(2)L × U(1)Y gauge symmetry linearlyrealized:

    Leff =∑n

    fn

    Λ2On ,

    • Power to the data→ operators whose coefficients are more easily related to existing data.So far→ Higgs boson SM–like.

    • Exploit interesting complementarity between experimental searches: TGV and Higgsdata.

    arXiv:1207.1344, 1211.4580, 1304.1151

    Outlook:

    � Study non–linear CP-odd operators→ Recently finished: arxiv:1406.6367� Combine the full Higgs and TGV 7+8 TeV sets of data in this framework.� Jump from signal strengths to exploit the kinematic structures

    Juan González Fraile (UB) HEFT 2014 Madrid, September 2014 19 / 19

    IntroductionEffective Lagrangian for Higgs InteractionsAnalysis FrameworkPresent StatusDetermining TGV from Higgs dataOutlookRelaxing assumptionsConclusions