Introduction! · Doctorate(in(Physics(XXXICycle,(FirstYear,(January(2017(Project: Hydrogenation of...

4
Doctorate in Physics XXXI Cycle, First Year, January 2017 Project: Hydrogenation of dilute nitrides for single photon emitters in photonic crystals PhD Student: Saeed Younis Supervisors: Prof. Antonio Polimeni, Dr. Marco Felici Introduction Dilute nitride semiconductors are an example of the failure of “linear” models in predicting the properties of solids: the addition of a few percent of N to GaAs causes changes in the physical properties that are sometimes even opposite to those expected from simply interpolating the GaAstoGaN ratio [1] . Furthermore, some effects of nitrogen incorporation can be eliminated, or greatly reduced, by exposing the material to hydrogen flux [2][3] . The strong NH interaction in dilute nitrides turns H diffusion into a multiple trapping process, resulting in the formation of extremely sharp heterointerfaces between the Hfree and the Hcontaining regions [4] . This ability, together with the striking effects of hydrogen incorporation on the optoelectronic properties of dilute nitrides, facilitate the fabrication of a novel class of sitecontrolled nanostructures, whose properties meet a wide range of technological applications. Objective and methodology The aim of this project is the realization of single photon sources and their integration in photonic crystal (PhC) microcavities operating at 1.31 and 1.55 μm, for the purpose of integration within telecom devices. Together with our Marie Curie ITN partners at the universities of Marburg, Lancaster and Cadiz, InGaAsN/GaAs quantum wells will be grown by MOVPE and by MBE and will be characterized by photoluminescence(PL)based techniques and by transmission electron microscopy. The effects of hydrogen irradiation, with the aim of passivating nitrogen in these wells will then be studied. Fabrication of Quantum dots will afterwards be carried out using: EBeam lithography, to create site and sizecontrolled hydrogenopaque masks on the surface of the samples Hydrogen irradiation of the exposed regions, to alter the materials optoelectronic properties around the desired area, leaving a nanometric sized, quantumly confined structure, namely a quantum dot, emitting at the desired wavelength

Transcript of Introduction! · Doctorate(in(Physics(XXXICycle,(FirstYear,(January(2017(Project: Hydrogenation of...

Page 1: Introduction! · Doctorate(in(Physics(XXXICycle,(FirstYear,(January(2017(Project: Hydrogenation of dilute nitrides for single photon emitters in photonic crystals!

Doctorate  in  Physics  XXXI  Cycle,  First  Year,  January  2017  

Project: Hydrogenation of dilute nitrides for single photon emitters in photonic crystals  

PhD  Student:  Saeed  Younis  Supervisors:  Prof.  Antonio  Polimeni,  Dr.  Marco  Felici  

   Introduction    Dilute  nitride  semiconductors  are  an  example  of  the  failure  of  “linear”  models  in  predicting  the  properties  of  solids:  the  addition  of  a  few  percent  of  N  to  GaAs  causes  changes  in  the  physical  properties  that  are  sometimes  even  opposite  to  those  expected  from  simply  interpolating  the  GaAs-­‐to-­‐GaN  ratio  [1].  Furthermore,  some  effects  of  nitrogen  incorporation  can  be  eliminated,  or  greatly  reduced,  by  exposing  the  material  to  hydrogen  flux  [2][3].  The  strong  N-­‐H  interaction  in  dilute  nitrides  turns  H  diffusion  into  a  multiple  trapping  process,  resulting  in  the  formation  of  extremely  sharp  heterointerfaces  between  the  H-­‐free  and  the  H-­‐containing  regions  [4].  This  ability,  together  with  the  striking  effects  of  hydrogen  incorporation  on  the  opto-­‐electronic  properties  of  dilute  nitrides,  facilitate  the  fabrication  of  a  novel  class  of  site-­‐controlled  nanostructures,  whose  properties  meet  a  wide  range  of  technological  applications.        Objective  and  methodology    The  aim  of  this  project  is  the  realization  of  single  photon  sources  and  their  integration  in  photonic  crystal  (PhC)  microcavities  operating  at  1.31  and  1.55  μm,  for  the  purpose  of  integration  within  telecom  devices.  Together  with  our  Marie  Curie  ITN  partners  at  the  universities  of  Marburg,  Lancaster  and  Cadiz,  InGaAsN/GaAs  quantum  wells  will  be  grown  by  MOVPE  and  by  MBE  and  will  be  characterized  by  photoluminescence(PL)-­‐based  techniques  and  by  transmission  electron  microscopy.  The  effects  of  hydrogen  irradiation,  with  the  aim  of  passivating  nitrogen  in  these  wells  will  then  be  studied.  Fabrication  of  Quantum  dots  will  afterwards  be  carried  out  using:      

• E-­‐Beam  lithography,  to  create  site-­‐  and  size-­‐controlled  hydrogen-­‐opaque  masks  on  the  surface  of  the  samples  

• Hydrogen  irradiation  of  the  exposed  regions,  to  alter  the  materials  opto-­‐electronic  properties  around  the  desired  area,  leaving  a  nanometric  sized,  quantumly  confined  structure,  namely  a  quantum  dot,  emitting  at  the  desired  wavelength  

Page 2: Introduction! · Doctorate(in(Physics(XXXICycle,(FirstYear,(January(2017(Project: Hydrogenation of dilute nitrides for single photon emitters in photonic crystals!

 The  process  is  illustrated  in  figure  1  below.  Once  such  dots  are  fabricated,  and  using  AlGaAs  as  a  sacrificial  layer  buried  beneath  the  structure,  a  second  lithography  process  will  be  used  to  create  a  floating  photonic  crystal  around  the  active  quantum  dot.  The  photonic  crystal  will  in  addition  have  a  microcavity  centered  precisely  around  the  quantum  dot  area.  Mode  matching  between  the  photonic  crystal  microcavity  and  the  emission  from  the  quantum  dot  will  further  sharpen  the  emission  profile  and  enhance  its  intensity.    

 Figure  1:  simulated  illustration  of  the  various  steps  that  are  utilized  to  

fabricate  the  quantum  dot.  (a)  H-­‐opaque  mask  lithographically  patterned  on  top  of  a  structure  containing  an  active  quantum  well  sandwiched  between  a  buffer  and  cap  GaAs  layers.  (b)  illustration  of  the  sharp  diffusion  profile  of  H.  (c)  realization  of  a  nanometric  sized  structure  of  H-­‐free  material  embedded  within  an  H-­‐containing  

surroundings          Together  with  partners  at  Tyndall-­‐UCC,  energy  profile  calculations  will  be  carried  out  and  utilized  to  drive  the  sample  design  in  order  to  reach  the  targeted  energy  level  and  the  highest  possible  degree  of  quantum  confinement.        Results    Samples  containing  a  single  InGaAsN  quantum  well  either  5  or  10  nm  thick,  with  a  nominal  composition  of  2.5%  N  and  21%  In,  stacked  between  GaAs  buffer  and  cap  layers  were  prepared  using  MOVPE  by  our  

Page 3: Introduction! · Doctorate(in(Physics(XXXICycle,(FirstYear,(January(2017(Project: Hydrogenation of dilute nitrides for single photon emitters in photonic crystals!

partners  at  University  of  Marburg.  Some  samples  were  received  as-­‐grown,  some  underwent  mild  annealing  (at  600°C  for  10  sec)  and  some  underwent  a  much  stronger  annealing  process  (at  650°C  for  30  sec).  These  samples  were  irradiated  with  hydrogen  using  our  custom  built  hydrogenation  chamber  with  H  doses  ranging  from  5x1017  to  2x1018  ions/cm2.  Their  normalized  PL  spectra,  taken  at  room  temperature,  are  shown  in  figure  2  below.    The  first  conclusion  that  stems  out  of  the  data  is  that  both  annealing  processes  resulted  in  a  dramatic  increase  in  the  PL  intensity  of  non-­‐hydrogenated  (virgin,  with  H=0)  samples  of  up  to  190  times  relative  to  the  as-­‐grown  samples.  This  increase  in  intensity  is  accompanied  by  a  blue-­‐shift  towards  high  energies  of  up  to  80  meV.  Neither  the  intensity  increase  or  the  blue  shift  are  surprising  as  the  first  is  expected  due  to  achieving  better  crystalline  quality  upon  annealing  and  the  latter  is  attributed  to  indium  rearrangement  around  nitrogen  atoms  resulting  in  the  effective  cancellation  of  the  N-­‐contribution  to  the  bandgap  energy  and  thus  elevating  it.    

 figure  2:  Room  temperature  PL  spectra  of  hydrogenated  InGaAsN  quantum  wells.  The  hydrogenation  processes  were  performed  at  300C.  H=�  indicates  the  H  dose  of  each  subset  (ions/cm2).  please  note  that  the  scale  of  each  hydrogenation  subset  has  

been  factorized  relative  to  that  of  H=0  (lowermost).    

Page 4: Introduction! · Doctorate(in(Physics(XXXICycle,(FirstYear,(January(2017(Project: Hydrogenation of dilute nitrides for single photon emitters in photonic crystals!

The  above  data  also  indicate  that  the  optimum  H  dose  for  achieving  maximal  passivation  of  N  is  around  1018  ions/cm2.  This  information  is  essential  for  the  next  step  of  fabricating  the  quantum  dots.      Summary      The  above  data  basically  concludes  phase  1  of  the  project  which  was  to  establish  the  best  optimal  conditions  for  the  fabrication  and  passivation  of  InGaAsN  quantum  wells.  Based  on  that,  mildly  annealed  samples  measuring  1cm  x  1  cm,  thus  suitable  for  subsequent  lithography,  have  been  fabricated  at  UMR.    [1]  –  I.  A.  Buyanova  and  W.  M.  Chen  (2004).  Physics  and  Applications  of  Dilute  Nitrides  (Taylor  and  Francis,  New  York).  [2]  –  A.  Polimeni  et  al  (2001).  Effect  of  hydrogen  on  the  electronic  properties  of  InxGa1-­‐xAs1-­‐yNy/GaAs  quantum  wells,  Phys.  Rev.  B,  63,  201304R.  [3]  –  A.  Polimeni  et  al  (2002).  Role  of  hydrogen  in  III-­‐N-­‐V  Compound  Semiconductors,  Semicond.  Sci.  Technol.,  17,  797.  [4]  –  M.  Felici  et  al  (2006).  In-­‐plane  bandgap  engineering  by  modulated  hydrogenation  of  dilute  nitride  semiconductors,  Adv.  Mater.,  18,  1993.