Introduction

47
1 Introduction http://www.ieee802.org/1/files/public/docs2010/liaison-nfinn-split-horizon-vid-filtering -0710-v04.pdf describes in pages 19 and 20 the “ Optimal distribution of data: Non-802.1aq” and “Using VIDs for manually configured optimum data distributionThe following slides expand the description in those two pages with Multi (e.g. 2) domain E-LAN example 1 root and 2 roots E-Tree examples Internal node configuration details for E-LAN and E-Tree cases, including Relay VIDs and switch configurations Egress filtering Egress and ingress VID translation, Per domain local VID values Per link local VID values (used in transport networks) Primary VID values in MEPs and MIPs v02 adds some E-Tree cases, corrections of some mistakes in v01, an evaluation of UP and Down MEP/MIP primary VID values and support of those multi-VID models in G.8021 v03 includes some corrections in the B1 and B2 node expansion figures on slides 5,17,20,26 v04 includes G.8021 functional models for nodes B1 to B5 for E-LAN, 2 nd type E- Tree, 3 rd type E-Tree and 4 th type E-Tree in slides 31 to 43; while developing those slides it was noticed that it is possible to enhance the egress filtering for the 2 nd , 3 rd and 4 th E-Tree cases; this is also reflected in slides 14-15, 17-18 and 20-21. In addition, interworking cases between nodes with split-horizon port group designs and nodes with multi-vid designs for E- LAN and 2 nd type E-Tree are illustrated in slides 45-46.

description

Introduction. http://www.ieee802.org/1/files/public/docs2010/liaison-nfinn-split-horizon-vid-filtering-0710-v04.pdf describes in pages 19 and 20 the “ Optimal distribution of data: Non-802.1aq ” and “ Using VIDs for manually configured optimum data distribution ” - PowerPoint PPT Presentation

Transcript of Introduction

1

Introduction

http://www.ieee802.org/1/files/public/docs2010/liaison-nfinn-split-horizon-vid-filtering-0710-v04.pdf describes in pages 19 and 20 the “Optimal distribution of data: Non-802.1aq” and “Using VIDs for manually configured optimum data distribution”

The following slides expand the description in those two pages with Multi (e.g. 2) domain E-LAN example 1 root and 2 roots E-Tree examples Internal node configuration details for E-LAN and E-Tree cases, including

Relay VIDs and switch configurations Egress filtering Egress and ingress VID translation, Per domain local VID values Per link local VID values (used in transport networks) Primary VID values in MEPs and MIPs

v02 adds some E-Tree cases, corrections of some mistakes in v01, an evaluation of UP and Down MEP/MIP primary VID values and support of those multi-VID models in G.8021

v03 includes some corrections in the B1 and B2 node expansion figures on slides 5,17,20,26

v04 includes G.8021 functional models for nodes B1 to B5 for E-LAN, 2nd type E-Tree, 3rd type E-Tree and 4th type E-Tree in slides 31 to 43; while developing those slides it was noticed that it is possible to enhance the egress filtering for the 2nd, 3rd and 4th E-Tree cases; this is also reflected in slides 14-15, 17-18 and 20-21. In addition, interworking cases between nodes with split-horizon port group designs and nodes with multi-vid designs for E-LAN and 2nd type E-Tree are illustrated in slides 45-46.

2

Configuration of ‘I’ and ‘V’ relay-VIDs, local VIDs, egress filtering and VID translation

Internal configuration of node B1 with the E-LAN FID including the ‘I’ and ‘V’ relay-VID learning and forwarding processes and VID translation at the egress ports

B1B1

B1

B2

B3P21

P23

P32

P31

P13P12

P10

P20

P30

C12

C2

C3

B1

B2

B3

VV

IV

II

V

V

V

C12

C2

C3

V

V

V,I

V,I

V,I

V

X: Local VIDX: Relay-VID

VI

XY, Y X: relay-VID X to local-VID Y Translation at egress port

IV

V

I

VI

IV IV

IV

VI

VI

I

V SVL

C11

IV

IV

IV

IV

V

V

I

I

C11

P11

V

V,IIV

P13

P12

P10

P11

E-LAN (1 domain)

I

I

I

VLAN has common local VID value ‘I’ on the inner links B1-

B2, B2-B3 and B3-B1

SVL: Shared VLAN Learning

VLAN has 2 relay-VID values ‘I’ and ‘V’ which operate in SVL mode

VID Translation at egress port

V

V

V

V

3

Extension of previous example with a 2nd domain with edge nodes B2-B4-B5

VLAN with two domains interconnected by node B2

Next slide illustrates Need for two inner domain

VIDs (Ia, Ib) in this case Relay-VIDs registered at

each output port VID translation at egress

ports VID values used on the links

between the nodes Detailed architecture in node

B2 (FID with 3 relay-VIDs, SVL, VID Translation)

B1

B2

B3P21

P23

P32

P31

P13P12

P10

P20

P30

C12

C2

C3

C52

C51

P11

E-LAN (2 domains)

B4 B5

P24P25

P52P54

P42P45

P50

P40C4

P55

VLAN has two domains with a full mesh of links

C11

4

B1

B2

B3

C12

C2

C3

C52

C11

C51

E-LAN (2 domains)

B4 B5C4

B2B2

Ia

V

SVL

IaV

IbV

IaVV

Ia

Ia

Ib

P23

P24

P20

P21V,Ib

Ia

Ia

Ia

V

V

V V

V,Ia

V,Ia,Ib

V,Ia

V

IaV

V,I

bIa

VIa

Ia

V IaV

IaV

VIa

VIa,Ib

V

V,IIa

V

V,IbV

V

V,IbIa

Ib

IbIb

V

V

V

V,IaV,Ia

VV

VV

V,IaIbIb

V

,Ia

V,Ib

VIb

V

Ib

VIb IbV

IbV

V,Ib

IbV Ib

IbV

V,Ib

IaIb

P25

IbV

IbIa

IaV

IaIb

IbVIb

Ia

Ib

VLAN has common local VID value ‘Ib’ on the inner links B2-B4, B4-B5 and B5-B2

VLAN has common local VID value ‘Ia’ on the inner links B1-B2, B2-B3 and B3-B1

VLAN in Node B2 has 3 relay-VID values ‘Ia’, ‘Ib’ and ‘V’

which operate in SVL mode

VID Translation at egress port

X: Local VIDX: Relay-VID XY, Y X: relay-VID X to local-VID Y Translation at egress port SVL: Shared VLAN Learning

5

B1B1

B1

B2

B3P21

P23

P32

P31

P13P12

P10

P20

P30

C12

C2

C3

B1

B2

B3

VV

RV

QP

V

V

V

C12

C2

C3

V

V

V,I

V,I

V,I

V

IR

VR

XY, Y X: relay-VID X to local-VID Y Translation at egress port

IV

IP

V

P

IQVQ

P

IP

V

QIQV

RI

RV

VI

VI

I

V SVL

C11

IV

IV

RV

QV

V

V

Q

P

C11

P11

V

V,IIV

P13

P12

P10

P11

E-LAN (1 domain)

XY, Y X: local-VID Y to relay-VID X Translation at ingress port

RI Q

I

R

Q

P

VID Translation at ingress port

VLAN has different local VID values ‘P’, ‘Q’ and ‘R’ on the inner

links B1-B2, B2-B3 and B3-B1

X: local VIDX: Relay-VID SVL: Shared VLAN Learning

VID translation at the ingress ports in the domain enables the usage of different local VID values on each of the inner domain links. A requirement in transport networks.

6

B1

B2

B3

C12

C2

C3

C52

C11

C51

E-LAN (2 domains)

B4 B5C4

B2B2

Ia

V

SVL

IaV

LV

RVV

P

R

L

P23

P24

P20

P21V,Ib

R

QP

V

V

V V

V,I

V,Ia,Ib

V,I

V

IV

VI

VIa,Ib

V

V,IIV

V,IbV

V

M

LK

V

V

V

V,IaV,Ia

VV

VV

IbL

V,IaLK

Ib

K

V,I

a

V,I

VI

V

KI

K

VMIM

MVMI

L

I

L

V

V,I

IV Ib

IVV,I

RIb

P25

IbV

LIa

PV

PIb

KVK

Ia

K

VLAN has different local VID values ‘P’, ‘Q’ and ‘R’ on the inner

links B1-B2, B1-B3 and B3-B2

VLAN has different local VID values ‘K’, ‘L’ and ‘M’ on the inner

links B2-B4, B2-B5 and B5-B4

IaR

V,IbR

Ia

PV

,Ib

PIQ

VQP

IP

V

QIQV

RI

RV

PIa

RIa

LIbK

Ib

VID Translation at ingress port

X: Local VIDX: Relay-VID XY, Y X: relay-VID X to local-VID Y Translation at egress port SVL: Shared VLAN Learning

XY, Y X: local-VID Y to relay-VID X Translation at ingress port

VID translation at the ingress ports in the domain enables the usage of different local VID values on each of the inner domain links in both domains. A requirement in transport networks.

7

Security in transport networks

In the previous E-LAN examples ingress VID Translation is not deployed at all input ports (e.g. not on P20 in slide 6, not on P20, P21, P23, P24, P25 on slide 4)

With the “Ingress Filtering” parameter for the ports set to ‘disabled’ those VLAN connections are not secured; frames arriving on other input ports of e.g. node B2 with a local VID value ‘V’, ‘Ia’ or ‘Ib’ can enter the E-LAN VLAN (see Red dashed lines)

This security issue is resolved when ingress VID translation is deployed at every input port

This prevents that frames with unexpected local VID values can access the port and intrude the VLANs

B2B2

Ia

V

SVL

IaV

IbV

IaVV

Ia

Ia

Ib

P24; Ingress Filtering = Disabled

P20; Ingress Filtering = Disabled

P21; Ingress Filtering = Disabled

Ib

IaIb

P25; Ingress Filtering = Disabled

IbV

IbIa

IaV

IaIb

IbVIb

Ia

Ib

IbIa

Ia

Ib

Ib

V

V

V

IaV

P23; Ingress Filtering = Disabled

8

VID Translation for E-LAN (2 domains) example

When using different VID values on the links between nodes it is required to identify the ports which form a group and ports which are individual

All individual ports must be associated with a relay VID (R-VID) value identifying Individual ports

Ports which form a group must be associated with a R-VID value identifying that group

Administration of individual ports and grouped ports is done via the Ingress VID Translation tables in each port (see next slide for example)

For node B2 the following applies: Group 1: (P21,P23): R-VID: Ia Group 2: (P24,P25): R-VID: Ib Individual: P20: R-VID: V

For node B5: Group 1: (P52,P54): R-VID: I Individual: P50,P55: R-VID: V

B1

B2

B3P21

P23

P32

P31

P13P12

P10

P20

P30

C12

C2

C3

C52

C11

C51

P11

B4 B5

P24 P25

P52P54

P42P45

P50

P40C4

P55

VID: R

VID: Q

VID: P

VID: M

VID: LVID: K

VID: A

VID: B

VID:C

VID: D

VID: E

VID:F

VID: G

9

Using VIDs for manually configured optimum data distribution for E-LAN (2 domains) example using ingress VID translation on all ports

Bridge Port Can transmit (before xlate)

(Ingress) VID Translation

Egress VID Translation

B2 P20 V, Ia, Ib BV IaB, IbB, VB

P21 V, Ib PIa (Group 1) IbP, VP

P23 V, Ib RIa (Group 1) IbR, VR

P24 V, Ia KIb (Group 2) IaK, VK

P25 V, Ia LIb (Group 2) IaL, VL

B5 P50 V, I DV ID, VD

P52 V LI (Group 1) VL

P54 V MI (Group 1) VM

P55 V, I EV IE, VE

B1 … … … …

B3 … … … …

B4 … … … …

10

Port Group concept in transport networks

The logical concept of a “Port Group” could be maintained in a transport network as a configuration element in the manually configured optimum data distribution for E-LAN connection management

Each port in a node in such E-LAN is marked as either an Individual Port or as a port in a Port Group #i (i≥1)

The ports in a Port Group will see their local VID values translated into a common relay VID value in the ingress VID translation process Relay VID values for the individual and the port group ports have a

node local scope; each node can select those values independent of other nodes

11

E-Tree

12

E-Tree types

There are four types of E-Tree Unidirectional P2MP E-Tree (outside scope of this document) Bidirectional RMP E-Tree with single root and individual leaves Bidirectional RMP E-Tree with multiple roots and individual leaves Bidirectional RMP E-Tree with multiple roots, individual leaves and one or more leaf

groups

The 4th type requires the use of the largest set of relay VID values and local VID values

Relay VIDs identify the frame’s source and potential set of destination ports: R, I, VG1 to VGN

Local VIDs identify the frame’s source port: root, individual leaf, leaf group #i

The 2nd type requires the use of two relay VID values (R, I) and one local VID value per link

Local VID identifies in the frame’s source port: root, individual leaf Ingress VID translation converts local VID value to appropriate relay VID value Egress VID translation converts both relay VID values to same local VID value

The 3rd type requires the use of two relay VID values (R, I) and one or two local VID values per link

Local VID values can not be pruned to single value on the links between the root ports

Next slides illustrate the 2nd, 3rd and 4th E-Tree types and their configuration details from the viewpoint of a transport network

13

E-Tree (1 root, no leaf groups)

Ports Root: R1 Leaf: L1,L2,L3,L4,L51,L52

Local VID values A to G, K, L, P, Q

Relay VID values I, R

Single local VID value for both directions of transport per link, e.g.

B2-B4 link: K

Possible due to usage of ingress and

egress VID translation single root

B1

B2

B3P21

P31

P13P12

P10

P20

P30

L1

L2

L3

L52

R1

L51

P11

B4 B5

P24 P25

P52P42

P50

P40L4

P55

Q

P

LK

A

B

C

D

E

F

G

14

B1

B2

B3

E-Tree (1 root, no leaf groups)

B4 B5

QP

R

R

R

IFRF

AIAR

BIBR

IR

GI

G

I

LK

RR

I I

ILR

L

K

IK

R

R

CICR

R

KI

K

LR

L

I

R

IERE

ID

RD

R

R

PI

PIQ

RQP

IP

RQR

QI

X: Local VIDX: Relay-VID XY, Y X: relay-VID X to local-VID Y Translation at egress port SVL: Shared VLAN Learning

XY, Y X: local-VID Y to relay-VID X Translation at ingress port

L1

L2

L3

L52

R1

L51

L4

A

B

C

E

F

G

D

B2B2

I

R

SVL

LR

P

LP24

P20

P21

P25

PR

KR

K

P I

LI

RB IB

B

KI

RR

Graphical representation of configuration details…

I

15

Using VIDs for manually configured optimum data distribution for E-Tree (1 root, no leaf groups) example

Bridge Port Can transmit (before xlate)

(Ingress) VID Translation

Egress VID Translation

B1 P10 R AI RA

P11 I GR IG

P12 R PI RP

P13 R QI RQ

B2 P20 R BI RB

P21 I PR IP

P24 R KI RK

P25 R LI RL

B3 P30 R FI RF

P31 I QR IQ

B4 P40 R CI RC

P42 I KR IK

B5 P50 R DI RD

P52 I LR IL

P55 R EI RE

16

E-Tree (2 roots, no leaf groups)

B1

B3P21

P31

P13P12

P10

P20

P30

L1

L2

L3

R5

R1

L5

P11

B4

P24 P25

P52P42

P50

P40L4

P55

Q

P

LK

A

B

C

D

E

F

G

M

R

B2

B5

Ports Root: R1, R5 Leaf: L1,L2,L3,L4,L5

Local VID values A to G, K, L, M, P, Q, R

Relay VID values I, R

Single local VID value for both directions of transport for subset of links with only individual leaves behind it

B2-B4 link: K

Two local VID values for other subset of links with roots plus individual leaves behind it; i.e.

B1-B2 link: P, R B2-B5 link: L, M

Possible due to usage of ingress and egress

VID translation

1 local VID value

2 local VID values

17

B1

B3

E-Tree (2 roots, no leaf groups)

B4

QR

R

R

R

IFRF

AIAR

BIBR

R,IR

GR

,I

G

R,I

LK

R,IR

I R,I

IL

IL

RM

RM

K

IK

R

R

CICR

R

KI

K

L

I

L

I

M

R

M

R

R,I

RER,IE

ID

RD

R

R

RR

RI

PI

PIQ

RQ

P

IP

IR

RR

R

QRQI

X: Local VIDX: Relay-VID XY, Y X: relay-VID X to local-VID Y Translation at egress port SVL: Shared VLAN Learning

XY, Y X: local-VID Y to relay-VID X Translation at ingress port

L1

L2

L3

R5

R1

L5

L4

A

B

C

E

F

G

D

B2B2

I

R

SVL

MR

P

MP24

P20

P21

P25

PI

RR

KR

K

P I

LI

RB IB

B

KI

R,IR

RR

LI

MR

R

L

M

B5

B2

P

Graphical representation of configuration details…

I

18

Using VIDs for manually configured optimum data distribution for E-Tree (2 roots, no leaf groups) example

Bridge Port Can transmit (before xlate)

(Ingress) VID Translation

Egress VID Translation

B1 P10 R AI RA

P11 R,I GR IG, RG

P12 R,I PI, RR IP, RR

P13 R QI RQ

B2 P20 R BI RB

P21 R,I PI, RR IP, RR

P24 R KI RK

P25 R,I LI, MR IL, RM

B3 P30 R FI RF

P31 I QR IQ

B4 P40 R CI RC

P42 I KR IK

B5 P50 R DI RD

P52 R,I LI, MR IL, RM

P55 R,I EI IE, RE

19

E-Tree (2 roots, 1 leaf group)

B1

B3P21

P31

P13P12

P10

P20

P30

L1

L2

L3

R5

R1

L5

P11

P24 P25

P52P42

P50

P40L4

P55

Q

P

LK

A

B

C

D

E

F

G

M

R

B5

Ports Root: R1, R5 Leaf: L1,L2,L3,L4,L5 Leaf group 1: LG14,LG13

Local VID values A to H,J, K, L, M, N,O,P,Q,

R,S,T

Relay VID values I, R, VG1

2 local VID values

3 local VID values

P41

LG14

H

B4

N O

ST

P33

LG13

J

B2

20

B1

B3

E-Tree (2 roots, 1 leaf group)

B4

Q

R

R

R

R

IFRF

AIAR

BIBR

R,I,VG1R

GR

,I,V

G1

G

R,I,VG1

LK

R,I,VG1

R,VG1

I,VG1 R,I,VG1

VG

1 O

VG

1 O

ILI

LRM

RM

K

IK

R

N

VG

1

N

VG

1

R

CICR

R

KI

KV G

1

NV G

1

N

O

VG

1

O

VG

1

LI

L

I

M

R

M

R

R,I,VG1

RER,I,VG1E

ID

RD

R

IQRQ

VG1T

VG1T QR

QITV

G1TVG1

X: Local VIDX: Relay-VID XY, Y X: relay-VID X to local-VID Y Translation at egress port SVL: Shared VLAN Learning

XY, Y X: local-VID Y to relay-VID X Translation at ingress port

L1

L2

L3

R5

R1

L5

L4

A

B

C

E

F

G

D

B2B2

I

R

SVL

MR

P

M

P24

P20

P21

P25

PI

RR

KR

K

P I

LI

RB IB

B

KI

R,I,VG1

R, VG1

RR

LI

MR

R

L

M

B5

B2

P

Graphical representation of configuration details…

N

ST

LG14

H

LG13

J

R,VG1

O

V G1

JV G

1

JR

J

VG1

NV

G

1

N

N VG

1

SV

G1

SV

G1

S

OV

G1

O

OV

G1

S

VG

1

S

VG

1

P

IP

IR

R

R

R

VG

1S

VG

1S

IP

IP

R

RR

R

R,VG1

H

RH

V

G1

H

VG

1

I,VG1

21

Using VIDs for manually configured optimum data distribution for E-Tree (2 roots, 1 leaf group) example

Bridge Port Can transmit (before xlate)

(Ingress) VID Translation

Egress VID Translation

B1 P10 R AI RA

P11 R,I,VG1 GR IG, RG, VG1G

P12 R,I,VG1 PI, RR, SVG1 IP, RR, VG1S

P13 R,VG1 QI, TVG1 RQ, VG1T

B2 P20 R BI RB

P21 R,I,VG1 PI, RR, SVG1 IP, RR, VG1S

P24 R,VG1 KI, NVG1 RK, VG1N

P25 R,I,VG1 LI, MR, OVG1 IL, RM, VG1O

B3 P30 R FI RF

P31 I,VG1 QR, TVG1 IQ, VG1T

P33 R,VG1 JVG1 RJ, VG1J

B4 P40 R CI RC

P41 R,VG1 HVG1 RH, VG1H

P42 I,VG1 KR, NVG1 IK, VG1N

B5 P50 R DI RD

P52 R,I,VG1 LI, MR, OVG1 IL, RM, VG1O

P55 R,I,VG1 ER IE, RE, VG1E

22

E-LAN/E-Tree in ITU-T models

23

G.8021 E-LAN/E-Tree modelling

802.1Q multi-VID E-LAN/E-Tree models can be 1-to-1 translated into G.8021 ETH layer model

Each relay VID reference point is represented by an ETH_FP (Flow Point) reference point

The multi relay-VID FID is represented by an “ETH Flow Forwarding (FF) process in SVL mode” within an ETH Connection function (see clause 9.1.1/G.8021)

Learning Forwarding

Address Table

ETH_CI

ETH_CI

ETH_CI

(Address, port) Address (Address, {port})

ETH_FF

0

1

2

n

0

1

2

n

0

1

2

n

0

1

2

n

Learning Forwarding

ETH_CI

ETH_CI

0

1

2

n

0

1

2

n

0

1

2

n

0

1

2

n

Address(Address, {port})

(Address, port)

Learning STP_LearningState[]

Learning STP_LearningState[]

Ageing

ETH_CI

Group_Default

Flush_LearnedFlush_Config

MI_FF_MI_FF_

MI_FF_MI_FF_MI_FF_MI_FF_MI_FF_MI_FF_

MI_FF_MI_FF_MI_FF_MI_FF_

MI_FF_MI_FF_

MI_FF_MI_FF_ MI_FF_MI_FF_

‘I’

‘R’ETH/ETH-m

ETH_FP

ETH_AP

....ETH_TFP

ETH/ETH-m_A_MP ETH/ETH-m_A_PP

VID Translation relates local VID with one or

more ETH_FPs

Relay-VID reference point

Set of ETH_FPs represents EISS

ETH_AP represents ISS reference point

G.8021 ETH Flow Forwarding (FF) process in SVL mode

Relay-VID ‘I’ learning and forwarding process

Relay-VID ‘R’ learning and forwarding

process

G.8021 ETH to ETH multiplexing adaptation function

24

MEP and MIP functions in E-LAN/E-Tree

25

Looking at the model of E-LAN Node B2 I am wondering where the MEP and MIP functions should be located

Two locations are considered Red Green

Red locations imply that the VIDTranslation is located betweenthe UP MEPs and the MAC Relay, which is not consistent with itscurrent location in the clause 6.9Support of the EISS function

Green locations are consistent with802.1Q functionality order, but requireextensions to the G.8021 MEP Sink andMIP Sink functions, which currently do notsupport to read OAM from “multiple VIDs”

MEPs and MIPs in these E-LAN cases

B2B2

Ia

V

SVL

IaB

LV

RV

P

R

L

P23

P24

P20

P21

Ib

RIb

P25

IbB

LIa

PV

PIb

KVK

Ia

K

PIa

RIa

LIbK

Ib

VBVB

26

MEPs and MIPs in these E-Tree cases

Looking at the model of E-Tree Node B2 I am wondering where the MEP and MIP functions should be located

Two locations are considered Red Green

Red locations imply that the VIDTranslation is located betweenthe UP MEPs and the MAC Relay, which is not consistent with itscurrent location in the clause 6.9Support of the EISS function

Green locations are consistent with802.1Q functionality order

Both Red and Green locations requireextensions to the G.8021 MEP Sink and MIP Sinkfunctions to support reading from “multiple VIDs”

B2B2

I

R

SVL

MR

P

MP24

P20

P21

P25

PI

RR

KR

K

P I

LI

RB IB

B

KI

RR

LI

MR

R

L

27

Ia

IaB

MEP and MIP primary VID assignments in E-LAN node B2

Up MEP and Half MIP functions have different

primary VID (Ia) than Down MEP/Half MIP (V)

Up MEP and Half MIP functions have different primary VID (Ib) than Down MEP/Half MIP (V)

MAC Relay

Ib Ia V

LAN

Ia..

V..

Ib..

Primary VID: Ib

Primary VID: IbPrimary VID: V

Primary VID: V

P24 and P25

Ia Ib V

LAN

Ib..

V..

Ia..

Primary VID: Ia

Primary VID: IaPrimary VID: V

Primary VID: V

P21 and P23

V Ib V

LAN

IbB

VB

VB

Primary VID: V

Primary VID: VPrimary VID: V

Primary VID: V

P20

Up and Down MEP and Half MIP functions have same primary VID (V)

Primary VID values for the Up MEP/HalfMIP functions on the three port sets are different (V, Ia and Ib); configuration should be performed carefully

28

R

R..

MEP and MIP primary VID assignments in 3rd type E-Tree node B2

Up MEP and Half MIP functions have different

primary VID (I) than Down MEP/Half MIP (R)

MAC Relay

I R

LAN

R..

I..

Primary VID: I

Primary VID: IPrimary VID: R

Primary VID: R

P20 and P24

I I R

LAN

I..

R..

I..

Primary VID: R

Primary VID: RPrimary VID: R

Primary VID: R

P21 and P25

Up and Down MEP and Half MIP functions have same primary VID (R)

Primary VID values for the Up MEP/HalfMIP functions on the two port sets are different (R and I); configuration should be performed carefully

29

R

R..

MEP and MIP primary VID assignments in 4th type E-Tree node B2

Up MEP and Half MIP functions have different

primary VID (I) than Down MEP/Half MIP (R)

MAC Relay

I R

LAN

RB

IB

Primary VID: I

Primary VID: IPrimary VID: R

Primary VID: R

P20

I I R

LAN

I..

R..

I..

Primary VID: R

Primary VID: RPrimary VID: R

Primary VID: R

P21 and P25

Up and Down MEP and Half MIP functions have same primary VID (R)

Primary VID values for the Up MEP/HalfMIP functions on the three port sets are different (R and I); configuration should be performed carefully

VG

1..

VG1 VG1

VG

1..

VG1

VG

1N

I VG1 R

LAN

VG

1N

RK

IK

Primary VID: I

Primary VID: IPrimary VID: R

Primary VID: R

P24

Up MEP and Half MIP functions have different

primary VID (I) than Down MEP/Half MIP (R)

30

G.8021 MEP/MIP functions

G.8021 ETH MIP function has single ETH_FP To support the multi-VID E-Tree the G.8021 MIP function should get

multiple ETH_FPs OAM XXM frames may ingress on each of those ETH_FPs and the

associated XXR frames may egress on the primary_ETH_FP

G.8021 specifies ETH MEP and ETHG MEP functions ETH MEP function contains a single ETH_FP ETHG MEP function contains multiple ETH_FPs

OAM frames can be read/extracted from one ETH_FP only OAM frames can be generated/inserted into one ETH_FP only

The multi-VID E-LAN/E-Tree models require and ETH MEP function with multiple ETH_FPs, with reading/extracting capabilities of OAM frames on every ETH_FP and generating/inserting capabilities of OAM frames on the primary_ETH_FP only

ETH and ETHG MEP functions could be merged into one ETH MEP function, or alternatively the ETH MEP function can be left unchanged and the ETHG MEP function can be extended to read/extract OAM from every ETH_FP

31

G.8021 nodal functional models for E-LAN and E-Tree cases

Slides 32-34: E-LAN

Slides 35-37: E-Tree, 2nd type

Slides 38-40: E-Tree, 3rd type

Slides 41-43: E-Tree, 4th type

32

B1

G.8021 nodal functional models for E-LAN (2 domains) example

FF(I)FF(V)

P13P10 P11

G G GA A P P

P12

Q QA

P23 P24 P25

B2 FF(Ib)

P20 P21

P P PB B R R K K

FF(Ia)FF(V)

L LB R LKB

Local VID ETH_FP mapping

represents “Ingress VID Translation” and

provides security

Local VID value

ETH_FP(V) is optional in this case;

could be deleted

ETH_FP Local VID mapping

represents “Egress VID Translation”

Connecting ETH_FF(x) with

ETH_FP represents “Egress Filtering”

33

P30 P31

B3

Q QF F

FF(I)

R R

P32

FF(V)

F

P45P40 P42

B4

KC C

FF(I)

M

FF(V)

KC M

G.8021 nodal functional models for E-LAN (2 domains) example

34

P50 P52

B5

L LD D

FF(I)

M M

P54

E E

P55

FF(V)

ED

G.8021 nodal functional models for E-LAN (2 domains) example

B1

B2

B3

P21

P23

P32

P31

P13

P12

P10

P20

P30

C12

C2

C3

C52

C11

C51

P11

B4 B5

P24 P25

P52

P54

P42

P45

P50

P40C4 P55

VID: R

VID: Q

VID: P

VID: M

VID: LVID: K

VID: A

VID: B

VID:C

VID: D

VID: E

VID:F

VID: G

35

B1

G.8021 nodal functional models for 2nd type E-Tree (2 domains) example

FF(I)FF(R)

P13P10 P11

G GA P P

P12

Q QA

P24 P25

B2

P20 P21

B K K

FF(I)FF(R)

L LB P P

36

P30 P31

B3

Q QF

FF(I)FF(R)

F

P40 P42

B4

KC

FF(I)FF(R)

KC

G.8021 nodal functional models for 2nd type E-Tree (2 domains) example

37

P50 P52

B5

D

FF(I)

E E

P55

FF(R)

D

G.8021 nodal functional models for 2nd type E-Tree (2 domains) example

L L

B1

B2

B3

P21

P31

P13P12

P10

P20

P30

L1

L2

L3

L52

R1

L51

P11

B4 B5

P24P25

P52P42

P50

P40L4P55

Q

P

LK

A

B

C

D

E

F

G

38

B1

G.8021 nodal functional models for 3rd type E-Tree (2 domains) example

FF(I)FF(R)

P13P10 P11

G G GA P P

P12

Q QA

P24 P25

B2

P20 P21

B K K

FF(I)FF(R)

L L MB

R R

P P R R M

39

P30 P31

B3

QF

FF(I)FF(R)

F

P40 P42

B4

KC

FF(I)FF(R)

KC

G.8021 nodal functional models for 3rd type E-Tree (2 domains) example

Q

40

P50 P52

B5

D

FF(I)

E E

P55

FF(R)

ED

G.8021 nodal functional models for 3rd type E-Tree (2 domains) example

B1

B3

P21

P31

P13P12

P10

P20

P30

L1

L2

L3

R5

R1

L5

P11

B4

P24 P25

P52P42

P50

P40L4 P55

Q

P

LK

A

B

C

D

E

F

G

M

R

B2

B5

L L M M

41

B2 FF(VG1)

B1 FF(VG1)

G.8021 nodal functional models for 4th type E-Tree (2 domains) example

FF(I)FF(R)

P13P10 P11

G G GA P P

P12

Q QA

P24 P25P20 P21

B K K

FF(I)FF(R)

L L MB

R R

P P R R M

G T TS S

S S N N O O

42

B4 FF(VG1)

B3 FF(VG1)

P30 P31

QF

FF(I)FF(R)

F

P40 P42

C K

FF(I)FF(R)

KC

G.8021 nodal functional models for 4th type E-Tree (2 domains) example

Q T T

P33

J JJ

P41

H HHN N

43

B5 FF(VG1)

P50 P52

D

FF(I)

E E

P55

FF(R)

ED

G.8021 nodal functional models for 4th type E-Tree (2 domains) example

B1

B3

P21

P31

P13P12

P10

P20

P30

L1

L2

L3

R5

R1

L5

P11

P24 P25

P52P42

P50

P40L4 P55

Q

P

LK

A

B

C

D

E

F

G

M

R

B5

P41

LG14

H

B4

N O

ST

P33

LG13

J

B2

L L M M O O E E

44

Interworking split-horizon port group model with multi-vid model

45

E-LAN interworking example

Nodes designed according to the split-horizon port group model are able to interwork with nodes designed according to the multi-vid model

Nodes B1, B2, B4 could be using split-horizon port groups (SH)

Nodes B3, B5 could be using multi-vid model (MV)

Both node types deploy a common Local VID approach, which guarantees interworking between these two node types

Note – Any other combination of SH and MV node types also interworks

B1SH

B2SH

B3MV

P21P23

P32

P31

P13P12

P10

P20

P30

C12

C2

C3

C52

C11

C51

P11

B4SH

B5MV

P24 P25

P52P54

P42P45

P50

P40C4

P55

VID: R

VID: Q

VID: P

VID: M

VID: LVID: K

VID: A

VID: B

VID:C

VID: D

VID: E

VID:F

VID: G

46

E-Tree, 2nd type interworking example

Nodes designed according to the split-horizon port group model are able to interwork with nodes designed according to the multi-vid model

Nodes B1, B4 could be using split-horizon port groups (SH)

Nodes B2, B3, B5 could be using multi-vid model (MV)

Both node types deploy a common Local VID approach, which guarantees interworking between these two node types

Note – Any other combination of SH and MV node types also interworks

P21

P31

P13P12

P10

P20

P30

L1

L2

L3

L52

R1

L51

P11

P24 P25

P52P42

P50

P40L4

P55

Q

P

LK

A

B

C

D

E

F

G

B1SH

B2MV

B3MV

B4SH

B5MV

47

E-Tree, 3rd and 4th types interworking

The 3rd and 4th type E-Tree cases can not be supported by means of split-horizon port groups. As such, there is no interworking requirement for multi-vid designs of those two E-Tree cases.