Introduccion Estructuras Aeronauticas 2016-1

download Introduccion Estructuras Aeronauticas 2016-1

of 111

Transcript of Introduccion Estructuras Aeronauticas 2016-1

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    1/111

    ESTRUCTURAS AERONAUTICAS

    Introducción

    Ing. Fabio Merchán, CMSc, Esp.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    2/111

    •   The primary factors to consider in aircraft structures are

    strength, weight, and reliability.

    All materials used to construct an

    aircraft must be reliable.

    Reliability minimizes the possibility of 

    dangerous and unexpected failures.

    http://www.zenithair.com/zodiac/gif/6fox2.jpg

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    3/111

    Forces

    A/C

    Structural

    stressesConditions

    Flying  Statics

    Force of gravity produces weight

    Landing gear 

    Absorbs the forces

    Maneuver

    Causes acceleration or deceleration

    increases the forces and stresses on the

    wings and fuselage.

    Aircraft structural

    members are

    designed to carry a

    load or to resist

    stress.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    4/111

    CargasExternas

    CargasInternas

    Esfuerzos

    Deformaciones

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    5/111

    Tipos de cargas y esfuerzos

    •   Limit Loads: are Maximum loads expected during service.

    •   Stress is defined like a applied load per area of the material.

    Taking into account that the

    principal stresses on the

    fuselage and wings are

    transmitted for each

    component to the principal

    structures.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    6/111

    Tensión, es una fuerza

    actuando en contra de

    otra fuerza que esta

    tratando de jalar algoaparte.

    Compresión, se

    considera como unafuerza que intenta

    hacer las parte mas

     pequeñas.

    Torsión se considera

    como una fuerza que

    tiende a torcer una

     parte.

    Combinación de dos

    fuerzas, compresión y

    tensión.

    Esfuerzo cortante, se

    considera cuando

    una pieza de material

    se deliza sobre otra.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    7/111

    These stresses are absorbed by each component of the

    wing structure and transmitted to the fuselage structure.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    8/111

    Bending force on the fuselage Bending action creates a tensionstress on the lower skin of the

    fuselage and a compression stress on

    the top skin. Airflow

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    9/111

    What happen in the flight?

    Lift forces act upward againstthe wings.

    Bend them upward

    The wings are prevented from

    folding over the fuselage by the

    resisting strength of the wingstructure.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    10/111

    Thrust is the power which

    enables an airplane to move

    forward (engine).   Lift is the force

    aroused by thrust.

    Wing

    Lift airfoil

    Propeller

    Thrust airfoil

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    11/111

    RECUENTO HISTORICO Y

    MATERIALES 

    •   Primeros aviones: Madera de bambú ysuperficies en “fabric” (1910).

    •  Estructuras tipo “TRUSS”.•   Estructuras livianas y de difícil acabado

    aerodinámico por la técnica de construcción.

    •  Nuevos registros de velocidad y exigencias decarga generan cambio materiales por maderaprensada “PLYWOOD” (1920).

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    12/111http://plymaster.com.au/pics/CD%20grade%20Plywood%20[Desktop%20Resolution].jpg

    http://www.google.com.co/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=ZRhouGI5N8ZZXM&tbnid=EXVxFVpf93XMSM:&ved=0CAUQjRw&url=http%3A%2F%2Fcherokeesailplanes.blogspot.com%2F2010_03_01_archive.html&ei=SDS_Ue3zFOi20QGC8IHADA&bvm=bv.47883778,d.dmQ&psig=AFQjCNE3fi2oT9bNfYEI5tyUW03zViadHw&ust=1371571340376292http://www.google.com.co/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=ZRhouGI5N8ZZXM&tbnid=EXVxFVpf93XMSM:&ved=0CAUQjRw&url=http%3A%2F%2Fcherokeesailplanes.blogspot.com%2F2010_03_01_archive.html&ei=SDS_Ue3zFOi20QGC8IHADA&bvm=bv.47883778,d.dmQ&psig=AFQjCNE3fi2oT9bNfYEI5tyUW03zViadHw&ust=1371571340376292

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    13/111

    •   Irish linen and cotton.

    Covering airframes. Sag

    aircraft structure.

    •   Builders began coating the

    fabrics with oils and

    varnishes.

    •   Extreme flammability.

    •   Lack of durability, limitedservice life.

    •   Coated fabric proved

    unsuccessful.http://cherokeesailplanes.blogspot.com/2010_03_01_archive.html

    http://www.google.com.co/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=ZRhouGI5N8ZZXM&tbnid=EXVxFVpf93XMSM:&ved=0CAUQjRw&url=http%3A%2F%2Fcherokeesailplanes.blogspot.com%2F2010_03_01_archive.html&ei=SDS_Ue3zFOi20QGC8IHADA&bvm=bv.47883778,d.dmQ&psig=AFQjCNE3fi2oT9bNfYEI5tyUW03zViadHw&ust=1371571340376292http://www.google.com.co/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=ZRhouGI5N8ZZXM&tbnid=EXVxFVpf93XMSM:&ved=0CAUQjRw&url=http%3A%2F%2Fcherokeesailplanes.blogspot.com%2F2010_03_01_archive.html&ei=SDS_Ue3zFOi20QGC8IHADA&bvm=bv.47883778,d.dmQ&psig=AFQjCNE3fi2oT9bNfYEI5tyUW03zViadHw&ust=1371571340376292

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    14/111

    An edge which has been cut by machine or special pinking shears

    Materials and techniques are in the

    manufacturer’s service manual.

    Aircraft originally manufacturedwith cotton fabric can only be re-

    covered with cotton fabric unless

    the Federal Aviation

    Administration (FAA) approves an

    exception.

    Approved supplemental type

    certificate (STC).

    Field approval

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    15/111

    •   Do the work in accordance with

    an approved supplemental type

    certificate (STC).

    •   Specify that it is for the

     particular a/c model inquestion

    Detail exactly what alternate

    materials must be used and what

     procedure(s) must be followed.

    STC

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    16/111

    STC

     Alteraciones o modificaciones principales a un

    producto aeronáutico.

    Estructura

    Resistencia estructural

    Cambios es peso y balance

    Componentes o sistemas

    Limitaciones de operación

     Aeronavegabilidad del producto

    Cambian las condiciones del Certificado Tipo

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    17/111

     Alteración mayor o menor 

    Mayor Menor 

    Se tienen

    suficientes datos

    aprobados

    No requiere

    aprobación decampo

    No requiere de

    un aprobaciónde campo

    Requiere una

    aprobación decampo

    SI   NO

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    18/111

    •   A Field Approval is the granting, by an

    FAA airworthiness inspector, of FAA

    “approval”   for a major repair or major 

    alteration. The approval is given only after conducting a physical inspection and/or 

    after reviewing data.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    19/111

    OVERVIEW OF THE STEPS

    •  Do your homework.

    •  Create a standard data (SDP) package as

    described in the ac.•  Submit the SDP to the local FSDO (Flight

    Standards district office) .

    •   Interact with the ASI (aviation safetyinspector).

    •  Receive a final response.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    20/111

    WHAT WILL THE ASI DO

    •  Evaluate the data.

    •  And if necessary

     – Request additional data –  Forward to another ASI.

     – Request engineering help (ACO) FAA AircraftCertification Office.

    •  Or Approve the data, or Deny therequest—in writing

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    21/111

    D t ió té i

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    22/111

    Documentación técnica

    para definir y sustentar 

    alteración o reparación

    Información de diseño y

    cálculos de Ingeniería

    Orden de Ingeniería

    Planos

    Diseño de pruebasEspecificaciones

    técnicas

     Análisis de peso y balance

    Limitaciones

    operacionales

    Características de vuelo

    Propuesta de suplementos a los manuales,

    dimensiones, materiales y procesos.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    23/111

    Hojas de datos técnicos del certificado

    tipo (TCDS)

    Datos del certificado tipo

    suplementario. (STC) previniendo que

    este aplica específicamente al

    elemento que esta siendo

    reparado/alterado. Tal documento

     puede ser considerado en su totalidad

    o en parte como incluido dentro de los

    datos de diseño asociados con el STC

    Directivas de aeronavegabilidad

    (AD’s)

    Manuales de Mantenimiento o

    instrucciones del fabricante aprobadas

     por la Autoridad Aeronáutica del

    Estado de Certificación del Producto.

    Porciones del SRM aprobadas por la

    Autoridad Aeronáutica del Estado de

    Certificación del Producto. Manual de

    reparaciones estructurales (SRM),

    solamente como una fuente de datos

    técnicos aprobados para una

    reparación mayor cuando es un

    documento aprobado por una autoridadaeronáutica.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    24/111

    Que diferencias hay entre reparaciones y

    alteraciones mayores???

    Es cuando retorna laaeronave o

    componente a su

    diseño Tipo original.

    Es un cambio deldiseño tipo original de

    la aeronave o

    componente.

    Alteración

    mayor 

    Reparación

    mayor 

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    25/111

     Actividad extraclase

    “Alteraciones mayores”

    •   Es una modificación registrada en las especificaciones

    de la a/c?.

    •   Afecta o no la aeronavegabilidad de la a/c? En que

    aspectos.•   Se puede hacer por medio de operaciones elementales

    de manto?

    •   Como se da el manejo de alteraciones mayores en

    Colombia?•   Que tipo de alteraciones y reparaciones mayores son

    permitidas según el RAC

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    26/111

    BELL TEXTRON HELICOPTER Inc Kit Huey II

    Componentes para la conversión

      Cambio de rotor de cola y palas a modelo Bell

    212.

      Cambio de rotor principal y palas a modelo

    Bell 212,

     Kit para conversión de la transmisión principal

    a modelo Bell 212,

     Cambio de mástil, platillo oscilante y controles

    a modelo Bell 212,

      Cambio de cono de cola con todoscomponentes a modelo Bell 212,

      Cambio de cajas de engranaje de 42 y 90

    grados a modelo Bell 212,

      Cambio de ejes impulsores y colgantes de rotor 

    de cola a modelo Bell 212,

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    27/111

    WHAT ARE THE REASONS FOR DENIAL

    •  Minor alteration—no 337 needed.

    •   Major change—STC needed.

    •   Data is already approved—no further approval isneeded

    •   Alteration contrary to safety.

    •   Continued failure to provide an adequate SDP—

    FAA terminates the project.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    28/111

    WHAT IS IN THE SDP

    1. Field Approval Checklist.

    2. Copies of supporting data including

    any previously approved data.

    3. FAA Form 337 not signed in block 6

    or 7.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    29/111

    DATA

    •  Chapter 2 of the AC provides all you need to

    know about substantiating data.

    •  Approved data.

    •  Acceptable data.

    •   DER (Designated Engineering Representative)

    approval of data.

    •  DER limitations.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    30/111

    THE FIELD APPROVAL PROCESS

    •  Research.

    •  Obtain field approval.

    •  Perform the alteration.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    31/111

    RESEARCH

    •  Thoroughly understand what is involved in

    the alteration and how the aircraft and its

    other systems will be affected by the workyou plan to do.

    •  Thoroughly understand how the approved

    operation(s) of the aircraft be affected

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    32/111

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    33/111

    RESEARCH

    •   AIRCRAFT TECHNICAL REQUIREMENTS

     – Previous Alterations

     – A/C Manufacturer’s Data – Service Bulletins

     – STC’s already approved

     – Other Field Approvals

     – Flight Manual Supplements

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    34/111

    RESEARCH

    • Equipment   manufacturer’s   technical

    data

     – Installation manuals

     – STC’s

     – Other data

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    35/111

    FAR 23

    23.301 loads

    Strength requirements arespecified in terms of limit

    loads (the maximum loadsto be expected in service)and ultimate loads (limit

    loads multiplied byprescribed factors of safety)

    The air, ground, and waterloads must be placed inequilibrium with inertia

    forces, considering each

    item of mass in the airplane

    23.305 Strength anddeformation

    The structure must be ableto support limit loads without

    detrimental, permanentdeformation. At any load up

    to limit loads, the

    deformation may notinterfere with safe operation.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    36/111

    FAR 23 Flight loads

    23.321 General

    Flight load factors

    represent the ratio of theaerodynamic force

    component

    23.331 Symmetricalflight conditions

    The wing loads and linearinertia loads

    corresponding to any ofthe symmetrical flight

    conditions

    The incrementalhorizontal tail loads due

    to maneuvering andgusts

    23.333 Flight envelope

    The airplane is assumedto be subjected to

    symmetrical verticalgusts in level flight

    Combination of airspeedand load factor 

    GROUND LOADS

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    37/111

    GROUND LOADS

    External loads and inertia forces that

    act upon an airplane structure

    23.479 Level landingconditions

    23.481 Tail down landingconditions

    23.483 One-wheel

    landing conditions.

    23.485 Side load conditions.

    23.493 Braked roll conditions

    3.507 Jacking loads.  23.509 Towing loads.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    38/111

    •   PLYWOOD is replaced for aluminum

    laminates.

    •   Duraluminum is discovered in Germany

    (1909 – Alfred Wilm – Durener Mettalwerke).

    •   Wood limitations due to production crisis

    1914-1918 and the change in the elasticproperties due to environment.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    39/111

    •  Germany 1915-1919 Junkers J.L.6

    (iron/steel)

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    40/111

    •   DeHavilland   “MOSQUITO”   100% wood

    incorporate adhesive technology (thermoset

    resin and thermoplastic resin)

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    41/111

    •  Due to the new characteristics of 

    performance and new complexstructures the use of wood is just.

    •  Wing load more high and concentrationstress on critic points of the structures

    like WING BOX and MLG TRUNNIONS,

    where the wood wasn´t good adapted.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    42/111

    ALEACIONES DE ALUMINIO 

    •  Usadas extensivamente en estructuras, pieles y

    otros miembros estructurales sujetos a cargas.

    •  Sistema 4 dígitos de identificación de la aleaciónde aviación.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    43/111

    GRUPO TIPO ALEACION

    1XXX Aluminio 100% puro

    2XXX Aleación de Cu

    3XXX Aleación de Mn

    4XXX Aleación de Si

    5XXX Aleación de Mg

    6XXX Aleación Mg + Mn7XXX Aleación de Zn

    Código de cuatro dígitos : 1 2 3 4

     1: Tipo de aleación

     2: Modificación de la aleación

     3-4: Pureza de aluminio

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    44/111

    ALEACIONES DE AVIACION 

     1100, Aluminio puro, uso no estructurales

     2024, La más usada, tratable térmicamente

     3003, Similar 1100, no tratable, endurecida por 

    trabajo en frio.

     5052, Para aplicaciones compatibles con procesos de

    soldadura, no tratable térmicamente.

     6061, Aleaciones de media resistencia y buen

    formado con tratamiento térmico, soldables.

     7075, La de mejor resistencia, usos estructurales

    primarios, tratable térmicamente.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    45/111

    ALEACIONES DE AVIACION

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    46/111

    ALEACIONES DE AVIACION 

     HIDUMINIUM RR58 (Concorde), aleación de Cu, Mg,Ni, Fe (1939-1945), alta resistencia temperatura.

    %Cu %Mg %Si %Fe %Ni %Ti %AlMin2.25 1.35 0.18 0.90 1.0 - Resto

    Max2.70 1.65 0.25 1.20 1.30 0.20

     Condiciones F, T, H, O

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    47/111

    ALEACIONES DE AVIACION 

    •  Aleaciones de Mg, más livianas, más

    reactivas (corrosión), frágiles.

    •  Aleaciones de Ti, Similar relación

    resistencia/peso a las aleaciones de Al,

    uso extendido aviación militar (Wingbox

    F14/F15/F22).

    ALEACIONES DE AVIACION 

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    48/111

    •   Aleaciones de Acero, Alta resistencia, bajo

    contenido C (0.03%), gama de inoxidables

    con alta resistencia a la temperatura (X-15

    pieles de cromo-niquel).

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    49/111

    OTROS MATERIALES 

    •   Plásticos acrílicos (familia resinas termoplásticas).PLEXIGLAS/LUCITE/PERSPEX.

    •   Compuestos, Resistencia mayor a las aleaciones de Al,significan entre 15%-20% peso estructural (comercial), aviación

    militar uso extendido.

    •   GFRP (glass-fiber reinforced plastic)   ,AFRP (Aramid Fiber Reinforced Polymer), CFRP (Carbon-fiber-reinforcedpolymer)   (Fibras de vidrio, aramidas-kevlar, Carbon/Grafito-Boro).

    •   Altos costos producción/mantto.

    •   Economía en carga paga y combustible

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    50/111

    ESTRUCTURAS AERONAUTICAS 

    OBJETIVO

    •   Resistir y transmitir las cargas,

    proporcionar formasaerodinámicas y proteger 

    pasajeros/carga/sistemas del

    avión de las condiciones

    ambientales encontradas

    durante el vuelo.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    51/111

    •   Primary structure:   Structural elements that in

    case of damage or failure could lead to failure of 

    the entire craft.

     – Primary structure is that structure which carries flight,

    ground, or pressurization loads, and whose failure

    would reduce the structural integrity of the airplane.

    •   Secondary structure Structural elements that arenot part of the primary structure. Structural

    elements mainly to provide enhancedaerodynamics.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    52/111

    TIPOS DE ESTRUCTURAS 

    •   Estructura de piel esforzada (Stressed skin

    structure).

    •   La gran parte de los esfuerzos son soportados

    por la piel exterior.

    •   Poca cantidad de miembros estructurales

    internos.

    •   Buena capacidad para dar formasaerodinámicas.

    •   Alta probabilidad de grietas por efectos de

    ondulamiento o “buckling”.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    53/111

    TIPOS DE ESTRUCTURAS 

    Semimonocasco:

    Conjunto de formadores,

    larguerillos, y mamparos

    unidos entre si a loscuales se adhiere la piel.

    Monocasco: Conjunto de

    formadores y mamparos

    unidos a la piel quiénsoporta las cargas de

    operación.

    http://www.google.com.co/url?sa=i&source=images&cd=&cad=rja&docid=MGC2XNAE-LmvgM&tbnid=nE3DQvh9v-YZlM:&ved=0CAgQjRwwAA&url=http%3A%2F%2Fwww.taringa.net%2Fposts%2Fhazlo-tu-mismo%2F9685605%2FTutorial-Photoshop-Lata-de-Gaseosa.html&ei=n3S_UdfeC5TW0gGGiYCwCw&psig=AFQjCNGTyKuIX43AYgOdSJYeAyw957q53Q&ust=1371588127232811http://www.google.com.co/url?sa=i&source=images&cd=&cad=rja&docid=MGC2XNAE-LmvgM&tbnid=nE3DQvh9v-YZlM:&ved=0CAgQjRwwAA&url=http%3A%2F%2Fwww.taringa.net%2Fposts%2Fhazlo-tu-mismo%2F9685605%2FTutorial-Photoshop-Lata-de-Gaseosa.html&ei=n3S_UdfeC5TW0gGGiYCwCw&psig=AFQjCNGTyKuIX43AYgOdSJYeAyw957q53Q&ust=1371588127232811

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    54/111

    •   Although very strong, monocoque construction is

    not highly tolerant to deformation of the surface.

    •   The biggest problem in monocoque construction ismaintaining enough strength while keeping the

    weight within limits.

    The formers and bulkheads

    provide shape for the

    fuselage.

    The skin carries the primary

    stresses.

    No bracing members are

    present.

    http://www.google.com.co/url?sa=i&source=images&cd=&cad=rja&docid=MGC2XNAE-LmvgM&tbnid=nE3DQvh9v-YZlM:&ved=0CAgQjRwwAA&url=http%3A%2F%2Fwww.taringa.net%2Fposts%2Fhazlo-tu-mismo%2F9685605%2FTutorial-Photoshop-Lata-de-Gaseosa.html&ei=n3S_UdfeC5TW0gGGiYCwCw&psig=AFQjCNGTyKuIX43AYgOdSJYeAyw957q53Q&ust=1371588127232811http://www.google.com.co/url?sa=i&source=images&cd=&cad=rja&docid=MGC2XNAE-LmvgM&tbnid=nE3DQvh9v-YZlM:&ved=0CAgQjRwwAA&url=http%3A%2F%2Fwww.taringa.net%2Fposts%2Fhazlo-tu-mismo%2F9685605%2FTutorial-Photoshop-Lata-de-Gaseosa.html&ei=n3S_UdfeC5TW0gGGiYCwCw&psig=AFQjCNGTyKuIX43AYgOdSJYeAyw957q53Q&ust=1371588127232811

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    55/111

    • Conclusion

     – Unstiffened shells. must be

    relatively thick to resist bending,compressive, and torsional loads.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    56/111

    •  Conclusion

     – Constructions with stiffening members that

    may also be required to diffuse concentrated

    loads into the cover. – More efficient type of construction that permits

    much thinner covering shell.

    TIPOS DE ESTRUCTURAS

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    57/111

    TIPOS DE ESTRUCTURAS 

    •   Truss type: Formada por largueros

    soldados entre si que forman   “well-

    braced framework”.

    •   Miembros verticales y horizontales

    (struts) dan forma rectangular o

    cuadrada.

    •   Se instalan   “struts”   adicionales para

    soportar esfuerzos. Larguerillos,mamparos y formadores se añaden

    para dar forma al fuselaje e instalar la

    piel.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    58/111

    TERMINOLOGIA ESTRUCTURAS

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    59/111

    TERMINOLOGIA ESTRUCTURAS 

    •   Frame (Formador)

    Es un miembro

    circunferencial usado enla construcción semi-

    monocasco que soporta

    los larguerillos y la piel.

    Los formadores están diseñados para soportar cargas

    laterales y los momentos de flexión adicional a las cargas

    axiales.

    Son vigas

    circulares en

    J o C.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    60/111

    TERMINOLOGIA ESTRUCTURAS 

    Give cross-sectional shape toFormers are the lightest.

    h d i il f

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    61/111

    Give cross-sectional shape to

    the fuselage, and they add

    ridigity and strength to the

    stucture.

    The are used primarily for 

    fillings or skin attachments

     between the larger members.

    Frame assemblies are used toseparate one section of the

    fuselage from another.

    BULKHEADS

    Heavier than formers,

    they are equipped

    with doors or other mens of access.

    Struc tu re termino logy 

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    62/111

    gy

    •   Longerons (Largueros)

    •   The strong, heavylongerons hold the

    bulkheads and formers.

    •   The bulkheads andformers hold the stringers.

    •   Rigid fuselage framework.

    Generally the 20 to 40 stringers are replaced by 4 to 6 longerons. Longerons as the

    stringers resists the bending load of the fuselage.

    Primary bending loads are

    taken by the longerons,

    which usually extend across

    several points of support.

    Función de largueros/largueri l los 

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    63/111

    .

    They have the same job and application than the stringers,

     but longerons are stiffer beams, mainly machined and they

    are in less number over the circular periphery of the

    fuselage circle.

    Axial

    Load

    Stringers and longerons prevent tension and compression stresses from

    bending the fuselage.

    Designed

    Support the axial forces

    nevertheless

    Support lateral forces Flexion moment

    TERMINOLOGIA ESTRUCTURAS

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    64/111

    TERMINOLOGIA ESTRUCTURAS 

    •   Stringers (Larguerillos)

    They are longitudinal beams in

    C, L or T form located in thecircular periphery of the

    fuselage and equally circular 

    spaced over the fuselage

    diameter.

    The fuselage skin thickness varies with the load carried and

    the stresses sustained at particular location.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    65/111

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    66/111

    TIPOS DE “STRINGERS” 

    http://www.google.com.co/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=tBE_jjU7u3EE1M&tbnid=xkTYrpXNbQXnIM:&ved=0CAUQjRw&url=http%3A%2F%2Fjameswiebe.blogspot.com%2F2012_12_23_archive.html&ei=pd0DUp-dDpPJ4AO_gIGQBQ&bvm=bv.50500085,d.dmg&psig=AFQjCNGCcR8eBv1GkgzeT1BiJdUgx5PS_g&ust=1376071228934117http://www.google.com.co/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=tBE_jjU7u3EE1M&tbnid=xkTYrpXNbQXnIM:&ved=0CAUQjRw&url=http%3A%2F%2Fjameswiebe.blogspot.com%2F2012_12_23_archive.html&ei=pd0DUp-dDpPJ4AO_gIGQBQ&bvm=bv.50500085,d.dmg&psig=AFQjCNGCcR8eBv1GkgzeT1BiJdUgx5PS_g&ust=1376071228934117http://www.google.com.co/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=tBE_jjU7u3EE1M&tbnid=xkTYrpXNbQXnIM:&ved=0CAUQjRw&url=http%3A%2F%2Fjameswiebe.blogspot.com%2F2012%2F12%2Fbelite-cabin-construction-episode-4.html&ei=g90DUtibN8-y4APMoYGQAQ&bvm=bv.50500085,d.dmg&psig=AFQjCNGCcR8eBv1GkgzeT1BiJdUgx5PS_g&ust=1376071228934117http://www.google.com.co/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=tBE_jjU7u3EE1M&tbnid=xkTYrpXNbQXnIM:&ved=0CAUQjRw&url=http%3A%2F%2Fjameswiebe.blogspot.com%2F2012%2F12%2Fbelite-cabin-construction-episode-4.html&ei=g90DUtibN8-y4APMoYGQAQ&bvm=bv.50500085,d.dmg&psig=AFQjCNGCcR8eBv1GkgzeT1BiJdUgx5PS_g&ust=1376071228934117

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    67/111

    The main job is to retain the bending loads

    applied to the fuselage.

    They are riveted attached to skins

    and frames. To skins to increasestiffness, to frames to increase

    buckling resistance.

    TERMINOLOGIA ESTRUCTURAS

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    68/111

    •  Beams (Vigas)

    Es un miembro primario

    de un formador o un alausado para soportar  

    grandes cargas incluyendo

    momentos de flexión.

    En las alas es a menudollamado como “spar”.

    TERMINOLOGIA ESTRUCTURAS 

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    69/111

    TIPOS DE “BEAMS” 

    .

    Función de las vigas

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    70/111

    Las vigas estandiseñadas para

    soportar    cargas

    laterales   y los

    momentos de flexión

    que usualmente son

    mayores comparados

    con sus respectivascargas axiales

    •  Las cargas laterales serefieren a los esfuerzos

    cortantes (Shear  

    Stresses).

    •   Los momentos deflexión causanesfuerzos decompresión y tensión

    Función de las vigas 

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    71/111

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    72/111

    .

    Están diseñados para soportar cargas axiales (tensión

    y compresión) aplicadas en sus extremos

    unicamente.

    Función estructuras “truss” 

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    73/111

    Las vigas que deben

    soportar grandes cargas

    axiales, particularmente

    cargas de compresión, en

    conjunto con cargas

    laterales y momentos de

    flexión son llamadas vigas

    de columna o beam-columns.

    TERMINOLOGIA ESTRUCTURAS 

     Nose section   Center section Aft or rear section

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    74/111

    Centre section needs to be large and strong. Why?

    Windows and doors

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    75/111

    Cut-outs

    When we design anaircraft it’s very important

    and necessary

    It’s   a engineering structural

     problem

    The fuselage needs to be strengthened around

    them.

    The loads must be routed around

    the cut-outs.

    Spread evenly into surrounding skin and structure.

    Wings

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    76/111

    g

    •   The wing is the aircraft structural part that generate the

    require lift force that permits the aircraft to fly.

    •   Use the wing to transport fuel, engines, pylons and

    external fuel tanks.

    Wings structure must

    resist several kind of 

    different loads appliedto it:

    vibration loads

    lift load

    drag load

    engine thrust load

    main landing gear loads

    SPAR

    In its simplest form, the wing is a

    framework made up of spars and

    ribs and covered with metal

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    77/111

     All the load carried by the wing

    is taken up by the spars.

    Designed to have great

    bending strength.

    Transmit the air load from the

    wing covering to the spars.

    SPAR 

    RIBS

    ribs and covered with metal.

    •   Spar : The main center beam of the wing, designed to carry the

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    78/111

    structural loads and transfer them by attachment to the fuselage, or 

    body, of the aircraft.

    •   Root: The wing root is the portion of the wing that attaches to thefuselage, or body of the aircraft.

    •   Skin:   The outer surface of the wing. Originally made of fabric,

    modern aircraft use aluminum or composite materials due to their 

    lightweight and rust-resistant properties.

    •   Ribs & Stringers: These make up the inner skeleton of the wing,

    providing rigidity and strength. While strength is necessary, it is also

    important that the wing can flex slightly while it flies. This flexibility

    allows it to absorb the stress caused by turbulence and hard

    landings.

    Zodiac wing.

    Zodiac wing assembly.

    Zodiac wing skin.

    http://localhost/var/www/apps/conversion/tmp/Docs%20apoyo/zodiac%20wing.pdfhttp://localhost/var/www/apps/conversion/tmp/Docs%20apoyo/zodiac%20wing%20assembly.pdfhttp://localhost/var/www/apps/conversion/tmp/Docs%20apoyo/zodiac%20wing%20skin.pdfhttp://localhost/var/www/apps/conversion/tmp/Docs%20apoyo/zodiac%20wing%20skin.pdfhttp://localhost/var/www/apps/conversion/tmp/Docs%20apoyo/zodiac%20wing%20assembly.pdfhttp://localhost/var/www/apps/conversion/tmp/Docs%20apoyo/zodiac%20wing.pdf

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    79/111

    http://www.zenithair.com/bldr/images/6wing/hds%20top%20skin.jpg

    http://www.zenithair.com/bldr/images/6wing/hd%20wing%20skeleton.jpg

    https://reader009.{domain}/reader009/html5/0727/5b5affac8cde3/5b5affd477f6e.jpg

    Air loads increase as a the square of 

    the speed increase.For instance at 500 knots the air loads

    are five times.

    •   The front spar is located at about 15 % chord.

    •   The rear spar at 55 to 60%.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    80/111

    p

    Typical spar sections  Wing strong.

    Very high speed aircraft.

    May resist thebending forces

    imposed on it.

    •   Monospar wing

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    81/111

    http://www.langleyflyingschool.com/Pages/CPGS%203%20Airframes,%20Engines%20and%20Systems,%20Part%201.html

    Wing skin

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    82/111

    The two main spars are still

    the main strength members,

     but a large contribution to the

    strength is made by the skin.

    stressed-skin design

    Skin share some of the load.

    Web of a spar may be a plate or a

    t

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    83/111

    truss.

    Light weight materials with vertical stiffeners

    employed for strength.

    Fail-safe spar web design

    Member of a complex structure fail

    Other part of the structure

    assumes the load of the

    failed member and permits

    continued operation.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    84/111

    •  According to the AC 23-13A, define Fail-safe:

     – Fail-safe is the attribute of the structure that

    permits it to retain its required residual

    strength for a period of unrepaired use after 

    the failure or partial failure of a principalstructural element.

    The structural load must be transferred by two loading paths,

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    85/111

    y g p ,

    if one of the loading paths fails the other must be capable to

    safely transfer all the load with no structural failure.

    Aeroteaching blog handbook 

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    86/111

    What is a Principal Structural Element?

    •   A principal structural element (PSE) is an element that

    contributes significantly to carrying flight, ground, or 

    cabin pressurization loads, and whose integrity isessential in maintaining the overall structural integrity of 

    the airplane.

    Fixed surface,

    t bil t t i bl

    Integrally stiffened

    plates

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    87/111

    PSEs

    Wing

    vertical fin

    canard

    winglets/tipfins

    forwardwing

    horizontalstabilizer 

    stabilator, or trimmable

    stabilizer attachment

    fittings.

     plates

    Primary fittings

    Principal splices

    Skin or reinforcement

    around cutouts or  

    discontinuitiesSkin-stringer combinations

    Spar caps

    Ci f ti l

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    88/111

    Pressurizedcabin

    Circumferentialframes and

    adjacent skin

    Pressurebulkheads

    Window frames

    Skin around acutout

    Door frames,skins, andlatches;

    Skin and anysingle frame or

    stiffenerelement around

    a cutout

    Cockpit window

    The center wing is made bya structure assembly called

    the wing box

    The center wing is integrated with the

    fuselage structure.

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    89/111

    the wing box.g

    Main structural resistance of the wing to all type of loads applied to it.

     All this elements are generally

    made of machined high strength

    aluminium alloys or titanium

    alloys because of the high

    strength requirements.

    The center wing interior is mainly

    used as fuel tank compartment

    and main landing gear  

    compartment.

    What kinds of  d f i i l di

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    90/111

    loads resist the

    wing box?

    Loads of engines, main landing

    gear loads, external tanks, drag, lift

    and inertial loads.

    The outer wing is bolted to the root rib of the center

    wing in order to transfer all the loads to the structure.

    REMENBER 

    •   Wing tip

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    91/111

     –  Non critical structures.

     –   Reduce drag and increase lift.

    Box beam or torsion box construction

    Main spars  Stressed skin

    Lighter construction (composites)

    Wet wing

    EFECTOS EN LA ESTRUCTURA

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    92/111

    1. Igual función, diferente estructura.

     – DHC-6 (Twin Otter) configuración simple dosvigas y costillas.

     – Avión militar, múltiples vigas y pocas costillas ylarguerillos.

    2. Las costillas dan forma al perfil, actúa con la pielresistiendo cargas de presión aerodinámicas.

    3. Distribuyen cargas concentradas y re-distribuyenesfuerzos alrededor de discontinuidades.

    4. Incrementan la resistencia a la deformación por “doblamiento” o “buckling stress”.

    EFECTOS EN LA ESTRUCTURA

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    93/111

    5. Las costillas cambian de tamaño según forma del ala

    (rectangular, elíptica, tappered, etc), su posición y las cargas

    soportadas.

    6. Puntos intermedios, soportan reacciones superficies de

    control.

    7. Los paneles de piel forman una superficie impermeable para

    soportar la distribución de presión aerodinámica, y las cargas

    son transmitidas a costillas y larguerillos.

    EFECTOS EN LA ESTRUCTURA

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    94/111

    EFECTOS EN LA ESTRUCTURA

    8. Estructura de celda, la resistencia al corte y torsiónes proporcionada por esfuerzos de corte

    desarrollados en la piel y el alma de las vigas.

    9. Cargas axiales y flexión son soportadas por laacción combinada de la piel y los larguerillos.

    10. Larguerillos unidos a la piel y estos a su vez a las

    costillas le dan rigidez al conjunto.

    EFECTOS EN LA ESTRUCTURA

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    95/111

    EFECTOS EN LA ESTRUCTURA

    11. Fuselajes, miembros con funciones similares,

    origen y cargas soportadas diferentes.

    12. Reacciones de superficies, cargas puntuales

    (MLG), carga paga implican fuerzas de inercia.

    13. Cargas de presurización radiales y repetitivas.

    14. Estructuras ideales, secciones redondas o con sub-

    secciones similares.

    15. Aviones no presurizados tienen formas cercanas al

    cuadrado o rectángulo.

    EFECTOS EN LA ESTRUCTURA

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    96/111

    EFECTOS EN LA ESTRUCTURA

    16. Fuselaje, construcción simple en celda tubular dedelgada piel, formadores transversales, larguerillos

    y otros miembros estructurales que se extienden a

    través del fuselaje en secciones específicas

    llamados mamparos o “Bulckheads”.

    17. Formadores, soportan cargas concentradas del piso

    o provenientes del ala, puntos de sujeción de

    superficies. Más robustos que otros ligeramente

    cargados y de formas que proporcionen rigidez y

    transmisión de cargas a otro formadores y la piel.

    Flight control surfaces

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    97/111

    Change the attitude of the aircraft during flight.

    Primary Secondary Auxiliary

    Ailerons, elevators,

    and rudders

    Longitudinal

    control axis

    (lateral stability)

    Lateral control

    axis (longitudinal

    stability)

    Vertical control axis

    (directional stability)

    Trim tabs, spring tabs.

    Let the pilot trim out an

    unbalanced condition without

    exerting pressure on the

     primary controls.

    Aid the pilot in moving a

    larger control surface, such as

    the ailerons and elevators

    Wing flaps, spoilers,

    speed brakes, and

    slats.

    Additional

    control of theaircraft

    Higher CLmax allows the aircraft to

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    98/111

    have a smaller wing area that

    results in a lighter wing

    Temporarily vary (increase) the

    wing camber.

    High lift device is deflected

    downward

    http://www.youtube.com/watch?v=EhMNpyOhSvU

    http://www.youtube.com/watch?v=EhMNpyOhSvUhttp://www.youtube.com/watch?v=EhMNpyOhSvU

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    99/111

    Ejes de movimiento del Avión

    •  Pitch 

    http://localhost/var/www/apps/conversion/tmp/Documents/Ejecutables/Pitch/Pitchview.htmlhttp://localhost/var/www/apps/conversion/tmp/Documents/Ejecutables/Pitch/Pitchview.htmlhttp://localhost/var/www/apps/conversion/tmp/Documents/Ejecutables/Pitch/Pitchview.html

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    100/111

    •  Roll

    http://localhost/var/www/apps/conversion/tmp/Documents/Ejecutables/Roll/Rollview.htmlhttp://localhost/var/www/apps/conversion/tmp/Documents/Ejecutables/Roll/Rollview.html

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    101/111

    •  Yaw

    Dual Purpose Flight Control Surfaces

    http://localhost/var/www/apps/conversion/tmp/Documents/Ejecutables/Yaw/Yawview.htmlhttp://localhost/var/www/apps/conversion/tmp/Documents/Ejecutables/Yaw/Yawview.html

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    102/111

    Elevons   Perform the combined functions of theailerons and the elevator.

    http://2.bp.blogspot.com/_mGkoANc7fi0/TRZSBR9M6kI/AAAAAAAAAnA/xJxPOV31Dzw/s1600/F117Banking2006.jpg

    C bi th ti fRuddervator 

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    103/111

    Combines the action of 

    the rudder and elevator 

    Flaperons are ailerons which can also act as

    flaps.

    https://reader009.{domain}/reader009/html5/0727/5b5affac8cde3/5b5affe22965c

    http://avstop.com/ac/Aviation_Maintenance_Technician_Handbook_General/images/fig3_67.jpg

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    104/111

    Tabs

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    105/111

    •   Why is necessary use this kind of devices? Because………

    1. The force of the air against a control surface during the highspeed of flight can make it difficult to move and hold that

    control surface in the deflected position.

    Stationary metal plate

    Feet off of the controls and have the aircraft maintain

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    106/111

    its flight condition

    Difficult to move a primary

    control surface due to its surface

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    107/111

    area.

    Speed of the air rushing over it.

    Causes a force to position the

    surface in the proper direction with

    reduced force to do so.

    Force to move the surfaces

    Final stage of travel.

    A control surface may require

    excessive force to move

    Balance tab

    They aid the pilot in moving a

    larger control surface, such as

    the ailerons and elevators.

    Causing air to strike the tab, in turn producing a force that aids inmaintaining the flight control surface in the desired position.

    Flaps

    Reduce the landing

    Lowered increase

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    108/111

    •   Give the aircraft

    extra lift.

    Reduce the landing

    speed

    Increasing the glide angle

    without greatly increasingthe approach speed.

    The flaps are lowered to increase the camber of the

    wings and provide greater lift and control at slow

    speeds.

    Slats

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    109/111

    Slats are movable control surfaces

    that attach to the leading edge of 

    the wing.

    A slot is created between the slat

    and the wing leading edge.

    http://www.zenithair.com/stolch701/gif/

    701-lift.jpg

    The leading edge slats allow the

    aircraft to fly at a high angle of 

    attack (lower speed).

    Venturi effect that causes

    accelerate de air between

    the slot.

    •   This effectively "pulls" the air around the leading

    d th ti th t ll t h

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    110/111

    edge, thus preventing the stall up to a much

    higher angle of incidence and lift coefficient.

    •  Low airspeeds, this action improves the lateral

    control handling characteristics.

     Boundary layer 

    control air .

     AileronsMove the aircraft about

  • 8/18/2019 Introduccion Estructuras Aeronauticas 2016-1

    111/111

    Move the aircraft about

    the longitudinal axis.

    Why amplifies the movement of the aircraft

    around the longitudinal axis?

    Camber is increased and lift is increased.

    Destroy lift dependingof the roll requirement

    for the aircraft.