Intro to Matrix Analysis

download Intro to Matrix Analysis

of 10

Transcript of Intro to Matrix Analysis

  • 8/20/2019 Intro to Matrix Analysis

    1/24

     

    Engineering Systems

    Lumped Parameter

    (Discrete)Continuous

    • A finite number ofstate variablesdescribe solution

    • Algebraic Equations

    • Differential EquationsGovern Response

  • 8/20/2019 Intro to Matrix Analysis

    2/24

     

    Lumped Parameter

    Displacements of Joints fully describe sDisplacements of Joints fully describe s

  • 8/20/2019 Intro to Matrix Analysis

    3/24

     

    Matrix Structural Analysis - Objectives

    Use

    Equations of Equilibrium

    Constitutive Equations

    Compatibility Conditions

    Basic Equations

    Form

    [A]{x}={b}

    Solve for Unno!n "ispla#ements$For#es

    {x}= [A]%&{b}

  • 8/20/2019 Intro to Matrix Analysis

    4/24

     

    Terminology

    Element:Discrete StructuralMemberodes:Characteristicpoints that deneelement!"O"#":

    All possibledirections ofdisplacements @ anode

  • 8/20/2019 Intro to Matrix Analysis

    5/24

     

    Assumptions

    • 'inear Strain%"ispla#ement (elations)ip

    • Small "eformations

    • Equilibrium *ertains to Undeformed Confi+uration

  • 8/20/2019 Intro to Matrix Analysis

    6/24

     

    T$e Sti%%ness Met$od

    &onsider a simple spring structural member

    Undeformed Configuration

    Deformed Configuration

  • 8/20/2019 Intro to Matrix Analysis

    7/24

     

    !erivation o% Sti%%ness Matrix 'sing (asicE)uations

     

    2

    *1

    *2

  • 8/20/2019 Intro to Matrix Analysis

    8/24

     

    !erivation o% Sti%%ness Matrix 'sing (asicE)uations

     2

    =

     1+

    For each case write basic equations

  • 8/20/2019 Intro to Matrix Analysis

    9/24

     

    !erivation o% Sti%%ness Matrix 'sing (asicE)uations

     2=0 1

    P11 P21

    X

    Equilibrium

    21112111  0   P  P  P  P    −=⇒=+Constitutive

    111   δ k  P    =

    P11

    121   δ k  P    −=111   δ k  P    =

  • 8/20/2019 Intro to Matrix Analysis

    10/24

     

    !erivation o% Sti%%ness Matrix 'sing (asicE)uations

     2

     

    1=0

    P12P22

    Equilibrium

    12222212  0   P  P  P  P    −=⇒=+Constitutive

    222   δ k  P    =

    212   δ k  P    −=222   δ k  P    =

  • 8/20/2019 Intro to Matrix Analysis

    11/24

     

    !erivation o% Sti%%ness Matrix 'sing (asicE)uations

    Combined Action

    P1P2

    2112111   δ δ    k k  P  P  P    −=+=

    2122212   δ δ    k k  P  P  P    +−=+=

  • 8/20/2019 Intro to Matrix Analysis

    12/24

     

    !erivation o% Sti%%ness Matrix 'sing (asicE)uations

    In atri! Form

    2112111   δ δ    k k  P  P  P    −=+=

    2122212   δ δ    k k  P  P  P    +−=+=

    =

    2

    1

    2

    1

    δ 

    δ 

    k k 

    k k 

     P 

     P 

  • 8/20/2019 Intro to Matrix Analysis

    13/24

     

    &onsider * Springs

    2 elements 3 nodes 3 dof 

    1

    Fix Fix

    2

    Fix Fix

    3

    Fix Fix

    + * ,

     +  *

  • 8/20/2019 Intro to Matrix Analysis

    14/24

     

    *-Springs

    =

       

      

        +−

    3

    2

    1

    3

    2

    1

    22

    2

    2

    1

    1

    11

    0

    0

     P 

     P  P 

    k k 

    k k 

    k k 

    k k 

    δ 

    δ δ 

    &ompare to +-Spring

    =

    −2

    1

    2

    1

    11

    11

     P 

     P 

    k k 

    k k 

    δ 

    δ 

  • 8/20/2019 Intro to Matrix Analysis

    15/24

  • 8/20/2019 Intro to Matrix Analysis

    16/24

     

    Properties o% Sti%%ness Matrix

    SM is Symmetric(etti-Max.ell La. 

    SM is Singularo (oundary &onditions Applied /et 

    Main !iagonal o% SM Positiveecessary %or Stability 

  • 8/20/2019 Intro to Matrix Analysis

    17/24

     

    Apply (oundary &onditions

    k ii k ij k ik  k il k im uiu j

    uk 

    ul

    k  ji k  jj k  jk  k  jl k  jm

    k ki k kj k kk  k kl k km

    k li k lj k lk  k ll k lm

    k li k lj k lk  k ll k lm um

    !i! j

    !k 

    !l

    !m

      " ##  

    " #s

      " s#    " ss

     

    u# 

     

    P# 

    us   Ps

    " ff uf " " fsusPf 

    " sf uf " " ssusPs   " sf uf " " ssusPs

    uf " ff #Pf " " fsus$$1

  • 8/20/2019 Intro to Matrix Analysis

    18/24

     

    Trans%ormations

    P

    k 2k 1

    δ1

    δ2

    δ3

    δ2

    u1

    u2

    u3

    u%

    u3

    u%

    u&

    u'

    x

    (Global C$

    xLocal C$

    b&ective' ransform $tate ariables from LC$ to GC$

  • 8/20/2019 Intro to Matrix Analysis

    19/24

     

    Trans%ormations

    Consider

    P*"

    P*+

    P*+ , P*+cosφ + P*"sinφ

    P*" , -P*+sinφ + P*"cosφ

    P*+

    P*",

    cosφ sinφ

    -sinφ cosφ

    P*+

    P*"

    P* ,   P*

    x

    (Global C$

    φ

    P*+

    P.+

    .

    P."

    *

  • 8/20/2019 Intro to Matrix Analysis

    20/24

     

    Trans%ormations

    /n General/n General

    P*"

    P*+ P* ,   P*

    x

    (Global C$

    φ

    P*+

    P.+

    .

    P."

    *

    P. ,   P.

    u. ,   u.

    u* ,   u*

    $imilarl" for u$imilarl " for u

    P* ,   P*-*

    or

    P. ,   P.-*

    or

  • 8/20/2019 Intro to Matrix Analysis

    21/24

     

    Trans%ormationsElement stiffness equations in Local C$

    0 ,* -*

    -* *

    δ*δ.

    P*

    P.

    E+pand to 1 Local dof

    0

    * # -* ## # # #-* # * ## # # #

    u*+u*"

    u.+u."

    ,

    P*+P*"

    P.+P."

    P*+

    P.+P."

    P*"

    φ

    .

    *

    P*

    P.

  • 8/20/2019 Intro to Matrix Analysis

    22/24

     

    SM in 0lobal &oordinate System

    /ntroduce t2e transformed variables3

    4 u , PRR-*

    4 ' Element $% in global C$

    56 5#6

    5#6 565R6,7ot2 R and  Depend on Particular Element

  • 8/20/2019 Intro to Matrix Analysis

    23/24

     

    Trans%ormations

    !or e+ample for an a+ial element 8it2 0,AE9L

    AE9L

    l. lm - l. - lm

    $"mm:

    m. - lm - m. 

    l. lmm.

    4 ,

    l,cosφ m,sinφ

  • 8/20/2019 Intro to Matrix Analysis

    24/24

    1n Summary

    • !erivation o% element SM 2 (asicE)uations

    • Structural SM by Superposition

    • Application o% (oundary &onditions -

    Elimination

    • Solution o% Sti%%ness E)uations 2

    Partitioning

    • Local 3 0lobal &S

    • Trans%ormation