Interplay of intrinsic and extrinsic spin-orbit coupling in a two...

21
Interplay of intrinsic and extrinsic spin-orbit coupling in a two-dimensional electron gas Advanced Workshop: Spin and Charge Properties of Low Dimensional Systems Roberto Raimondi Dipartimento di Fisica, Universit ` a degli Studi Roma Tre http://www.fis.uniroma3.it/raimondi June 29-July 4, 2009, Sibiu, Romania In collaboration with Peter Schwab (Augsburg University) arXiv:0905.1269

Transcript of Interplay of intrinsic and extrinsic spin-orbit coupling in a two...

  • Interplay of intrinsic and extrinsic spin-orbit coupling in atwo-dimensional electron gas

    Advanced Workshop: Spin and Charge Properties of Low DimensionalSystems

    Roberto Raimondi

    Dipartimento di Fisica, Università degli Studi Roma Trehttp://www.fis.uniroma3.it/raimondi

    June 29-July 4, 2009, Sibiu, Romania

    In collaboration with Peter Schwab (Augsburg University)arXiv:0905.1269

    http://www.fis.uniroma3.it/raimondi

  • Motivations and background

    Why spin-orbit (SO) is attractive: spin manipulation by electric fieldsDescribe spin-charge phenomena in diffusive systems

    spin Hall effect (SHE)Dyakonov and Perel, JETP Lett. 13, 467 (1971); Hirsch, PRL 83, 1834 (1999); Zhang, PRL 85, 393 (2000)

    Murakami et al. Science 301, 1348 (2003); Sinova et al. PRL 92, 126603 (2004)

    current-induced spin polarization (CISP)spin injection Hall effect (SIHE) (cf. Yungwirth’s talk)

    Most theoretical activity focused on either intrinsic SO or extrinsicInoue et al., PRB 70, 041303 (2004); Mishchenko et al., PRL 93, 226602 (2004); Raimondi and Schwab, PRB 71, 033311(2005)

    Chalaev and Loss, PRB 71, 245318 (2005); Dimitrova, PRB 71, 245327 (2005); Khaetskii, PRL 96, 056602 (2006)

    Engel et al., PRL 95,166005 (2005); Tse and Das Sarma, PRL 96, 056601 (2006)

    Interplay of extrinsic and intrinsic SO coupling important for experimentsSih et at., Nature Phys. 1, 31 (2005) SHE and CISPWunderlich et al., arXiv:0811.3486 SIHE

    Contrasting views in the present status of theoryTse and Das Sarma, PRB 74, 245309 (2006)

    Huang and Hu, PRB 73, 235314 (2006)

    Hankiewicz and Vignale, PRL 100, 026602 (2008)

  • Outline

    Overview of intrinsic and extrinsic SO mechanisms

    Symmetry and spin continuity equation

    Microscopic formulation

    User-friendly spin diffusion equation

    Applications to SHE and CISP

    Conclusions

  • The model: 2DEG with SO coupling

    Interplay of disorder, intrinsic and extrinsic SO

    H =p2

    2m− σ ×

    „αêz +

    λ204∂xV (x)

    «· p + V (x)

    δpF = 2mα

    LSO = !mα L2SO = DτDP

    Dyakonov-Perel spin relaxation

    xy

    z

    E

    SHE

    Elliott-Yafet

    spin relaxation

    τ−1s ∼ |B|2 ∝ λ40

    l = vF τ

    mean free path

    ∆x ∼ λ20s×∆kSide-jump

    skew-scattering

    S = A + k× k′ · σB

    ∼ R(AB∗) ∝ λ20

  • SU(2) formulation

    Spin-dependent vector potential

    Ã = m σ ׄαêz +

    λ204∂xV (x)

    «≡ Ã = 1

    2Ãaσa

    Jin, Li, Zhang, J. Phys. A 39, 7115 (2006).

    Tokatly, PRL 101, 106601 (2008).

    Spin density along the a-axis

    Spin current

    Covariant derivative

    sa = 12 Trσa

    ja = 14 Trnσa, p−Ãm

    o∂̃x · ja = ∂x · ja + εabcÃb · jc

    Spin continuity equation

    ∂tsa + ∂̃x · ja = 0

    This operator equation cannot be applied directlyto disorder averaged quantities because

    Ãb · jc 6= Ãb·jc

  • The strategy to deal with disorder in SO coupling

    space-independent vector potential

    A = αm σ × êz

    spin-dependent disorder potential

    U(x) = V (x)−λ204

    σ × ∂xV (x) · p

    normal current

    ja0 =14

    Trnσa,

    p− Am

    oanomalous current

    jaav =14

    Trnσa,

    Ã− Am

    o

    Spin continuity equation with disorder-dependent extra terms

    ∂tsa + ∂̃x · ja0 =?

    What is the form of the RHS?We expect

    spin relaxation

    anomalous current

  • The technical tool: the Keldysh Green function

    Equation of motion (EOM) Raimondi et al., 74, 035340 (2006)

    ∂tǦ + ∂̃x ·12

    np− Am

    , Ǧo

    = −ihΣ̌, Ǧ

    iTechnical Details

    Include electric field

    ∂̃x(·) = (∂x − eE∂�)(·)− i[A, (·)]

    Wigner representation

    Ǧ(�,p, x, t) =Z ∞−∞

    dηei�ηZ

    dre−ip·rǦ(x +r2, t +

    η

    2; x−

    r2, t −

    η

    2)

    Spin and Keldysh matrix structure

    Ǧ =„

    GR G0 GA

    «G = G0σ0 + Gaσa, a = x , y , z G< =

    12

    (G − GR + GA)

    Physical observables

    sa(x, t) = − i2R d�

    Pp Tr(σ

    aG

  • The self-energy

    Standard white-noise disorder model

    V (x1)V (x2) = niv2o δ(x1 − x2)

    Scattering time Side-jump Spin relaxation

    ∼ 1τ ∼1τs

    skew-scattering

    First correction to Born

    scattering amplitude

    Goal: evaluate the self-energy in Wigner coordinates

    Σ̌(p, (x1 + x2)/2) =Z

    d(x1 − x2)e−ip·(x1−x2)Σ̌(x1, x2)

  • An important example

    The scattering time contribution

    Σ̌0(x1, x2) = V (x1)Ǧ(x1, x2)V (x2)= v2o niδ(x1 − x2)Ǧ(x1, x1)

    By Fourier transform

    Σ̌0(p, x) = v2o niX

    p′Ǧ(p′, x)

    = v2o niN0Z

    dp̂′Z

    d ξǦ(p′, x)

    =i

    2τ(−i)π〈Z

    d ξǦ(p′, x)〉

    The microscopic expression of the elastic scattering time

    τ−1 = 2πN0niv2o

  • The quasiclassical approximation

    The quasiclassical Green function describes length scales L� λF

    ǧ(�, p̂, x, t) =iπ

    Zd ξǦ(�,p, x, t) ξ =

    p2

    2m− µ

    The Eilenberger EOM for λ0 = 0

    ∂t ǧ + ∂̃x ·12

    np− Am

    , ǧo

    = − 12τ

    [〈ǧ〉, ǧ]

    How to go

    1 Keldysh ”12” component⇒ kinetic equation2 Project on σ0 ⇒ charge equation ρ = eN02

    Rd�〈g0〉

    3 Project on σa ⇒ spin equation sa = −N04R

    d�〈ga〉

  • The kinetic equation (including λ0)

    ∂tg + ∂̃x ·12

    np− Am

    , go

    =1τ

    „12

    n1 +

    A · p̂2pF

    , 〈g〉o− g

    «+

    λ20pF8τ

    εabc b∂an(〈p̂cg〉 − p̂c〈g〉), σbo+

    (λ0pF )2

    8τ2πN0voεabc p̂a

    n〈p̂bg〉, σc

    o− 1

    τs

    12`〈g〉 − σz〈g〉σz

    ´

    momentumrelaxation and D-Pspin relaxation

    side-jump

    skew-scattering

    E-Y spin relaxation

    A first consequence: the anomalous current

    jaav,i = εiajN04

    Zd �λ20pF4τ〈p̂jg0〉 = εiaj

    12

    eλ204

    nEj ≡ εiaj12σsHSJ Ej

    anomalous velocity contribution as in AHE(Nozieres and Lewiner, J. Phys. (Paris) 34, 901 (1973))

    Similar contribution in SHE in the absence of Rashba(Engel, Halperin, Rashba, PRL 95, 166605 (2005); Tse and Das Sarma, PRL 96, 056601 (2006))

    This term is unaffected by the presence of the Rashba term

  • More consequences

    The second bit of the side-jump

    Notice the covariant derivative acting on the second term of the side-jumpcontribution b∂a〈g0〉 ≡ (∂a − eEa∂�)〈g0〉

    In the absence of Rashba this leads to a contribution identical to the previous one

    With Rashba this term is modified

    The skew scattering

    In the absence of Rashba

    σsHSS =14

    (pF l)(2πN0v0)σsHSJ

    In the presence of Rashba this term is modified

    E-Y spin-relaxation time

    This term was not considered in previous analyses

    τ−1s = τ−1(λ0pF/2))4

  • User friendly spin-density diffusion equation

    Physical assumptions

    τ � T vF τ � L vF τ � Lso ⇒ αpF τ � 1

    Spin current and continuity equation

    jai = µsaEi − D∂̃isa + (σsHSJ + σsHSS)εiabEb +

    e8π

    (τD)εikjBak Ej

    ∂tsa + ∂̃x · ja −12εabcAb · jcSJ +

    1τs

    sa = 0

    Drift-Diffusion terms and extrinsic spin-charge coupling Dyakonov and Perel, Physics Letters A35, 459 (1971)

    Covariant derivative in the diffusion term Kalevich, Korenev, Merkulov, Solid State Commun. 73, 559(1994); PRB 74, 041308 (2006)

    New source of spin current in the last term due to SU(2) magnetic field

    Ba = ∂̃x × Aa ⇒ σsHint =e

    8πτDBzz

  • The SHE

    Main formula

    σsH =1/τs

    1/τs + 1/τDP

    „σsHint + σ

    sHSS +

    12σsHSJ

    «+

    12σsHSJ

    1 Is analytic in both limits λ0 → 0 and α→ 0Inoue et al. PRB 70, 041308 (2004); Raimondi and Schwab, 71, 033311 (2005)

    Mishchenko et al. PRL 93, 226602 (2004)

    Engel, Halperin, Rashba, PRL 95, 166605 (2005); Tse and Das Sarma, PRL 96, 056601 (2006)

    2 σsHint is the diffusive limit of the bubble contribution of the diagrammaticlanguage

    3 The ratio τs/τDP acts as a tuner of the spin Hall effect4 Since 1/τs ∝ λ40 and 1/τDP ∝ α2, it would be unphysical to take the limitα→ 0, with 1/τs = 0

    5 In appropriate limits agrees with previous analysesTse and Das Sarma, PRB 74, 245309 (2006)

    Huang and Hu, PRB 73, 235314 (2006)

    Hankiewicz and Vignale, PRL 100, 026602 (2008)

  • Numbers

    GaAs: input parameters Sih et al., Nature Phys. 1, 31 (2005)

    ns = 1012cm−2, µ = 103cm2Vs, λ0 = 4.7× 10−8cm, α = 10−12eVm, N0vo = − 12

    Estimates

    eσsHSJ = 1.3× 10−7Ω−1, eσsHSS = −4.3× 10−7Ω−1, eσsHint = 8.2× 10−9Ω−1

    Spin relaxation times

    τs = 8.4× 103ps� τDP = 90ps

    By having α smaller one may reach theinteresting region τs ≈ τDP

    0.00 0.01 0.02 0.03 0.04 0.05

    !0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    2αpF τ

    α = 10−12 eVmσsH(α)σsH(0)

  • CISP: in-plane vs out-of-plane

    The classical Edelstein result (Solid State Commun. 73, 233 (1990))

    sy = −mµαN0E , λ0 = 0

    The effect of extrinsic SO

    sE = −2mα

    1/τs + 1/τDP

    „σsHint + σ

    sHSS +

    12σsHSJ

    «E .

    Origin of out-of-plane CISP with in-plane magnetic field

    ∂tsy = −„

    1τDP

    +1τs

    «(sy − sE ) + bx sz

    ∂tsz = −2τDP

    sz − bx sy + mαµN0bx E

    With λ0 = 0 no out-of-plane CISP unless with angle-dependent scattering (Milletarı̀ etal. EPL 82, 67005 (2008)) or energy-dependent scattering and non parabolic dispersion(Engel et al. PRL 98, 036602 (2007))

    In general sz ∼ bx (mµαN0E − sE )

  • Out-of-plane CISP without magnetic field

    Linear Dresselhaus SO for (110) QW (Hankiewicz, Vignale, Flatté, PRL 97, 266601 (2006))

    AD = −mβσz êz BaD = ∂̃x × AaD = 0

    For electric-field induced spin polarization both Rashba and Dresselhaus arenecessary!

    A→ A + AD

    Electric-field orientation dependence

    sz = Ey 2mβσsHSS +

    12σ

    sHSJ +

    τe4π (τ

    −1s + 4m2D(2α2 + β2))

    4m2D(2α2 + β2) + 2τ−1s

    interplay of Rashba and linear Dresselhaus provides a mechanism forout-of-plane CISP

    CISP sz ∝ Ey shows a strong dependence on the orientation of the appliedelectric field

  • Comparison with measured CISP

    x

    y

    z

    2DEG

    [1, 1, 0]

    [1, 1, 2

    ]

    [1, 1, 0

    ]

    [0, 0, 1]

    growth direction

    Electric field

    [1, 1, 1

    ] (110) GaAs quantum well (Sih et al., Nature Phys. 1, 31 (2005))

    Electric field along various crystal directions

    Out-of-plane CISP measured via Kerrspectroscopy

    Experimental findings1 For E‖ [0, 0, 1] CISP only at edges and no in the bulk⇒ SHE2 CISP in the bulk without magnetic field for E‖

    ˆ1, 1, 0

    ˜,ˆ1, 1, 1

    ˜andˆ

    1, 1, 2˜

    in agreement with theory3 Surprisingly CISP has the same sign for E‖

    ˆ1, 1, 0

    ˜and

    ˆ1, 1, 2

    ˜, which

    is opposite forˆ1, 1, 1

    ˜, not explained by the theory

    4 cubic Dresselhaus ∼ ky (k2y /2− k2x ) and non-linear effects may beimportant

  • Conclusions

    Theory for both, intrinsic and extrinsic, SO mechanisms

    User friendly spin diffusion equation

    SHE: non-analytic puzzle settled

    SHE: intrinsic mechanism as tuner of the extrinsic-driven effect

    CISP: due to interplay of intrinsic and extrinsic, even without magneticfield

  • Why the electric field does not contribute to the side-jump?

    Consider the Hamiltonian

    H =k2

    2m− eE · x + λeE · k× s

    and the associated velocity operator and spin current

    v =km

    + λes× E ja = 12

    nv, sa

    oTo first order in E, the first SJ term is due to the anomalous velocity

    δja = TrX

    k

    f (k)λe12

    ns× E, sa

    o=

    14λen êa × E

    The second SJ is due to a change of the distribution function

    ja0 = TrX

    k

    km

    sa∂f∂�λeE · k× s = −1

    4λen êa × E

    The cancellation is similar to that for the diamagnetic term and only exists atzero frequency

  • What is the connections with diagrams? SJ terms

    Γx = −α ττsσy

    1τtτDP

    + ττs

    Γyz =vF4

    2αpF τ1 + (2αpF τ)2

    „1− τ

    τs

    «σy

    1τtτDP

    + ττs

    For τs →∞, Γx = 0 so that C + D = 0. Also Γyz = (vF/4αpF τ)σy whichleads to the cancellation E + F + G + H = 0. Only A + B survives which ishalf the SJ and is not changed by Rashba.