Interim Criteria for Masonry strengthening

download Interim Criteria for Masonry strengthening

of 10

Transcript of Interim Criteria for Masonry strengthening

  • 7/25/2019 Interim Criteria for Masonry strengthening

    1/10

    ICC EVALUATION SERVICE, INC.

    EvaluatePInformPProtect

    Business/Regional OfficeP5360 Workman Mill Road, Whittier, California 90601 P(562) 699-0543

    www.icc-es.org Regional OfficeP900 Montclair Road, Suite A , Birmingham, Alabama 35213 P(205) 599-9800Regional OfficeP4051 West Flossmoor Road, Country Club Hills, Ill inois 60478P(708) 799-2305

    INTERIM CRITERIA FOR CONCRETE AND REINFORCED AND UNREINFORCED

    MASONRY STRENGTHENING USING FIBER-REINFORCED

    POLYMER (FRP) COMPOSITE SYSTEMS

    AC125

    June 2003

    (Effective July 1, 2003)

    Previously issued April 1997

    PREFACE

    Legacy evaluation reports issued by ICC Evaluation Service, Inc. (ICC-ES), are based upon performance features of the Uniform familyof codes and the International family of codes. Section 104.2.8 of the 1997 Uniform Building Code (UBC), Section 104.11 of the 2000

    International Building Code(IBC) and Section R104.11 of the 2000 International Residential Code(IRC) are the primary charging sections uponwhich evaluation reports are issued. Section 104.2.8 of the UBC reads as follows:

    The provisions of this code are not intended to prevent the use of any material, alternate design or method ofconstruction not specifically prescribed by this code, provided any alternate has been approved and its use authorized by thebuilding official.

    The building official may approve any such alternate, provided the building official finds that the proposed designis satisfactory and complies with the provisions of this code and that the material, method or work offered is, for the purposeintended, at least the equivalent of that prescribed in this code in suitability, strength, effectiveness, fire resistance, durability,safety and sanitation.

    The building official shall require that sufficient evidence or proof be submitted to substantiate any claims that maybe made regarding its use. The details of any action granting approval of an alternate shall be recorded and entered in thefiles of the code enforcement agency.

    Similar provisions are contained in Sections 104.11 and R104.11 of the IBC and IRC, respectively.

    The attached acceptance criteria has been issued to provide all interested parties with guidelines on implementing performance featuresof the applicable code(s) referenced in the acceptance criteria. The criteria was developed and adopted following public hearings conducted bythe ICC-ES Subcommittee on Uniform Codes and is effective on the date shown above. All reports issued or reissued on or after the effectivedate must comply with this criteria, while reports issued prior to this date may be in compliance with this criteria or with the previous edition. If thecriteria is an updated version from a previous edition, a solid vertical line () in the margin within the criteria indicates a technical change, addition,or deletion from the previous edition. A deletion indicator () is provided in the margin where a paragraph has been deleted if the deletion involved

    a technical change. This criteria may be further revised as the need dictates.

    ICC-ES may consider alternate criteria, provided the proponent submits valid data demonstrating that the alternate criteria are at leastequivalent to the attached criteria and otherwise meet the applicable performance requirements of the codes. Notwithstanding that a material,type or method of construction, or equipment, meets the attached acceptance criteria, or that it can be demonstrated that valid alternate criteriaare equivalent and otherwise meet the applicable performance requirements of the codes, if the material, product, system or equipment is suchthat either unusual care with its installation or use must be exercised for satisfactory performance, or malfunctioning is apt to cause unreasonableproperty damage or personal injury or sickness relative to the benefits to be achieved by the use thereof, ICC-ES retains the right to refuse to issueor renew an evaluation report.

    Copyright 2003

  • 7/25/2019 Interim Criteria for Masonry strengthening

    2/10

    2

    ACCEPTANCE CRITERIA FOR CONCRETE AND REINFORCED

    AND UNREINFORCED MASONRY STRENGTHENING USING

    FIBER-REINFORCED POLYMER (FRP) COMPOSITE SYSTEMS

    1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    2. DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    2.1 Design Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    2.2 FRP Composite Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    2.3 Cracking Load and Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.4 Yielding Load and Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    2.5 Passive and Active Composite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    3. REQUIRED INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    3.2 Installation Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    3.3 Structural Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    4. TESTING LABORATORIES AND REPORTS OF TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5. QUALIFICATION TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.1 Qualification Test Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.2 Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.2.1 Flexural Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.2.1.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.2.1.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.2.2 Shear Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.2.2.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.2.2.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.3 Beam-to-Column Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.3.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.4 Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.4.1 Flexural Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.4.1.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.4.1.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.4.2 Shear Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.4.2.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.4.2.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.5 Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.5.1 Wall Flexural Tests (Out-of-Plane Load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.5.1.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.5.1.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    5.5.2 Wall Shear Tests (In-Plane Shear) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.5.2.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.5.2.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.6 Wall-to-Floor Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65.6.1 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.6.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.7 Slabs (Flexural Tests) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.7.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.7.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.8 Physical and Mechanical Properties of Composite Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.9.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.9.2 Conditions of Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

  • 7/25/2019 Interim Criteria for Masonry strengthening

    3/10

    3

    5.10 Freezing and Thawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.10.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.10.2 Conditions of Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.11 Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.11.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.11.2 Conditions of Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.12 Alkali Soil Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.12.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.12.2 Conditions of Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65.13 Fire-resistant Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.14 Interior Finish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.15 Fuel Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.16 Adhesive Lap Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    5.17 Bond Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    6. QUALITY CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    6.1 Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    6.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    7. FINAL SUBMITTAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    7.2 Test Report 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    7.3 Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    7.3.1 Design Criteria Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    7.3.2 Minimum Acceptable Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    7.3.2.1 Flexural Strength Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    7.3.2.2 Bond Strength of Fiber to Concrete or Masonry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    7.3.2.3 Axial Load Capacity Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    7.3.2.3.1 Longitudinal Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    7.3.2.3.2 Transverse Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    7.3.2.3.2.1 Circular Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    7.3.2.3.2.2 Rectangular Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    7.3.2.4 Ductility Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    7.3.2.4.1 Circular Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    7.3.2.4.2 Rectangular Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    7.3.2.5 Lap-Splice Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    7.3.2.6 Shear Strength Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    7.3.2.6.1 Circular Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    7.3.2.6.2 Rectangular Beam or Column Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    7.3.2.6.3 Rectangular Wall Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    7.3.2.6.4 Shear Strength Reduction Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    7.3.2.7 Enhancement Using Active FRP Composite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    7.4 Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    7.5 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    1.0 INTRODUCTION

    1.1 Scope:This criteria establishes minimum requirementsfor the issuance of ICC Evaluation Service, Inc. (ICC-ES),evaluation reports on fiber-reinforced polymer (FRP)composite systems used to strengthen concrete and masonrystructural elements. These reports consider these systems asalternates to those covered in the 2000 International BuildingCode(IBC) and the 1997 Uniform Building Code (UBC) .

    1.2 Referenced Documents:

    1.2.1 2000 International Building Code (IBC),International Code Council.

    1.2.2 1997 Uniform Building Code (UBC), InternationalConference of Building Officials.

    1.2.3 ICC-ES Acceptance Criteria for Test Reports(AC85).

  • 7/25/2019 Interim Criteria for Masonry strengthening

    4/10

    INTERIM CRITERIA FOR CONCRETE AND REINFORCED AND

    UNREINFORCED MASONRY STRENGTHENING USING FIBER-

    REINFORCED POLYMER (FRP) COMPOSITE SYSTEMS

    4

    1.2.4 ICC-ES Acceptance Criteria for Quality ControlManuals (AC10).

    1.2.5 ASTM C 297-94, Test Method for Tensile Strengthof Flat Sandwich Constructions in Flatwise Plane, AmericanSociety for Testing and Materials.

    1.2.6 ASTM C 581-94, Practice for Determining theChemical Resistance of Thermosetting Resins Used in Glass-Fiber-Reinforced Structures Intended for Liquid Service,

    American Society for Testing and Materials.

    1.2.7 ASTM D 1141-91, Practice for Preparation ofSubstitute Ocean Water, American Society for Testing andMaterials.

    1.2.8 ASTM D 2247-97, Practice for Testing WaterResistance of Coatings in 100% Relative Humidity, AmericanSociety for Testing and Materials.

    1.2.9 ASTM D 2344-84 (1995), Test Method for ApparentInterlaminar Shear Strength of Parallel Fiber Composites byShort-Beam Method, American Society for Testing andMaterials.

    1.2.10 ASTM D 2584-94, Test Method for Ignition Loss ofCured Reinforced Resins, American Society for Testing andMaterials.

    1.2.11 ASTM D 2990-95, Test Methods for Tensile,Compressive, and Flexural Creep and Creep Rupture ofPlastics, American Society for Testing and Materials.

    1.2.12 ASTM D 3029-94, Standard Test Methods forImpact Resistance of Flat, Rigid Plastic Specimens by Meansof a Tup (Falling Weight), American Society for Testing andMaterials.

    1.2.13 ASTM D 3039-95a, Standard Test Method forTensile Properties of Polymer Matrix Composite Materials,

    American Society for Testing and Materials.

    1.2.14 ASTM D 3045-92, Standard Practice for Heat Agingof Plastics Without Load , American Society for Testing andMaterials.

    1.2.15 ASTM D 3083-89, Specification for Flexible Poly(Vinyl Chloride) Plastic Sheeting for Pond, Canal, andReservoir Lining, American Society for Testing and Materials.

    1.2.16 ASTM D 3165-95, Standard Test Method forStrength Properties of Adhesives in Shear by Tension Loadingof Single-Lap-Joint Laminated Assemblies, American Societyfor Testing and Materials.

    1.2.17 ASTM D 3171-95, Standard Test Method forConstituent Content of Composite Materials, American Society

    for Testing and Materials.1.2.18 ASTM D 4065-95, Standard Practice for Determining

    and Reporting Dynamic Mechanical Properties of Plastics,American Society for Testing and Materials.

    1.2.19 ASTM E 104-85 (1996), Standard Practice forMaintaining Constant Relative Humidity by Means of AqueousSolutions, American Society for Testing and Materials.

    1.2.20 ASTM E 1142-97, Standard Terminology Relating toThermophysical Properties, American Society for Testing andMaterials.

    1.2.21 ASTM G 23-96, Standard Practice for OperatingLight-Exposure Apparatus (Carbon-Arc Type) With andWithout Water for Exposure of Nonmetallic Materials,

    American Society for Testing and Materials.

    2.0 DEFINITIONS

    2.1 Design Values: The FRP composite materials load

    and deformation design capacities, that are based on eitherworking stress or ultimate strength methods.

    2.2 Composite Material:A combination of high-strengthfibers and polymer matrix material. This FRP composite maybe applied either during manufacture of the structural elementor at the project location.

    2.3 Cracking Load and Displacement: Load anddisplacement at which the moment-curvature relationship ofthe concrete or masonry section first changes slope or atwhich the cracking moment is reached.

    2.4 Yielding Load and Displacement: Load anddisplacement at which longitudinal steel reinforcement of theconcrete or masonry section first yields.

    2.5 Passive and Active Composite Systems: Activesystems are those FRP composite systems where the FRPcomposite materials are post-tensioned after installation bymeans such as pressure injection between the compositematerial and the concrete or masonry section. Passivesystems are not post-tensioned after installation.

    3.0 REQUIRED INFORMATION

    3.1 Description:A detailed description of the strengtheningsystem is needed, including the following items:

    1. Description and identification of the product or system.Identification shall include the ICC-ES evaluation reportnumber.

    2. Restrictions or limitations on use.3.2 Installation Instructions: Instructions shall include the

    following items.

    1. Description of how the product or system will be usedor installed in the field.

    2. Procedures establishing quality control in fieldinstallation.

    3. Requirements for product handling and storage.

    4. Fastener installation into structural elements.

    5. For systems that depend on bond between the systemand the substrate, on-site testing of bond to the substrate isrequired.

    3.3 Structural Design: The structural applications of thesystem shall address the following items:

    1. Clarification of recognition under either Chapter 19 orChapter 21 of the IBC or UBC.

    2. Complete description of details.

    3. Details on how the product or system does or does notcomply with Chapter 19 of the IBC or UBC, includingconformities and deviations. Details should include positivestatements that the product or system does comply withChapter 19 or 21 of the IBC or UBC in the following

  • 7/25/2019 Interim Criteria for Masonry strengthening

    5/10

    INTERIM CRITERIA FOR CONCRETE AND REINFORCED AND

    UNREINFORCED MASONRY STRENGTHENING USING FIBER-

    REINFORCED POLYMER (FRP) COMPOSITE SYSTEMS

    5

    areas . . . ; and negative statements that it does not comply inthe following areas. . . .

    4. Details and examples of how the product or system isdesigned and analyzed, including formulas, with proceduresand properties needed for design and analysis. Theengineering analysis should define failure modes or force and

    deflection limit states.5. Use of anchors shall be considered where the FRP

    composite material bond to substrate is critical.

    4.0 TESTING LABORATORIES AND REPORTS OF TESTS

    4.1 Testing laboratories shall comply with Section 4.2 of theICC-ES Rules of Procedure for Evaluation Reports.

    4.2 Test reports and product sampling shall comply with theICC-ES Acceptance Criteria for Test Reports (AC85).

    5.0 QUALIFICATION TESTS

    5.1 Qualification Test Plan: The intent of testing is toverify the design equations and assumptions used in theengineering analysis. All or part of the tests described in this

    section, and any additional tests identified for special featuresof the product or system, shall be specified. The test plan shallbe a complete document.

    Overall, qualification testing must provide data on materialproperties, force and deformation limit states, and failuremodes, to support a rational analysis procedure. Thespecimens shall be constructed under conditions specified bythe manufacturer, including curing. Tests must simulate theanticipated loading conditions, load levels, deflections, andductilities.

    5.2 Columns:

    5.2.1 Flexural Tests:

    5.2.1.1 Configuration: Column specimens shall be

    configured to induce flexural limit states or failure modes.Either cantilever or double fixity (reverse curvature) ispermitted in specimens. Extremes of dimensional, reinforcing,and strength parameters shall be considered.

    5.2.1.2 Procedure: For seismic or wind-loadapplications, the lateral load procedure shall conform toFigure 1. For gravity (nondynamic) loading applications, theload may be monotonically applied. Axial loads within aspecific range shall be applied. The limit states shall bedetermined based on material properties and an extremeconcrete or masonry fiber compression strain of 0.003.

    5.2.2 Shear Tests:

    5.2.2.1 Configuration: Column specimen spans shall

    be configured to induce shear limit states or failure modes.Double fixity (reverse curvature) is required. Extremes ofdimensional, reinforcing, and compressive strengthparameters shall be considered.

    5.2.2.2 Procedure: For seismic or wind-loadapplication, the lateral load procedure shall conform to Figure1. For gravity (nondynamic) loading application, the load maybe monotonically applied. Axial loads within a specific rangeshall be applied. The limit states shall be determined basedon material properties.

    5.3 Beam-to-Column Joints:

    5.3.1 Configuration: The beam-to-column joint shall beconfigured to induce joint-related limit states or failure modes.The column portion may be constructed to represent a sectionbetween inflection points. Extremes of dimensional,reinforcing and compressive strength parameters shall beconsidered.

    5.3.2 Procedure: The lateral load procedure shallconform to Figure 1. A vertical load shall be continuouslyapplied and varied within a specified range. The limit statesshall be determined based on material properties.

    5.4 Beams:

    5.4.1 Flexural Tests:

    5.4.1.1 Configuration:Beam spans shall be configuredto induce flexural limit states or failure modes. Either simpleor rigid supports are permitted. Extremes of dimensional,reinforcing, and compressive strength parameters shall beconsidered.

    5.4.1.2 Procedure: For seismic or wind-loadapplication, the lateral load procedure shall conform to Figure

    1. For gravity (nondynamic) loading application, the load maybe monotonically applied. The limit states shall be determinedbased on material properties and an extreme concrete ormasonry fiber compression strain of 0.003.

    5.4.2 Shear Tests:

    5.4.2.1 Configuration:Beam spans shall be configuredto induce shear limit states or failure modes. Either simple orrigid supports are permitted. Extremes of dimensional,reinforcing, and compressive strength parameters shall beconsidered.

    5.4.2.2 Procedure: For seismic or wind loading, thelateral load procedure shall conform to Figure 1. For gravityloading, the load may be monotonically applied. The limit

    states shall be determined based on material properties.5.5 Walls:

    5.5.1 Wall Flexural Tests (Out-of-Plane Load):

    5.5.1.1 Configuration:Wall flexural specimens shall beconfigured to induce out-of-plane flexural limit states andfailure modes. Extremes of dimensional, reinforcing, andcompressive strength parameters shall be considered.

    5.5.1.2 Procedure:Specimens may be axially loaded toconsider effects of axial loads. The loading in the out-of-planedirection may be applied at third-points, by air-bags or byother means representing actual conditions. The lateral loadprocedure consists of:

    5.5.1.2.1 Load specimens in both directions, to find

    cracking and yielding load and deformation at first cracking.For unreinforced masonry, only cracking load and deformationare required.

    5.5.1.2.2 At least two cycles of loading in bothdirections under displacement control at each deformationlevel. The deformation levels shall consist of multiples of thedeformation at yielding for reinforced concrete or masonrysections or cracking for unreinforced masonry sections.

    5.5.1.2.3 The specimens are loaded in bothdirections until the strengthening system is damaged, itscapacity is reached, or desired limit states are achieved.

  • 7/25/2019 Interim Criteria for Masonry strengthening

    6/10

    INTERIM CRITERIA FOR CONCRETE AND REINFORCED AND

    UNREINFORCED MASONRY STRENGTHENING USING FIBER-

    REINFORCED POLYMER (FRP) COMPOSITE SYSTEMS

    6

    5.5.2 Wall Shear Tests (In-Plane Shear):

    5.5.2.1 Configuration: Wall specimens shall beconfigured to induce in-plane shear limit states or failuremodes. Extremes of dimensional, reinforcing and compressivestrength parameters shall be considered.

    5.5.2.2 Procedure:Specimens may by axially loaded to

    consider effects of axial loads. The lateral load procedureconsists of:

    5.5.2.2.1 Load specimens in both directions to findcracking and yielding load and deformation. For unreinforcedmasonry, only cracking load and deformation are required.

    5.5.2.2.2 The specimens are loaded in bothdirections until the strengthening system is damaged, itscapacity is reached, or desired limit states are achieved.

    5.6 Wall-to-Floor Joints:

    5.6.1 Configurations:The specimens shall be configuredto induce joint-related limit states or failure modes. Extremesof dimensional, reinforcing and compressive strengthparameters shall be considered.

    5.6.2 Procedure: For seismic or wind-loadingapplications, the lateral load procedure shall conform toFigure 1. For gravity load applications, the load may bemonotonically applied. The vertical load shall be applied tofloors. The limit states shall be determined based on materialproperties.

    5.7 Slabs (Flexural Tests):

    5.7.1 Configuration: Slab spans shall be configured toinclude flexural limit states or failure modes. Either simple orrigid supports are permitted. Extremes of dimensional,reinforcing and compressive strength shall be considered.

    5.7.2 Procedure: For seismic or wind-load applications,the lateral load procedure shall conform to Figure 1. For

    gravity (nondynamic) loading application, the load may bemonotonically applied. The limit states shall be determinedbased on material properties and an extreme concrete fibercompression strain of 0.003.

    5.8 Physical and Mechanical Properties of FRP

    Composite Materials: Required physical and mechanicalproperties are shown in Table 1. These properties, includingcreep, CTE and impact, shall be considered in the designcriteria and limitations.

    5.9 Exterior Exposure:

    5.9.1 Procedure:Structural FRP composite materials aretested according to ASTM G 23-96. Six specimens, measuring3/4inch by 10 inches (19.1 by 254 mm), are required. These

    specimens also may be cut from a panel that has been coatedand painted to represent end-use conditions. Five specimensare exposed to cycles consisting of 102 minutes light and 18minutes light and water spray in the weatherometer chamber.Minimum duration is 2,000 hours. The black-body temperatureis 145F. Both exposed and control specimens are then testedto ASTM D 3039-95a, for tensile strength, tensile modulus andelongation. Five other specimens are controlled samples.

    5.9.2 Conditions of Acceptance: Control and exposedspecimens are visually examined using 5x magnification.Surface changes affecting performance, such as erosion,cracking, crazing, checking, and chalks, are subject to further

    investigation. The specimens shall retain at least 90 percentof tensile properties generated on control specimens.

    5.10 Freezing and Thawing:

    5.10.1 Procedure: Fifteen samples are conditioned in a100 percent relative humidity chamber at 100F for threeweeks. Each cycle is 4 hours, minimum, in a 0F freezer

    followed by 12 hours, minimum, in the humidity chamber. Atleast twenty cycles are required.

    Control specimens and cycled specimens are thentested according to Table 1 for tensile strength, tensilemodulus, elongation, glass transition temperature, andinterlaminar shear strength. Specimens are tested in theprimary direction.

    5.10.2 Conditions of Acceptance:Control specimens andcycled specimens are visually examined using 5xmagnification. Surface changes affecting performance, suchas erosion, cracking, crazing, checking and chalking, areunacceptable. The cycled specimens shall retain at least 90percent of the tensile properties determined for conditionedspecimens.

    5.11 Aging: These tests shall be considered in designcriteria and limitations.

    5.11.1 Procedure: Both wet and dry specimens are agedaccording to Table 2. Both exposed and control specimensare then tested to Table 1 for tensile strength, tensilemodulus, elongation, glass transition temperature, andinterlaminar shear strength. Specimens are tested in theprimary direction. Five specimens per condition are required.

    5.11.2 Conditions of Acceptance: Control and exposedspecimens are visually examined using 5x magnification.Surface changes affecting performance, such as erosion,cracking, crazing, checking, and chalking, are unacceptable.The exposed specimens shall retain the percentage of tensile

    properties generated on conditioned specimens noted inTable 2.

    5.12 Alkali Soil Resistance:

    5.12.1 Procedure: Tests are done on five specimensaccording to ASTM D 3083-89, Section 9.5, for 1,000 hours.Both conditioned and exposed specimens are then tested fortensile strength, tensile modulus, and elongation according to

    ASTM D 3039-95a.

    5.12.2 Conditions of Acceptance: Conditioned andexposed specimens are visually examined using 5xmagnification. Surface changes, such as erosion, cracking,crazing, checking, and chalking, are unacceptable. Theexposed specimens shall retain at least 90 percent of tensileproperties generated on conditioned specimens.

    5.13 Fire-resistant Construction: The effect of the FRPcomposite system on fire-resistance construction shall beevaluated according to Section 703 of the IBC or UBC.

    5.14 Interior Finish: The classification of the fiber-reinforcedpolymer (FRP), composite system as an interior finish shall bedetermined according to Section 803 of the IBC or Section802 of the UBC.

    5.15 Fuel Resistance: Tested specimens are testedaccording to ASTM C 581-94. The specimens are exposed todiesel fuel reagent for 4 hours, minimum. Specimens are

  • 7/25/2019 Interim Criteria for Masonry strengthening

    7/10

    INTERIM CRITERIA FOR CONCRETE AND REINFORCED AND

    UNREINFORCED MASONRY STRENGTHENING USING FIBER-

    REINFORCED POLYMER (FRP) COMPOSITE SYSTEMS

    7

    tested according to Table 1 for tensile strength, tensilemodulus, elongation, glass transition temperature, andinterlaminar shear strength.

    5.16 Adhesive Lap Strength: This test applies toprefabricated systems. Specimens of the adhesive are testedaccording to ASTM D 3165-95 for exposures in Table 2, and

    Sections 5.10 and 5.15.5.17 Bond Strength: The test applies to systems that bond

    to the substrate. Tests are conducted for tension according toASTM C 297-94 where the composite material bonds twosubstrate elements together, and for shear using a methodacceptable to ICC-ES staff. Specimens are exposedaccording to Table 2 and Section 5.10.

    6.0 QUALITY CONTROL

    6.1 Manufacturing:Quality assurance procedures duringmanufacture of the system components shall be described ina quality control manual complying with the ICC-ES InterimCriteria for Quality Control Manuals (AC10). The quality%control program shall include periodic inspections by an%inspection agency currently accredited by the International%

    Accreditation Service, Inc. (IAS).%6.2 Installation: All installations shall be done by

    applicators approved by the proponent of the system. Thequality assurance program shall be documented. Specialinspection is required and shall comply with Section 1704 ofthe IBC or Section 1701 of the UBC and other sections of theapplicable code. Duties of the special inspector shall bedescribed and included in the evaluation report. The maximumdebonded area permitted after installation of bonded systemsis 2 square inches (1290.32 mm2).

    7.0 FINAL SUBMITTAL

    7.1 The final submittal will consist of a test report or testreports, and a design criteria report, as described in this

    section. The final submittal shall include the data described inSection 3 of this criteria. Contents of the final submittal aredescribed in the following subsections:

    7.2 Test Report: The independent laboratory shall reporton the qualification testing performed according to theapproved test plan. Besides the information requested inSection 4, the test report must include the following:

    1. Information noted in the reference standard.

    2. Description of test setup.

    3. Rate and method of loading.

    4. Deformation and strain measurements.

    5. Modes of failure.

    6. Strain measurements.7.3 Design Criteria:

    7.3.1 Design Criteria Report: The report shall include acomplete analysis and interpretation of the qualification testresults. Design stress and strain criteria for concrete andreinforced and unreinforced masonry systems shall bespecified based on the analyses, but shall not be higher thanspecified in Section 7.3.2.

    Design stresses and strains shall be based on acharacteristic value approach verified by test data. The CTEand creep values determined in Table 1 shall be considered

    in the design procedure. The design criteria report shall%provide guidance on protecting the composite materials in%areas where they are prone to impact. The design shall%consider secondary stresses resulting when dead loads arerelieved during application and subsequently reapplied.

    Adoption of the minimum acceptable standards for designoutlined in Section 7.3.2 does not eliminate the need for

    structural testing.

    Situations not covered in Section 7.3.2 shal l be subject tospecial considerations and testing, and design values shouldbe compatible with the conservative approach adopted inSection 7.3.2, and discussed in reference [1].

    7.3.2 Minimum Acceptable Design Criteria:

    7.3.2.1 Flexural Strength Enhancement: Fiber-reinforced polymer (FRP) composite material bonded tosurfaces of concrete or masonry may be used to enhance thedesign flexural strength of sections by acting as additionaltension or compression reinforcement. In such cases, sectionanalysis shall be based on normal assumptions of straincompatibility between concrete, reinforcement and FRP

    composite material. The enhancement of axial force providedby a fiber element of effective thickness tf, oriented at angle to the direction of member axis, shall be

    F= (1)

    where fjf = Eff cos2 0.75fuj, and f is the strain in the

    concrete or masonry to which the fiber is bonded at thesection strength in the direction of the member axis. Unlessthe compression zone is confined by transversely orientedfiber outside the flexural fiber, an extreme compression strainof c = 0.003 shall be assumed in determining flexuralstrength. If > 45, the fiber contribution to flexural strengthshall be ignored unless equal fiber quantities are provided withan orientation of to the member axis.

    Dependable flexural strengths shall be determined bymultiplying the nominal flexural strength, including the effectsof fiber according to Equation (1), by the appropriate flexuralstrength reduction factor according to the IBC or UBC.

    7.3.2.2 Bond Strength of Fiber to Concrete or

    Masonry: Where the performance of the FRP compositematerial depends on bond, the bond strength of FRPcomposite material to concrete or masonry shall not be lessthan the characteristic flexural tension capacity ft of theconcrete or masonry. Under ultimate flexural strengthconditions, bond stress between FRP composite material andconcrete or masonry shall not exceed

    uu= .0.75ft (2)

    where x is the direction parallel to the fiber. Equation (2)should be evaluated at sections where rate of change in fibernet force tffjis a maximum. This will normally correspond tolocations of maximum shear force.

    7.3.2.3 Axial Load Capacity Enhancement: FRPcomposite material may be bonded to external surfaces ofconcrete or masonry members to enhance axial load capacity.Depending on the section shape, axial load capacity

  • 7/25/2019 Interim Criteria for Masonry strengthening

    8/10

    INTERIM CRITERIA FOR CONCRETE AND REINFORCED AND

    UNREINFORCED MASONRY STRENGTHENING USING FIBER-

    REINFORCED POLYMER (FRP) COMPOSITE SYSTEMS

    8

    enhancement may be provided by longitudinal and/ortransverse orientation of the fiber.

    7.3.2.3.1 Longitudinal Fiber:All sections may haveaxial load capacity enhanced by fibers with a significantcomponent of the angle parallel to member axes. In suchcases, the principles stated in Section 7.3.2.1 shall apply withstrength enhancement following Equation (1). Unless thesection is effectively confined by transverse fiber with angle > 75to the member axis, outside the longitudinal fiber, theenhancement of axial strength given by Equation (1), shallapply at a fiber strain f = 0.002. Where the section iseffectively confined, a higher compression strain of f= cumay be used, where cuis given by Equation (8) or (9).

    7.3.2.3.2 Transverse Fiber: Circular sections, andrectangular sections where the ratio of longer to shortersection side dimension is not greater than 1.5, may have axialcompression capacity enhanced by the confining effect ofFRP composite material placed with fibers running essentiallyperpendicular to the members axis 75.

    7.3.2.3.2.1 Circular Sections: Compressionstrength fccof concrete of circular columns, diameter D, with

    fiber of effective thickness tfat angle 75to the longitudinalaxis of the member, shall be given by

    fcc= fc (3)

    where

    fl= 0.26sjfujsin2 (4)

    and

    sj= (5)

    7.3.2.3.2.2 Rectangular Sections:Compressionstrength fccof concrete in rectangular columns of side lengthsB and H where B H 1.5B, and with fiber of effectivethickness tf at angle 45 to the longitudinal axis of themember, shall be given by

    fcc= fc(1 + 1.5sjcos2) (6)

    where

    sj= 2tf (7)

    For rectangular sections confined with transverse FRPcomposite material, section corners must be rounded to aradius not less than 3/4 inch (20 mm) before placing FRP

    composite material. Axial compression capacity enhancementby FRP composite material to rectangular sections withinaspect ratio H/B > 1.5 shall be subject to special analysisconfirmed by test results.

    7.3.2.4 Ductility Enhancement: FRP compositematerial oriented essentially transversely to the members axismay be used to enhance flexural ductility capacity of circularand rectangular sections where the ratio of longer to shortersection dimension does not exceed 1.5. The enhancement isprovided by increasing the effective ultimate compressionstrain of the section.

    7.3.2.4.1 Circular Sections: Ultimate compressionstrain of circular sections of diameter D, confined with fiber ofeffective thickness tfat angle = 90to the longitudinal axis ofthe member, shall be given by

    cu= 0.004 + (8)

    where fccis given by Equation (3), and sjby Equation (5).

    7.3.2.4.2 Rectangular Sections: Ultimatecompression strains of rectangular sections of side lengths Band Hwhere H1.5B, and with fiber of effective thickness tfat an angle to the longitudinal axis of the member, shall begiven by

    cu= 0.004 + (9)

    where fccis given by Equation (6) and sjby Equation (7).

    For rectangular sections confined with transverse FRP

    composite material, section corners must be rounded to aradius of not less than 3/4inch (20 mm) before placing FRPcomposite material. Ductility enhancement according toEquation (9) should not be relied on for slender memberswhere the aspect ratio M/VB 3.

    7.3.2.5 Lap-Splice Confinement:Lap-splices in circularcolumns can be confined by jackets to prevent bond failure.The required volumetric ratio of FRP composite material, at anangle to the longitudinal axis of the member given byEquation (5), shall not be less than

    sj= (10)

    wherep is the perimeter of the crack surface forming beforesplice failure given by the lesser of Equations (11) and (12):

    p= + 2(db+ c) (11)

    p= 2 (c+ db) (12)

    In Equation (10), the circular section is reinforced with nbarseach of diameter db, areaAb, uniformly distributed around thesection on core diameter D. Required stress to betransferred is fs, and the splice length lsmust not be less than

    ls= (13)

    For SI:s =

    The jacket stress fjin Equation (1) shall not be taken largerthan fj= 0.0015Ej0.75 fuj.

  • 7/25/2019 Interim Criteria for Masonry strengthening

    9/10

    INTERIM CRITERIA FOR CONCRETE AND REINFORCED AND

    UNREINFORCED MASONRY STRENGTHENING USING FIBER-

    REINFORCED POLYMER (FRP) COMPOSITE SYSTEMS

    9

    Note: Rectangular sections cannot generally be effectivelyconfined by rectangular jackets against splice failure, and sono provisions are included here.

    7.3.2.6 Shear Strength Enhancement:Shear strengthof circular and rectangular sections can be enhanced by FRPcomposite materials with fiber oriented essentiallyperpendicular to the members axis.

    7.3.2.6.1 Circular Sections:Nominal shear strengthenhancement for circular sections of diameter D, with fiberthickness tfat an angle to the members axis, shall be givenby

    Vsj= 2.25tffjDsin2 (14)

    where

    fj= 0.004Ej0.75fuj (15)

    7.4.2.6.2 Rectangular Beam or Column Sections:Nominal shear strength enhancement for rectangular sectionsor depth Hparallel to the direction of applied shear force, with

    fiber thickness tfat an angle 75to the members axis,

    shall be given by

    Vsj= 2.86tffjH sin2 (16)

    where fjis given by Equation (15).

    For rectangular sections with shear enhancementprovided by transverse FRP composite material, sectioncorners must be rounded to a radius not less than 3/4inch (20mm) before placement of the FRP composite material.

    7.3.2.6.3 Rectangular Wall Sections: Nominalshear strength enhancement for rectangular wall sections ofdepth Hparallel to the direction of applied shear force, withfiber thickness tfon both sides of the wall at an angle to themembers axis, shall be given by

    Vsj

    = 2tf

    fj

    Hsin2 (17)

    where fjis given by Equation (15).

    Where wall sections have fiber bonded to one side only at anangle 75to the member axis and with anchorage providedby bonding to the wall ends, nominal shear strengthenhancement shall be taken as

    Vsj= 0.75tjfjHsin2 (18)

    where fjis given by Equation (15).

    7.3.2.6.4 Shear Strength Reduction Factor:Dependable shear strength enhancement shall be found bymultiplying the nominal shear strength given by Equations(14), (16), (17), or (18), as appropriate, by a shear strengthreduction factor.

    Note: These provisions do not apply to shear strengthenhancement provided by fiber that does not extend the fullsection width bonding to perpendicular faces (section ends).These provisions do not apply to shear strengthenhancement for flanged sections requiring placement offiber around re-entrant corners. These cases must be subjectto special study. The use of special anchors attaching theFRP composite material at the wall edges may be effective

    in transferring the design fiber stress between wall or beamand fiber.

    7.3.2.7 Enhancement Using Active Composite

    Systems: Active FRP composite systems can be used toreduce the thickness of the FRP composite materials requiredand provide active confinement for the structural member. Insuch cases, analysis shall be based on assumptions verifiedby test results, including confining pressure, confining strain,creep and other durability considerations.

    7.4 Quality Control: The quality control documentsdescribed Sections 6.1 and 6.2 shall be submitted.

    7.5 Nomenclature:

    db = reinforcement bar diameter, inches (mm).

    B = width of compressive face of a rectangular column,inches (mm).

    D = diameter of circular columns, inches (mm).

    Ej = modulus of elasticity of FRP composite material, psi(MPa).

    F= increase in axial force, lb (N).

    ft = tensile strength of concrete or masonry, psi (MPa).

    fl = lateral confining stress, psi (MPa).

    fcc = compressive strength of columns, psi (MPa).

    fjf = confining strength of FRP composite material,(MPa).

    fuj = ultimate tensile strength of composite material,(MPa).

    fj = hoop stress developed in jacket material, (MPa).

    H = side length of a rectangular column, inches (mm).

    ls = reinforcement bar splice length, inches (mm).

    P = perimeter of cracked surface, inches (mm).

    Psj = volumetric ratio of retrofit jacket.

    tf = effective FRP composite material thickness.

    = displacement ductility level, defined relative to yieldor cracking displacement.

    Mu = bond strength between FRP composite material andconcrete or masonry, psi (MPa).

    Vsj = shear strength enhancement provided by compositematerial, lb (N).

    c = concrete compression strain.

    cu = ultimate compression strain.

    f = strain composite material at designated strength.

    uj = ultimate strain of FRP composite material.

    cc = strain at peak stress for confined concrete.

    = angle of fiber direction to member axis.Reference

    Priestley, M.J. Nigel, Frieder Seible and Michele Calvi,Seismic Design and Retrofit of Bridges(Chapters 1 through8). John Wiley and Sons, Inc., New York, September 1995,672 pp.

  • 7/25/2019 Interim Criteria for Masonry strengthening

    10/10

    INTERIM CRITERIA FOR CONCRETE AND REINFORCED AND

    UNREINFORCED MASONRY STRENGTHENING USING FIBER-

    REINFORCED POLYMER (FRP) COMPOSITE SYSTEMS

    10

    TABLE 1PHYSICAL PROPERTIES6%

    PROPERTY TEST METHOD NO. OF SPECIMENS1

    Tensile strength ASTM D 3039-95a

    202Elongation ASTM D 3039-95a

    Tensile modulus ASTM D 3039-95a

    Coefficient of thermal expansion (COE) ASTM D 696-91 or ASTM E 831-00% 52

    Creep ASTM D 2990-953 52

    Void content ASTM D 2584-944or D 3171-954% 5Glass transition (Tg) temperature ASTM D 4065-95 or ASTM E 831-007% 205

    Composite interlaminar shear strength ASTM D 2344-84 (1995) 20

    1Specimen sets shall exhibit a coefficient of variation (COV) of 6 percent or less. Outliers are subject to further investigation according to ASTME 178. If the COV exceeds 6 percent, the numbered specimens shall be doubled.2Values shall be determined in the primary and cross (90) directions.3Test duration is 3,000 hours, minimum.4Maximum void content by volume is 6 percent.5Minimum 140F (60C) Tg is required for control and exposed specimens.6For terminology, ASTM E 1142-97 is a reference.7When using ASTM E 831, an Expansion versus Temperature curve as shown in Figure 1 of ASTM E 831 shall be developed; two tangents to%the curve shall be plotted to coincide with the straightline portions of the curve above and below the inflection point. The point of intersection of%these tangents shall be reported as Tg for the material.%

    TABLE 2ENVIRONMENTAL DURABILITY TEST MATRIX

    ENVIRONMENTAL

    DURABILITY TEST

    RELEVANT

    SPECIFICATIONS

    TEST CONDITIONS TEST DURATION PERCENT

    RETENTION

    Hours

    1,000 3,000

    Water resistanceASTM D 2247-97ASTM E 104-85 (96)

    100 percent, 100 2F 1,000, 3,000 and 10,000 hours

    90 85Saltwater resistance

    ASTM D 1141-91ASTM C 581-94

    Immersion at 73 2F 1,000, 3,000 and 10,000 hours

    Alkali resistance ASTM C 581-97Immersion in Ca (CO

    3)

    at pH = 9.5 & 73 3F1,000 and 3,000 hours

    Dry heat resistance ASTM D 3045-92 140 5F 1,000 and 3,000 hours

    For SI:C= (tF 32)/1.8.

    FIGURE 1TEST SEQUENCE OF IMPOSED DISPLACEMENT