Integration Techniques Summary

download Integration Techniques Summary

of 6

Transcript of Integration Techniques Summary

  • 7/30/2019 Integration Techniques Summary

    1/6

    Integration Techniques Summary

    1. List of basic formulas:

    Function Integrated Result

    nax

    1

    1

    +

    +

    n

    ax n

    nbax )( +

    ( ) )1(

    )( 1

    ++ +

    na

    bax n

    [ ][ ]

    n

    xfxf )()(' [ ]1

    )(

    1

    +

    +

    nxf

    n

    [ ]

    [ ] 22 )(

    )('

    xfa

    xf

    +

    a

    xf

    a

    )(tan

    1 1

    [ ]

    [ ] 22)(

    )('

    axf

    xf

    axfaxf

    a +

    )(

    )(ln

    2

    1

    [ ]

    [ ] 22 )(

    )('

    xfa

    xf

    )()(

    ln2

    1

    xfa

    xfa

    a +

    [ ]

    [ ] 22 )(

    )('

    xfa

    xf

    a

    xf )(sin 1

    )()(' xfaxf )(

    ln1 xfaa

    )()(' xfexf )(xfe

    )(

    )('

    xf

    xf |)(|ln xf

    Function Integrated Result

  • 7/30/2019 Integration Techniques Summary

    2/6

    [ ])(cos)(' xfxf [ ])(sin xf

    [ ])(sin)(' xfxf [ ])(cos xf

    [ ])(sec)(' 2 xfxf [ ])(tan xf

    [ ])(cos)(' 2 xfecxf [ ])(cot xf

    [ ] [ ])(cot)(cos)(' xfxfecxf [ ])(cos xfec

    xtan |cos|ln x

    xcot |sin|ln x

    xsec |tansec|ln xx +

    ecxcos |cotcos|ln xecx

    2. Miscellaneous trigonometric integrals:

    a. xdxn

    sin and xdxn

    cos :

    If n is odd, separate a single xsin or xcos from the original function, and use the

    identity 1cossin 22 =+ xx .

    Example: ( )( ) == dxxxdxxxxdx ))(sincos1(sinsinsin223

    = Cx

    xdxxxx ++= 3cos

    cossincossin3

    2 (shown)

    If n is even, use the double angle formula of either 1cos22cos 2 = xx orxx 2sin212cos = for conversion.

    Example: Cxxdxx

    xdx ++=+

    = 21

    2sin4

    1

    2

    12coscos2 (shown)

    b. xdxntan :

    Separate x2tan from the original function, and use the identity xx 22 sectan1 =+ .

  • 7/30/2019 Integration Techniques Summary

    3/6

    Example: ( )( ) ( )( )dxxxdxxxxdx ==32325 tan1sectantantan

    = dxxxx 332 tantansec

    = dxxxxx

    )(tantantansec 232

    = ( ) dxxxxx )(tan1sectansec232

    = dxxxxxx + tantansectansec232

    = Cxxx + |cos|lntan2

    1tan

    4

    1 24(shown)

    c. dxnxmx )sin()sin( or dxnxmx )cos()sin( or dxnxmx )cos()cos( :Use one of the 3 identities below to transform the product to a sum or difference:

    (i) ( )[ ] ( )[ ]{ }xnmxnmnxmx ++= sinsin21

    )cos()sin(

    (ii) ( )[ ] ( )[ ]{ }xnmxnmnxmx += coscos2

    1)sin()sin(

    (iii) ( )[ ] ( )[ ]{ }xnmxnmnxmx ++= coscos2

    1)cos()cos(

    Example: ++=+= Cxxdxxxxdxx 2sin41

    4sin8

    12cos4cos

    2

    1cos3cos (shown)

    3. Integration via substitution:

    Generally, to find an integral by means of a substitution ),(ufx =

    (i) Differentiate x wrtu to arrive at duufdxufdu

    dx)(')(' ==

    (ii) Subsequently replace all x by )(uf and dx by duuf )('

    (iii) Perform the integration and remember to convert the result back to x

    for an indefinite integral ( not needed for definite integrals)

    Example: Evaluate + 12 xx

    dxby considering the substitution tan

    2

    3

    2

    1=x .

    dx

    xxx

    dx

    +

    =+

    22

    2

    )2

    3()

    2

    1(

    1

    1

    Using the substitution tan2

    3

    2

    1=x , the integral becomes

  • 7/30/2019 Integration Techniques Summary

    4/6

    1

    3

    4tan

    2

    3

    4

    3

    2secd

    =

    d)sec2

    3(

    sec2

    3

    1

    = d)(sec

    =C++ |tansec|ln

    =ln|)

    2

    1(

    3

    2])

    2

    1(

    4

    3[

    3

    2| 2

    ++xx

    +C (shown)

    2)2

    1(

    4

    3+ x

    2

    1x

    2

    3

    4. Integration by parts:

    = vdxuuvdxuv '' where u is a function which can be differentiated and v isa function that can be easily reduced via integration. Note that integration by parts

    is only feasible if out of the product of two functions, at leastone is directly

    integrable.

    Example:

    dxxx )(sin 21

    = dxxx

    xx

    x)2)(

    1

    1(

    2)(sin

    2 4

    221

    2

    = dxx

    xx

    x)

    1()(sin

    2 4

    321

    2

    = dxx

    xx

    x)

    1

    4(

    4

    1)(sin

    2 4

    321

    2

    = Cxxx

    + 4212

    1)2(4

    1)(sin

    2

    = Cxxx + 4212

    12

    1)(sin2

    (shown)

    5. Integrals of the form dxcbxax

    dcx ++

    +2

    (i) Rewrite dxcbxax

    dcx ++

    +2

    as dxcbxax

    Q

    cbxax

    baxP

    cbxax

    QbaxP

    +++

    +++

    =++++

    222)2()2(

    ,

    where bax +2 is clearly the derivative of cbxax ++2 .

    (ii) +++

    cbxax

    baxP2

    )2(gives ||ln

    2 cbxaxP ++

  • 7/30/2019 Integration Techniques Summary

    5/6

    (iii) dxcbxax

    Q ++2 can be easily integrated via completing the square method for

    the denominator.

    Example: dxxxdxxx

    x

    dxxx

    x

    +++++

    =++

    1

    1

    2

    3

    1

    12

    2

    1

    1

    1222

    =

    +

    +

    ++ dx

    x

    xx22

    2

    2

    3

    2

    1

    1

    2

    3|1|ln

    2

    1

    = C

    x

    xx +

    +

    ++

    2

    3

    2

    1

    tan

    23

    1

    2

    3|1|ln

    2

    1 12

    = Cx

    xx +

    +++

    3

    12tan3|1|ln

    2

    1 12(shown)

    6. Integrals of the form dxcbxax

    edxcx ++

    ++2

    2

    (i) Rewrite( )

    dxcbxax

    RbaxQcbxaxPdxcbxax

    edxcx ++

    +++++=

    ++++

    2

    2

    2

    2 )2(

    = dxcbxax

    R

    cbxax

    baxQP

    +++

    +++

    + 22)2(

    dxcbxax

    R

    cbxax

    baxQPx

    +++

    +++

    += 22)2(

    where bax +2 is clearly the derivative of cbxax ++2 .

    (ii) +++

    cbxax

    baxQ2

    )2(gives ||ln

    2 cbxaxQ ++

    (iii) dxcbxax

    R ++2 can be easily integrated via completing the square method for

    the denominator.

    Example:( )

    ++++++

    =++++

    dxxx

    xxxdx

    xx

    xx

    1

    2)12(12

    1

    1422

    2

    2

    2

    ++++ ++=dx

    xxxxxx

    12

    1122

    22

  • 7/30/2019 Integration Techniques Summary

    6/6

    =

    +

    +

    +++ dx

    x

    xxx22

    2

    2

    3

    2

    1

    12|1|ln2

    = 2|1|ln22 +++ xxx C

    x

    +

    +

    2

    3

    2

    1

    tan

    2

    3

    1 1

    = Cx

    xxx +

    ++++

    3

    12tan

    3

    4|1|ln2 12 (shown)