Integration of renewable energies: competition between storage, the power grid and flexible demand

31
Lehrstuhl für Energiewirtschaft und Anwendungstechnik Prof. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher Integration of renewable energies: competition between storage, the power grid and flexible demand Thomas Hamacher

description

Integration of renewable energies: competition between storage, the power grid and flexible demand. Thomas Hamacher. Primary Energy Development. Source: BP. Effects of grid: reduced overproduction. With optimal grid (supergrid). Without grid. Source: Schaber et al. - PowerPoint PPT Presentation

Transcript of Integration of renewable energies: competition between storage, the power grid and flexible demand

Page 1: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Integration of renewable energies: competition between storage, the power grid and flexible demand

Thomas Hamacher

Page 2: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Primary Energy Development

0,0

500,0

1000,0

1500,0

2000,0

2500,0

3000,0

3500,0

4000,0

4500,0

1965 1975 1985 1995 2005 2015

Ener

gy C

onsu

mpt

ion

[Mto

e]

CoalGasOil

Source: BP

Page 3: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Overproduction for different combinations of VRE share (α) and VRE mix (β)

Effects of grid: reduced overproduction

3

Without gridWith optimal grid (supergrid)

Source: Schaber et al.

Page 4: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Introduction

Integration of renewables in the

power system

Storage Super-Grids Smart-GridsPower-to-HeatPower-to-Gas

Page 5: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Introduction

New power system

Cross sectorcoupling

New controls

New marketmechanism

New hierarchy ofsystemMicro-grid

Page 6: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Introduction

Integration of renewables in the

power system

Storage Super-Grids Smart-GridsPower-to-HeatPower-to-Gas

Page 7: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher 7

Database of renewable energies generation time series

• Wind speed in 50 m

• Radiation• Temperature in 2

m• Air pressure• Others

Available variables

• 1979 – “now”Available

timeframe

• NASA: MERRA-Reanalysis dataset

Data source

2/3 °resolution 540 data points

1/2

°res

olut

ion

36

1 da

ta p

oint

s

1 hou

r res

olutio

n

8760

/8784

data

point

s

~1,7 bn. data points per variable per year

Time series data

Static Data

• NASA• Other US/EU

Agencies• Universities

Data source• Earth surface properties (land/sea, elevation,

roughness of surface, …)• Country/region boundaries• Others

Available data

Illustrations (pictures and videos) for reports and lectures

Renewable energies generation time series for modeling and statistical analysis

0 50 100 150 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Leistung gleichverteiltSchlechtester StandortBester StandortBevorzugung guter StandorteStarke Bevorzugung guter Standorte

Data processing based on different input data End products

Source Janker

Page 8: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Warming up with wind-statistics

Source Janker

Page 9: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Warming up with wind-statistics

Source Janker

Page 10: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Warming up with wind-statistics

Source Janker

Page 11: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

A model to describe future power markets (URBS) The year 2050 is modelled

Each country is a node in the model

New investments and power plant scheduling are the result of cost

minimisation Wind and PV are described by hourly resolved time series

Page 12: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

The model: assumptions Technology

Investment Cost

Fix Cost Lifetime

[€/kW] [€/kW] [a]

CCGT 750 11 30PV- rooftop

1080 29 25

PV-utility

801 22 25

Wind-on 932 31 25Wind-off 1495 60 20Biomass 2450 80 25

Region Electricity demand [TWh]

Europe 3000Trukey 509MENA 970

In the year 2050 CO2-emissions are reduced by 95 % compared to the year 1990.

Page 13: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Wind as low cost option

0

25

50

75

100

125

150

175

200LCOE and install ratios of processes

DK

DK

NO

GB IE DK

NO CZ

EG EG DZ

LY SE SA EE

MA DE

NL

SA TN IT-S LV GR

DZ JO LU LT LY CZ

MA EG SY RO AT SY PL SI NO TR BE LY DZ FR

IT-N TN

DE

NL FI BG JO SA IT

-S GR

ES-S

ES-E SK LU HU

DK

GB

RO IE AT CZ SI BE

ES-N

W PL IT-N PT

BG SE CH DE

ES-S

ES-E DE

SK HU

IT-S GR PT LV LT EE

ES-N

WE

S-S

FR FI

ES-

NW SI

IT-S

ES-S

ES-E RO NL

BG

ES-E GR

GR BE

ES-N

WR

OB

G FR IT-N

IT-S

IT-N CH

HU

AT SI LU IE GB

DK

SK BE NL

DE

SE CZ

NO F

ILV PL EE LT

© TUM IfE 69-028-L11

0

0.5

1

LCOE [€/MWh]install ratio

Page 14: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Results

Page 15: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Page 16: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Results

Page 17: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Introduction

Integration of renewables in the

power system

Storage Super-Grids Smart-GridsPower-to-HeatPower-to-Gas

Page 18: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Storage Option

100 €

1,000 €

10,000 €

1 10 100 1,000 10,000 100,000 1,000,000

inve

stm

ent [

€/kW

]

power [kW]

pumpedstorage

flywheel

lead-acidbattery

flow battery

sodium-sulforbattery

li-ion battery

hydrogen storage

© TUM IfE 81-001-L-13

Page 19: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Storage Option

10 €

100 €

1,000 €

10,000 €

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

inve

stm

ent [

€/kW

h]

capacity [kWh]

pumped storage

flywheel

lead-acidbattery

flowbattery

sodium-sulforbattery

li-ionbattery

© TUM IfE 81-002-L-13

Page 20: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Model IMAKUS – structure

Model IMAKUS

© IfE, 61-074-F-11

Model MOWIKA

Power Plant Investment Planning

(Intertemporal)

Model MESTAS

Storage Investment Planning

(Green Field)

Unit Commitment and Economic Dispatch

Model MOGLIE

Determination ofSystem Firm Capacitiy

Determination of Required Minimum Installed Capacity

Input Data

Portfolio Data

Economic and Technical Parameters

Consumer Load

Must-run Feed-in(Renewable and CHP)

Constraint Parameters

Source: Kuhn, P.: Iteratives Modell zur Optimierung von Speicherausbau und –betrieb in einem Stromsystem mit zunehmend fluktuierender Erzeugung

Page 21: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Electricity Generation in Scenario with 15 % Lower Demand and 80 % Share of RES in 2050

-100

0

100

200

300

400

500

600

2010 2015 2020 2025 2030 2035 2040 2045 2050

Year

Elec

tric

ity G

ener

atio

n in

TW

h

RES & CHP Curtailment

Storages

Solar

Wind - Offshore

Wind - Onshore

Hydro

CHP

Geothermal

Biomass

Oil

Gas Turbine

CCGT

Hard Coal

Hard Coal 700°C

Lignite

Lignite 700°C

Nuclear

61405B13

Source: Kuhn, P; Kühne, M.; Heilek, C.: Integration und Bewertung erzeuger- und verbraucherseitiger Energiespeicher, KW21-Bericht, 2012

Page 22: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Storage expansion in Scenario with 15 % Lower Demand and 80 % Share of RES in 2050

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

2010 2015 2020 2025 2030 2035 2040 2045 2050

H2-CCGT

AA-CAES

PSP

PSP(existing)

61412B13

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

2010 2015 2020 2025 2030 2035 2040 2045 2050

Year

Inst

alle

d St

orag

e C

apac

ity in

GW

h

H2-CCGT

AA-CAES

PSP

PSP(existing)

61412D13

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

2010 2015 2020 2025 2030 2035 2040 2045 2050

Year

Inst

alle

d C

harg

ing

Pow

er in

MW

H2-CCGT

AA-CAES

PSP

PSP(existing)

61413D13

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

2010 2015 2020 2025 2030 2035 2040 2045 2050

Year

Inst

alle

d D

isch

argi

ng P

ower

in M

W

61414D13

Source:Kuhn, P; Kühne, M.; Heilek, C.:Integration und Bewertung erzeuger- und verbraucherseitiger Energiespeicher, KW21-Bericht, 2012

Charging Discharging

Capacity

Page 23: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Introduction

Integration of renewables in the

power system

Storage Super-Grids Smart-GridsPower-to-HeatPower-to-Gas

Page 24: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

A few first examples:

Page 25: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

A few first examples

Page 26: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Introduction

Integration of renewables in the

power system

Storage Super-Grids Smart-GridsPower-to-HeatPower-to-Gas

Page 27: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Overview Smart Grid

TrafficAgricultureServiceIndustryHousehold

Source: bdew

Electricity consumption Germany 2011

Page 28: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Storage capacity expansion – comparison of different scenarios

28

Source: Kuhn, P; Kühne, M.; Heilek, C.: Integration und Bewertung erzeuger- und verbraucherseitiger Energiespeicher, KW21-Bericht, 2012

4,0

4,9

0,2

3,1

1,4

2,0

0 1 2 3 4 5

15% lower demand / 80% RES

25% lower demand / 80% RES

3% higher demand / 60% RES

with V2G

storage heating

NTC unbounded - 25 € per MWh

storage capacity expansion in the year 2050 in TWh

EVD

SMEx

port

© If

E, 4

8364

H13

Bas

e

Page 29: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Model predictive control of building automation

MPC electricalHVAC system buildingelectricityprice,

weatherdata

self-adaptingmodel

€ °C

Page 30: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Compressed Air

Page 31: Integration of renewable energies: competition between storage, the power grid and flexible demand

Lehrstuhl für Energiewirtschaft und AnwendungstechnikProf. Dr.-Ing. U. Wagner, Prof. Dr. rer. nat. Th. Hamacher

Conclusion

Large networks favour the integration of renewables, especially wind orlarge networks would favour the penetration of wind.

A better understanding of storage requires a better understanding of cross sector couplings and depends on the final mix.

Flexible demand is already possible in current systems (for examplebuilding controls) but requires quite sophisticated prediction systems.