INTEGRATING SOLAR PV SYSTEMS INTO RESIDENTIAL BUILDINGS … · integrating solar pv systems into...

29
INTEGRATING SOLAR PV SYSTEMS INTO RESIDENTIAL BUILDINGS IN COLD-CLIMATE REGIONS GOING SOLAR? HOW TO DETERMINE THE VALUE OF A SOLAR INVESTMENT January 19, 2017 Hadia Awad Dr. Mustafa Gül Dr. Mohamed Al-Hussein Civil & Environmental Engineering University of Alberta

Transcript of INTEGRATING SOLAR PV SYSTEMS INTO RESIDENTIAL BUILDINGS … · integrating solar pv systems into...

INTEGRATING SOLAR PV SYSTEMS INTO

RESIDENTIAL BUILDINGS IN COLD-CLIMATE

REGIONS

GOING SOLAR? HOW TO DETERMINE

THE VALUE OF A SOLAR INVESTMENT

January 19, 2017

Hadia Awad

Dr. Mustafa Gül

Dr. Mohamed Al-Hussein

Civil & Environmental Engineering

University of Alberta

Our Team

Supervisors Dr. Mustafa Gül

Dr. Mohamed Al-Hussein

Students Hadia Awad

K M Emtiaz Salim

Landmark Group of Companies Dr. Haitao Yu

Mr. Kyle Kasawski

2

Funding Source Natural Sciences and Engineering Research

Council of Canada (NSERC)

Outline 3

Introduction & background

Three years of monitored data. What have we learned

so far?

Commercially available prediction tools: A comparison

between actual and predicted values.

Case study: High Energy-Efficiency Home

In-house design-assistance tools

List of publications

Introduction…Around the World 4

Cumulative installed PV capacity around the world

Alberta Germany

http://www.greenenergyfutures.ca/blog/sunny-days-

ahead-solar-alberta

High: 5 kWh/m2/day

Low: 3 kWh/m2/day

World’s highest: 8 kWh/m2/day Source: (NRCan, 2016; Statista, 2015)

43.5

39.7

34.4

25.6

18.9

9.1

6.6

5.4

5.2

5.1

1.843

0 10 20 30 40 50

China

Germany

Japan

United States

Italy

United Kingdom

france

Spain

India

Australia

Canada (2014)

Cumulative Installed PV Capacity (GW)

Introduction…Canada

City Hours

Calgary (Alberta) 2,396

Winnipeg (Manitoba) 2,353

Edmonton (Alberta) 2,345

Regina (Saskatchewan) 2,318

Saskatoon (Saskatchewan) 2,268

Thunder Bay (Ontario) 2,121

Hamilton (Ontario) 2,111

Victoria (British Columbia) 2,109

Ottawa (Ontario) 2,084

Toronto (Ontario) 2,066

City (kWh/kW)

Regina (Saskatchewan) 1,361

Calgary (Alberta) 1,292

Winnipeg (Manitoba) 1,277

Edmonton (Alberta) 1,245

Ottawa (Ontario) 1,198

Montréal (Québec) 1,185

Toronto (Ontario) 1,161

Fredericton (New Brunswick) 1,145

Québec City (Québec) 1,134

Charlottetown (PEI) 1,095

5

10 Sunniest Cities in Canada Yearly PV potential (kWh/kW)

Source: http://pv.nrcan.gc.ca/index.php?lang=e&m=r

Introduction...What is Solar Photovoltaic? 6

Light

(Photons)

Electricity

(Voltage) PhotoVoltaic

http://dailysolar.net/how-solar-works/

PV Array

AC/DC Inverter

Fusebox

AC Loads Grid

Monitored PV Systems 7

Alberta, Canada

2010 to date

113 houses

City Houses Area

Lakeland

County 1 1

Lakeland

County

Edmonton 58

66 Edmonton

Sherwood

Park 5

Leduc 1

Beaumont 2

Red Deer 7 8 Red Deer

Sylvan Lake 1

Calgary 12

28 Calgary Cochrane 15

Airdrie 1

50.5

51

51.5

52

52.5

53

53.5

54

54.5

55

-115 -114.5 -114 -113.5 -113 -112.5 -112 -111.5

Latitu

de ˚

Longitude ˚

House Locations

Lakeland County

Monitored PV Systems 8

Latitude

Longitude

Edmonton

Red Deer

Calgary

Insolation vs. PV Energy Output 9

Example: Edmonton

Tilt = 30˚, Azimuth = 180˚

0

2

4

6

8

10

12

14

kW

h/m

2/d

ay

Solar Insolation Incident on a Surface (kWh/m2/day)

Generation Average Insolation Incident On A Horizontal Surface Average Top-of-atmosphere Insolation

11%- 15% 50%

100%

What have we learned so far? Same system in different locations

Same location with different tilt angles

Comparison between actual and estimates (PVWatts and RETScreen)

Three years of monitored data: 10

Location vs. PV Energy Output 11

Example: Different locations

Tilt = 27˚, Azimuth = 180˚

0

20

40

60

80

100

120

140

160

180

200

kWh/kW

Airdrie Red Deer Edmonton

Sherwood Park Cochrane Calgary

0

200

400

600

800

1,000

1,200

1,400

1,600

kW

h/k

W

January February March April

May June July August

Tilt Angle vs. PV Energy Output 12

Example: Different Tilts

Location: Edmonton, Azimuth = 180˚

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0:0

1:0

2:0

3:0

4:0

5:0

6:0

7:0

8:0

9:0

10

:01

1:0

12

:01

3:0

14

:01

5:0

16

:01

7:0

18

:01

9:0

20

:02

1:0

22

:02

3:0

kWh/

kW

TimeStamp

Jan Feb Mar Apr

May Jun Jul Aug

Sep Oct Nov Dec

Tilt = 60°

Azimuth = 180°

Location:

Edmonton

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0:0

1:0

2:0

3:0

4:0

5:0

6:0

7:0

8:0

9:0

10

:01

1:0

12

:01

3:0

14

:01

5:0

16

:01

7:0

18

:01

9:0

20

:02

1:0

22

:02

3:0

kWh/

kW

TimeStamp

Jan Feb Mar Apr

May Jun Jul Aug

Sep Oct Nov Dec

Tilt = 27°

Azimuth =

180°

Location:

Edmonton

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0:0

1:0

2:0

3:0

4:0

5:0

6:0

7:0

8:0

9:0

10

:01

1:0

12

:01

3:0

14

:01

5:0

16

:01

7:0

18

:01

9:0

20

:02

1:0

22

:02

3:0

kWh/

kW

TimeStamp

Jan Feb Mar Apr

May Jun Jul Aug

Sep Oct Nov Dec

Tilt = 18°

Azimuth = 180°

Location: Edmonton

Tilt = 18° Tilt = 27° Tilt = 60°

Tilt Angle vs. PV Energy Output 13

Example: Different Tilt Angles

Location: Edmonton, Azimuth = 180˚

Jan

Feb

Mar

Ap

r

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

0

2

4

6

8

10

12

14

16

%

0

2

4

6

8

10

12

14

16

Jan

Feb

Mar

Ap

r

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

%

Jan

Feb

Mar

Ap

r

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

0

2

4

6

8

10

12

14

16

%

Tilt = 18°

Azimuth = 180°

Tilt = 27°

Azimuth = 180°

Tilt = 60°

Azimuth = 180°

Actual Vs. PVWatts and RETScreen 14

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

1 11 21 31 41 51 61 71 81

kW

h/k

W

PV system ID

Annual measured Annual PVWatts prediction Annual RETScreen prediction

Edmonton Red Deer Calgary

Over-estimate: 5%-10%

Summary: PV Layout Efficiency Factors 15

Orientation Tilt Angle 0 10 20 30 40 50 60 70 80 90

0 N 0.759 0.659 0.563 0.476 0.398 0.335 0.298 0.283 0.271 0.261

22.5 NNE 0.759 0.667 0.579 0.499 0.428 0.373 0.341 0.320 0.304 0.289

45 NE 0.759 0.690 0.621 0.559 0.506 0.465 0.433 0.406 0.380 0.355

67.5 ENE 0.759 0.723 0.685 0.648 0.614 0.582 0.550 0.517 0.483 0.445

90 E 0.759 0.760 0.756 0.746 0.729 0.706 0.677 0.640 0.597 0.548

112.5 ESE 0.759 0.797 0.823 0.836 0.835 0.823 0.797 0.756 0.708 0.646

135 SE 0.759 0.827 0.878 0.911 0.923 0.918 0.896 0.854 0.798 0.726

157.5 SSE 0.759 0.845 0.913 0.958 0.980 0.980 0.959 0.916 0.853 0.773

180 S 0.759 0.851 0.924 0.973 0.998 1.000 0.979 0.937 0.872 0.787

202.5 SSW 0.759 0.844 0.910 0.954 0.975 0.976 0.955 0.912 0.850 0.770

225 SW 0.759 0.824 0.871 0.902 0.915 0.910 0.886 0.845 0.789 0.719

247.5 WSW 0.759 0.792 0.814 0.826 0.824 0.811 0.784 0.745 0.696 0.637

270 W 0.759 0.755 0.747 0.733 0.715 0.691 0.661 0.625 0.583 0.536

292.5 WNW 0.759 0.718 0.675 0.635 0.599 0.565 0.534 0.502 0.468 0.432

315 NW 0.759 0.686 0.613 0.547 0.493 0.452 0.420 0.393 0.368 0.344

337.5 NNW 0.759 0.665 0.574 0.491 0.419 0.364 0.331 0.312 0.297 0.283

Case Study: High Energy-Efficiency

Home 16

Location: Edmonton (Lottery home)

Tilt Angle = 27° (7:12)

Azimuth =152° (near-south)

System size = 14.7 kWp

45 panels * 327 W

PV potential = 1,050 kWh/kW

Yearly generation = 15,500 kWh

Yearly demand = 23,000 kWh

Case Study: High Energy-Efficiency

Home 17

-2,000

-1,000

0

1,000

2,000

3,000

4,000

Sep

Oct

No

v

Dec Jan

Feb

Mar

Ap

r

May Jun

Jul

Au

g

kWh

Monthly Profile

Export Delivered use Gen

-0.1

-0.05

0

0.05

0.1

0.15

0:0

2:0

4:0

6:0

8:0

10

:0

12

:0

14

:0

16

:0

18

:0

20

:0

22

:0

kWh

Daily Profile (1-minute resolution)

Delivered Exported Use

Gen Grid Interaction

18

23,006

-9,932

17,474 15,464

-15,000

-10,000

-5,000

0

5,000

10,000

15,000

20,000

25,000

use Export Delivered Gen

kWh

Annual

use

Export

Delivered

Gen

Uses: 23,006 kWh

Generates: 15,464 kWh

Buys: 17,474 kWh

Sells: (-)9,932 kWh

Saves:

5,531 kWh * electricity rate+

9,932 kWh* incentive rate

Case Study: High Energy-Efficiency Home

Case Study: Net-Zero Balance 19

-

4,000

8,000

12,000

16,000

20,000

24,000

0 4,000 8,000 12,000 16,000 20,000 24,000

Genera

tion k

Wh

Consumption kWh

Measured NetZero

Yearly Generation

Yearly Exported

Monthly

Generation

Monthly

Load

Yea

rly Lo

ad

Yea

rly

Delive

red

In-house Design-assistance Tools

Case Study: Net-Zero Balance 20

In-house Design-assistance Tools

1. Residential Multiple-

sub-array Design

Tool

2. Commercial Flat-rooftop

Optimization Tool

21

1. Residential Multiple-sub-array Design

22

PV Panel Capacity 305 W/panel 4,340

Based on PVWatts 1,180

Annual Generation Factor 1,350 kWh/kW

Number of panels 9 Number of panels 3 Number of panels 0

Orientation SE Orientation SW Orientation S

Tilt Angle 20 Tilt Angle 20 Tilt Angle 20

Capacity Factor 0.88 Capacity Factor 0.87 Capacity Factor 0.92

User Input:

Number of Panels

Tilt Angle

Orientation

PV Panel Capacity

2. Commercial Flat-rooftop Optimization Tool

23

User Input:

• Roof dimensions

• Exact location (latitude)

• Building block orientation

• PV panel capacity and dimensions

• Incentives, panel cost, electricity cost, etc.

Objective:

• Maximum annual generation

• Minimum payback period

Criteria:

• Shading analysis

• Snow effect on different tilt angles

• Tilt angle and orientation effect on annual generation

• Effect of all above on payback period

Output:

• Inter-row spacing

• Number of panels

• Capital cost

• Payback period

Optimization Engine

2. Commercial Flat-rooftop Optimization Tool

24

PV layout efficiency factors in Edmonton

Tilt angle

Azi

mut

h A

ngle

0° 45-50° 90°

S

W

E

2. Commercial Flat-rooftop Optimization Tool

25

Enter Latitude within Edmonton 53.5 Orientation Op#1 140

Enter Hour (24-hour) (Default is 12 PM) 12 Orientation Op#2 230

Enter Year 2016 Output from Op#1 1182

Enter building's deviation from south (Due South = 180°) -39 Output from Op#2 1135

Calculations based on PV potential of (kWh/kW) 1349 Preferred Orientation 140

Parameters L (Landscape) W (Portrait) Thickness

Panel Size (m) 0.99 1.65 0.044

Panel Capacity (W) 260

Panel Weight (Kg) 20

Roof Information

Parameters W L

Roof Size (m) 30.1 20.62

Parapet height (m) 0.56

First row distance from parapet 2.63

Allowable Space (m) 28.28 17.08 Do not Change

Buffer (Roof Edge) 0.91

Minimum inter-row spacing (m) 0.6

walkway for maintenance (m) 1.8

Number of walkways 0

Energy Cost ($/kWh) 0.0835

Delivery Cost ($/kWh) 0.0284

Local Access Fee ($/kWh) 0.0124

Total Consumption Cost ($/kWh) 0.1243 Do Not Change

Export Revenue ($/kWh) 0.08

Installation Cost ($/W) 2.96

Location & Date/Time

Financials/Variable Charges for Grid Energy

Panel Information

2. Commercial Flat-rooftop Optimization Tool

26

Maximum Generation

Maximum Generation per panel/Minimum Payback

Criterion

With Shade

Criterion

Orientation Landscape Portrait Landscape Portrait Orientation Landscape Portrait Landscape Portrait

(yrs) 29 29 44 63 (yrs) 29 29 34 38

Tilt Angle 53.5 53.5 70 90 Tilt Angle 53.5 53.5 10 0

Inter-row Spacing 3.75 6.75 1.245 1.245 Inter-row Spacing 4.02 6.70 1.72 2.29

Number of Panels 68 56 221 364 Number of Panels 68 56 170 196

Capital Cost 52,333$ 43,098$ 170,082$ 280,134$ Capital Cost 52,333$ 43,098$ 130,832$ 150,842$

Unit Cost ($/kWh) 2.38$ 2.38$ 3.13$ 5.20$ Unit Cost ($/kWh) 2.38$ 2.38$ 2.80$ 3.10$

Energy Generation (MWh) 21.99 18.11 55.70 57.08 Energy Generation (MWh) 22.03 18.14 42.75 48.63

Generation/unit area (kWh/m^2) 52.26 48.39 122.68 127.22 Generation/unit area (kWh/m^2) 48.85 48.85 88.82 109.25

Objectives

Lowest Payback

Period/ Maximum per

panel generation

Maximum Annual

Generation

Lowest Payback Period/

Maximum per panel generationMaximum Annual Generation

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0

50

100

150

200

250

300

350

0 10 20 25.5 30 40 46 50 53.5 60 70 80 90

Tilt Angle

Preliminary Results Annual Generation (MWh)

Per Panel Generation (kWh)

Number of Panels (Qty)

Capital Cost (K$)

Payback (yrs)

Generation per unit area(kWh/m^2)

Cost ($/m^2)

Inter-row Spacing (m)

Annual Savings (K$)

Unit Cost ($/kWh)

Min Payback

2. Commercial Flat-rooftop Optimization Tool

27

Max Overall

Generation

List of Publications 28

Journal papers:

Li, H.X., Gül, M., Yu, H., Awad, H., and Al-Hussein, M. (2016). “An energy performance monitoring, analysis and modelling

framework for NetZero Energy Homes (NZEHs).” Energy and Buildings, 126, 353-364.

Li, Y., Yu, H., Sharmin, T., Awad, H., and Gül, M. (2016). “Towards energy-efficient homes: Evaluating the hygrothermal

performance of different wall assemblies through long-term field monitoring. Energy and Buildings, 121, 43-56.

Awad, H., Gul, M., Zaman, H., Yu, H., and Al-Hussein, M. (2014) “Evaluation of the thermal and structural performance of

potential energy efficient wall systems for mid-rise wood-frame buildings.” Energy and Buildings, 82, 416-427.

Conference papers:

Awad, H., Gül, M., Ritter, C., Verma, P., Chen, Y., Yu, H., Kasawski, K., Salim, K. E., and Al-Hussein, M. (2016). “Solar

photovoltaic optimization for commercial flat rooftops in cold regions.” Proceedings, IEEE Conference on Technologies for

Sustainability, Phoenix, AZ, USA, Oct. 9-11.

Salim, K.M.E., Awad, H., Gül, M., Knudson, R., and Al-Hussein, M. (2016). “An experimental framework for investigating the

hygrothermal properties of multi-functional wood fibre and XPS panels for residential buildings.” Proceedings, Modular and

Offsite Construction (MOC) Summit, Edmonton, AB, Canada, Sep. 29-Oct. 1, pp. 266-273.

Awad, H., Gul, M., Zaman, H., Yu, H., and Al-Hussein, M. (2014) “Evaluation of the thermal and structural performance of

potential energy efficient wall systems for mid-rise wood-frame buildings.” Proceedings, Construction Research Congress,

2255-2265.

Awad, H., Farag, H., Taha, D., and Hanafi, M. (2012). "Architectural acoustics in educational facilities: An empirical study

on university classrooms in Egypt." Proceedings, 164th Meeting of the Acoustical Society of America.