Integrated Physics & Chemistry A Credit by Exam Review Sheet · 2013-04-11 · Integrated Physics &...

8
The University of Texas at Austin, Continuing and Innovative Education K-16 Education Center 1 Integrated Physics & Chemistry A Credit by Exam Review Sheet This Credit by Exam Review Sheet can help you prepare for the exam by giving you an idea of what you need to study, review, and learn. To succeed, you should be thoroughly familiar with the subject matter before you attempt to take the exam. Every question that appears on the Credit by Exam/Examination for Acceleration is grounded in the knowledge and skills statements and student expectations within the state-mandated standards, the Texas Essential Knowledge and Skills (TEKS). It should be noted that an exam will not test every student expectation. However, it is important that students study and know the entire scope of the TEKS so that they can develop a complete understanding of the content. The CBE/EAs are a global exam grounded in the TEKS and are not designed to be a final exam for the University of Texas high school courses. You can view the TEKS for this exam online at http://www.tea.state.tx.us/teks/ . Since questions are not taken from any one source, you can prepare by reviewing any of the state-adopted textbooks. About the exam The Credit by Exam consists of 70 multiple-choice questions that are worth 1 point each. You will be allowed 3 hours to take the exam and you will be allowed to use a graphing calculator. There is a Periodic Table of Elements and a Formula Sheet included with the exam. Materials Given with the Exam For paper-based exams, a formula sheet and periodic table will be provided with your test. For computer-based exams, the proctor will provide to you a paper copy of the formula sheet and periodic table immediately prior to testing. You will return the sheet after the exam. The formula sheet and periodic table can be found at the end of this study guide. Concepts and Objectives The bulleted list and sample questions below may not refer to all the material that will be in the exam. This list only provides additional information for some of the student expectations tested in the IPC First Semester Credit by Exam. Ultimately, you should use the TEKS to guide your exam preparation. In IPC A, students focus on the following concepts: Position, Speed, Velocity, and Acceleration Work, Energy, and Power Energy in Motion

Transcript of Integrated Physics & Chemistry A Credit by Exam Review Sheet · 2013-04-11 · Integrated Physics &...

Page 1: Integrated Physics & Chemistry A Credit by Exam Review Sheet · 2013-04-11 · Integrated Physics & Chemistry A Credit by Exam Review Sheet This Credit by Exam Review Sheet can help

The University of Texas at Austin, Continuing and Innovative Education K-16 Education Center

1

Integrated Physics & Chemistry A Credit by Exam Review Sheet This Credit by Exam Review Sheet can help you prepare for the exam by giving you an idea of what you need to study, review, and learn. To succeed, you should be thoroughly familiar with the subject matter before you attempt to take the exam. Every question that appears on the Credit by Exam/Examination for Acceleration is grounded in the knowledge and skills statements and student expectations within the state-mandated standards, the Texas Essential Knowledge and Skills (TEKS). It should be noted that an exam will not test every student expectation. However, it is important that students study and know the entire scope of the TEKS so that they can develop a complete understanding of the content. The CBE/EAs are a global exam grounded in the TEKS and are not designed to be a final exam for the University of Texas high school courses. You can view the TEKS for this exam online at http://www.tea.state.tx.us/teks/. Since questions are not taken from any one source, you can prepare by reviewing any of the state-adopted textbooks. About the exam The Credit by Exam consists of 70 multiple-choice questions that are worth 1 point each. You will be allowed 3 hours to take the exam and you will be allowed to use a graphing calculator. There is a Periodic Table of Elements and a Formula Sheet included with the exam. Materials Given with the Exam For paper-based exams, a formula sheet and periodic table will be provided with your test. For computer-based exams, the proctor will provide to you a paper copy of the formula sheet and periodic table immediately prior to testing. You will return the sheet after the exam. The formula sheet and periodic table can be found at the end of this study guide. Concepts and Objectives The bulleted list and sample questions below may not refer to all the material that will be in the exam. This list only provides additional information for some of the student expectations tested in the IPC First Semester Credit by Exam. Ultimately, you should use the TEKS to guide your exam preparation. In IPC A, students focus on the following concepts:

• Position, Speed, Velocity, and Acceleration • Work, Energy, and Power • Energy in Motion

Page 2: Integrated Physics & Chemistry A Credit by Exam Review Sheet · 2013-04-11 · Integrated Physics & Chemistry A Credit by Exam Review Sheet This Credit by Exam Review Sheet can help

IPC A CBE/EA

Review Sheet

The University of Texas at Austin, Continuing and Innovative Education K-16 Education Center

2

Students should be able to demonstrate mastery of these skills: Measurement and Scientific Notation:

• Determine the number of significant digits in a number, and perform calculations rounded to the correct number of significant digits;

• Perform conversions using dimensional analysis; • Perform mathematical operations with numbers expressed in scientific notation; • Convert among the metric system prefixes; • Recognize what type of information serves as valid data; • Calculate area and volume and convert the dimensions to different units; • Calculate speed and convert the dimensions to different units.

Scientific Processes and Lab Safety: • Be familiar with experimental design, including the use of independent, dependent, and

controlled variables; • Know the correct sequence of steps in the scientific method, and the purpose of each step; • Propose an appropriate hypothesis if given a scenario; • Calculate percent error from data obtained in an experiment; • Compare the accuracy and precision of data and the precision various scientific

equipment; • Know all safety rules and regulations in the laboratory; • Make appropriate conclusions from given raw data.

Models and Graphs:

• Be able to read graphs to obtain data; for example, if given the x-axis value, determine the value on the y-axis;

• Know on which axis the independent and the dependent variables are located on a graph. Position, Speed, Velocity, and Acceleration:

• Use the formula for velocity to solve for any variable in the formula (that is, solve for velocity, distance, or time);

• Use the formula for acceleration to solve for any variable in the formula (that is, solve for acceleration, initial velocity, final velocity, or time);

• Calculate and compare the velocity of various objects expressed in different units; • Distinguish the difference between distance and displacement; • Recognize the difference between speed and velocity, and average versus instantaneous

velocity; • Understand terminal velocity; • Interpret the slope of a speed versus time graph to determine acceleration.

Newton’s Laws of Motion:

• Know, understand, and recognize examples of Newton’s First, Second, and Third Laws; • Use the formula for Newton’s Second Law to solve for force, mass, or acceleration; • Able to draw a force diagram on various objects; • Recognize the difference between balanced and unbalanced forces in real-world

examples. Mass, Weight, and Gravity:

Page 3: Integrated Physics & Chemistry A Credit by Exam Review Sheet · 2013-04-11 · Integrated Physics & Chemistry A Credit by Exam Review Sheet This Credit by Exam Review Sheet can help

IPC A CBE/EA

Review Sheet

The University of Texas at Austin, Continuing and Innovative Education K-16 Education Center

3

• Explain the difference between mass and weight; • Use the formula for weight to calculate the mass, the acceleration from gravity, or the

weight of an object; • Understand the relationship between the mass of two objects and the amount of

gravitational attraction between them; • Understand rotational force; • Understand the relationship of the distance between two objects and the amount of

gravitational attraction between them. Atoms:

• Know the components of atoms: electron, proton, and neutron; • Understand the relationships between parts of an atom, the mass, and the atomic number.

Momentum:

• Know that overall momentum in a system is conserved, where the momentum of one object is transferred to another;

• Compare the momentum of various objects given their masses and velocities; • Recognize that an object will not have momentum if it does not have velocity; • Determine which object will have more momentum if two objects have identical

velocities. Force:

• Be familiar with static, rolling, sliding, and fluid friction, as well as examples of each; • Be able to calculate friction of objects; • Know what factors affect the amount of friction between two objects; • Recognize examples where it is an advantage to have sufficient friction.

Work, Simple Machines, and Compound Machines:

• Recognize that work is only done when the applied force on an object, and the direction of motion of the object, are both in the same direction;

• Be able to name several everyday items which can function as machines, and explain why they make work easier;

• Explain the ways in which machines are able to make work easier; • Determine the efficiency of a machine, given its work input and work output; • Calculate the Ideal Mechanical Advantage of an inclined plane; • Calculate the work (input and output) done by a simple machine; • Identify the different classes of levers; • Categorize different machines into similarity of how they work.

Power:

• Using the appropriate formula, determine the amount of power exerted in various situations, and compare which situations involve more power.

Conservation of Energy:

• Be familiar with the Law of Conservation of Energy and its ramifications for the work input and work output of a machine;

Page 4: Integrated Physics & Chemistry A Credit by Exam Review Sheet · 2013-04-11 · Integrated Physics & Chemistry A Credit by Exam Review Sheet This Credit by Exam Review Sheet can help

IPC A CBE/EA

Review Sheet

The University of Texas at Austin, Continuing and Innovative Education K-16 Education Center

4

• Recognize the types of energy conversions happening in given situations; • Calculate the kinetic energy of an object, using the appropriate formula; • Recognize the factors that affect the kinetic energy, mass, and velocity of an object; • Compare the gravitational potential energy of various objects, using the formula and the

mass and height of each object. Heat:

• Explain the direction of heat transfer; • Name the three types of heat transfer, describe their characteristic properties, describe the

difference between each, and recognize examples of each type in real-world situations; • Describe the difference between heat and temperature; • Recognize that the color of an object may determine the extent that object reflects or

absorbs radiation; • Recognize the difference between conductors and insulators, and give examples of each.

Harmonic Motion and Pendulums:

• Recognize what conditions and factors affect the harmonic motion of a pendulum, and of a mass on a spring;

• Calculate the period of a pendulum, or the period of a mass on a spring, using the appropriate formula;

• Compare and contrast the formulas for the period of a pendulum, and the period of a mass on a spring.

Waves:

• Know the speed of light, and use this value in the formula for the velocity of a wave, to determine the time the wave has traveled, or the distance it has traveled;

• Use the formula for the speed of a wave, determine the wave’s frequency, wavelength, or speed;

• Summarize the features of a wave, including crest, trough, wavelength, frequency, speed, and amplitude;

• Describe the behavior of waves, including reflection, refraction, diffraction, constructive interference, and destructive interference;

• Know the types of waves: electromagnetic and mechanical waves; • Recognize the difference between longitudinal and transverse waves.

Wave Applications:

• Determine the magnification of an object, using the appropriate formula; • Know the difference between a converging lens and a diverging lens, based on the

measurements of the lens at its middle and at its edges; • Describe the shape, and the effect on the path of light, of the following optical

instruments: convex lens, concave lens, convex mirror, concave mirror, and prism; • Know how to determine the necessary length of a full-length mirror based on a person’s

height; • Know how the pitch of a sound and the frequency of a sound are related; • Determine the perfect fourth and perfect fifth of a note, if given the frequency of the note; • Recognize the factors which determine the speed of sound;

Page 5: Integrated Physics & Chemistry A Credit by Exam Review Sheet · 2013-04-11 · Integrated Physics & Chemistry A Credit by Exam Review Sheet This Credit by Exam Review Sheet can help

IPC A CBE/EA

Review Sheet

The University of Texas at Austin, Continuing and Innovative Education K-16 Education Center

5

• Understand how sound in measured in decibels, and know how a change in decibel level relates to a change in pressure (or intensity) of the sound;

• Describe the different results obtained when primary colors are combined, in comparison to when primary dyes are combined;

• Know how primary colored lights combine/refract with each other and predict result. Sample Questions These sample questions will give you a better idea of the types of questions you can expect on the Credit by Exam. These questions are provided to illustrate the format of the exam. They are not the actual exam. In order to be successful on the exam, you must study and review the TEKS and the concepts previously listed. Multiple-Choice

1. A hiker walks 15 meters due north then 10 meters east, and finally, 15 meters south. What total distance has he walked from his original position?

A 0 meters B 15 meters C 30 meters D 40 meters

2. A car driving around a curve on an icy road slides off the pavement because of

A velocity. B friction. C inertia. D mass.

3. The direction of movement of thermal energy is always from

A conductors to insulators. B high kinetic energy to low kinetic energy. C warmer materials to cooler materials. D high density metals to low density metals

4. Light travels at a speed of 300 million meters per second. What is the length of a single wave of red light whose frequency is 4 x 1014 Hz?

A 7.5 x 10–7 m B 7.5 x 10–13 m C 1.2 x 1017 m D 1.2 x 1023 m

Page 6: Integrated Physics & Chemistry A Credit by Exam Review Sheet · 2013-04-11 · Integrated Physics & Chemistry A Credit by Exam Review Sheet This Credit by Exam Review Sheet can help

IPC A CBE/EA

Review Sheet

The University of Texas at Austin, Continuing and Innovative Education K-16 Education Center

6

5. José throws a rock upward at 14 m/s. It travels 10 m high and then falls back to Earth. What is the rock’s speed just as it hits the ground?

A 1 m/s B 4 m/s C 14 m/s D 20 m/s

Answer Key

Item Number Correct Answer TEKS expectation

TAKS objective

1 D 112.42(c)3D 5, 4(A) 2 C 112.42(c)4B 5, 4(B) 3 C 112.42(c)6B 5, 6(B) 4 A 112.42(c)5B 5, 5(B) 5 C 112.42(c)4A, B 5, 4(A), 4(B)

Page 7: Integrated Physics & Chemistry A Credit by Exam Review Sheet · 2013-04-11 · Integrated Physics & Chemistry A Credit by Exam Review Sheet This Credit by Exam Review Sheet can help

IPC A CBE/EA

Review Sheet

The University of Texas at Austin, Continuing and Innovative Education K-16 Education Center

7

Page 8: Integrated Physics & Chemistry A Credit by Exam Review Sheet · 2013-04-11 · Integrated Physics & Chemistry A Credit by Exam Review Sheet This Credit by Exam Review Sheet can help

IPC A CBE/EA

Review Sheet

The University of Texas at Austin, Continuing and Innovative Education K-16 Education Center

8