Institute of Water Resources Annual Technical Report FY 2001

44
Institute of Water Resources Annual Technical Report FY 2001 Introduction In fiscal year 2001, the Connecticut Institute of Water Resources continued to be administered by Dr. Glenn Warner, Director, and Dr. Patricia Bresnahan, Associate Director, both in the Department of Natural Resource Management and Engineering, in the College of Agriculture and Natural Resources at the University of Connecticut. While located at the University of Connecticut, Institute’s mission is to cooperate closely with all colleges and universities in the state to resolve state and regional water related problems, and provide a strong connection between water resource managers and the academic community. CT IWR responds to environmental issues in Connecticut through a statewide Advisory Board and through its involvement with state water resource committees. Membership reflects the main constituency groups for the Institute: government agencies, environmental groups, the water industry and academic researchers. Research Program Each year, the Connecticut Institute conducts a competitive RFP process to solicit proposals for funding under the USGS 104B program. Announcements are sent to every water resource related academic program in the state. Proposals received are sent out for peer review, and a further technical review is conducted by members of the CT IWR Advisory Board and others with relevant technical expertise. The Advisory Board then reviews the relevance of the proposals to state water research needs, and makes funding recommendations to the Institute Director. This year three research projects were selected for funding: Smets and Chandran: "Development of Predictive Tools to Infer Inhibition of Biological Nitrogen Removal at POTWs via Long Term Bench-Scale and Full-Scale Monitoring." Meyer: "A Characterization of the Discontinuous Nature of Kriging Digital Terrain Models." Robbins: "A Tracer Dilution Method for Deriving Fracture Properties in Crystalline Bedrock Wells."

Transcript of Institute of Water Resources Annual Technical Report FY 2001

Page 1: Institute of Water Resources Annual Technical Report FY 2001

Institute of Water Resources Annual Technical Report

FY 2001

IntroductionIn fiscal year 2001, the Connecticut Institute of Water Resources continued to be administered by Dr.Glenn Warner, Director, and Dr. Patricia Bresnahan, Associate Director, both in the Department ofNatural Resource Management and Engineering, in the College of Agriculture and Natural Resources atthe University of Connecticut.

While located at the University of Connecticut, Institute’s mission is to cooperate closely with all collegesand universities in the state to resolve state and regional water related problems, and provide a strongconnection between water resource managers and the academic community. CT IWR responds toenvironmental issues in Connecticut through a statewide Advisory Board and through its involvement withstate water resource committees. Membership reflects the main constituency groups for the Institute:government agencies, environmental groups, the water industry and academic researchers.

Research ProgramEach year, the Connecticut Institute conducts a competitive RFP process to solicit proposals for fundingunder the USGS 104B program. Announcements are sent to every water resource related academicprogram in the state. Proposals received are sent out for peer review, and a further technical review isconducted by members of the CT IWR Advisory Board and others with relevant technical expertise. TheAdvisory Board then reviews the relevance of the proposals to state water research needs, and makesfunding recommendations to the Institute Director.

This year three research projects were selected for funding:

Smets and Chandran: "Development of Predictive Tools to Infer Inhibition of Biological NitrogenRemoval at POTWs via Long Term Bench-Scale and Full-Scale Monitoring."

Meyer: "A Characterization of the Discontinuous Nature of Kriging Digital Terrain Models."

Robbins: "A Tracer Dilution Method for Deriving Fracture Properties in Crystalline Bedrock Wells."

Page 2: Institute of Water Resources Annual Technical Report FY 2001

Development of Predictive Tools to Infer Inhibition of BiologicalNitrogen Removal at POTWs vi Long Term Bench-Scale andFull-Scale Monitoring

Basic Information

Title:Development of Predictive Tools to Infer Inhibition of Biological Nitrogen Removalat POTWs vi Long Term Bench-Scale and Full-Scale Monitoring

Project Number: 2001CT621B

Start Date: 3/1/2001

End Date: 2/28/2002

Funding Source: 104B

Congressional District:

2nd

Research Category:

Not Applicable

Focus Category: Nitrate Contamination, Nutrients, Treatment

Descriptors:water quality, water chemistry, wastewater treatment, toxic substances wastewater,organic compounds, nutrients, nitrogen,denitrification eutrophication, biologicaltreatment, bacteria,activated sludge

Principal Investigators:

Barth Smets, Kartik Chandran

Publication

1. Hu, Z., K. Chandran, D. Grasso and B. F. Smets. 2002. "A comparative study of nitrificationinhibition by heavy metals: the influence of metal exposure time on biological effect." in 8th AnnualIndustrial Waste Technical and Regulatory Conference, Atlanta City, NJ.

2. Chandran, K., Hu, Z, and B. F. Smets 2001. "Optimal Experimental Design for Estimating Ammoniaand Nitrite Oxidation Biokinetics from Batch Respirograms". in 74th Annual Water EnvironmentFederation Conference, 2001. Atlanta, GA.

3. Hu, Z, Chandran, K., B. F. Smets and Grasso, D 2001. "Evaluation of Nitrification Inhibition byHeavy Metals Nickel and Zinc". in 74th Annual Water Environment Federation Conference, 2001.Atlanta, GA.

4. Hu, Z. 2002. "Nitrification inhibition by heavy metals and chelating agents." PhD. Dissertation,University of Connecticut, Storrs, CT.

5. Hu, Z., K. Chandran, D. Grasso, and B. F. Smets. 2002. Effect of nickel and cadmium speciation onnitrification inhibition. Environmental Science and Technology 36:3074-3078.

Page 3: Institute of Water Resources Annual Technical Report FY 2001

6. Hu, Z., K. Chandran, D. Grasso, and B. F. Smets. 2003. Impact of metal sorption and internalizationon nitrification inhibition. Environmental Science and Technology 37:728-734.

7. Hu, Z., K. Chandran, D. Grasso, and B. F. Smets. 2003. Nitrification inhibition byethylenediamine-based chelating agents. Environmental Engineering Science:Accepted for Publication.

8. Hu, Z., K. Chandran, D. Grasso, and B. F. Smets. 2003. Comparison of nitrification inhibition bymetals in batch and continuous flow reactors. Water Research: In Preparation.

Page 4: Institute of Water Resources Annual Technical Report FY 2001

Title: Development of Predictive Tools to Infer Inhibition of Biological Nitrogen Removal at POTWs via

Long Term Bench Scale and Full Scale Monitoring

Statement of Critical Regional of State Water Problem. The Long Island Sound , bordered by Long Island, Connecticut, and New York, is a vast recreational (e.g., boating) and economical (e.g., fish and shell fish harvesting, navigation) resource. Unfortunately, the Sound’s ecosystem continues to be under tremendous stress, jeopardizing its current uses for the future. Although the reasons for the Sound’s fragile ecosystem health are manifold, nutrient discharge in the Sound, especially nitrogen, is generally recognized as a key contributor to ecosystem deterioration [1]. Publicly owned treatment works (POTWs) in Connecticut and New York present major point sources for nitrogen loads that can enter the local watershed and the Sound, resulting in hypoxic conditions in the Sound during late summers [2]. The Long Island Sound Comprehensive Conservation Management Plan requires that both Connecticut and New York reduce their nitrogen discharges to Long Island Sound by 58.5 % [1]. In an attempt to meet these new regulations, the Environmental Protection Agencies of Connecticut and New York are investing multi-million dollar amounts to upgrade wastewater treatment plants for biological nitrogen removal (BNR) with the aim of improving water quality in the Long Island Sound. Unfortunately, many POTWs that have already installed these BNR processes are experiencing intermittent and extended periods when there is a loss of either nitrification or denitrification [2]. Not only does this result in permit violations for the municipality, but also in high total nitrogen discharges to Long Island Sound. In order to insure that the water quality in Long Island Sound is improved and to protect this major investment, it is vital to understand and identify the cause of failures of BNR processes and to identify the factors preventing individual treatment plants from establishing BNR. The goal of the proposed research is to provide this critical information to regulatory and policy setting agencies in the states of NY and CT as well as to the professionals responsible for the treatment of domestic and industrial waste streams in these two Long Island Sound bordering states. Statement of Research Results or Benefit. The primary focus of this research is to identify the causes of poor biological nitrogen removal (BNR) in POTWs. This research will compliment an ongoing study on nitrification inhibition study to help identify determinants of N-removal failure at POTWs due to process control deficiencies and waste stream characteristics (Inhibition of Biological Nitrogen Removal: Microbiology, Physical Chemistry and Process Engineering, by B. F. Smets, D. Grasso, and J. Semon-Brown, March 1999-March 2001). Driven by an exhaustive literature review, and the results of the ongoing study, we have implicated nitrification, the biochemical oxidation of ammonium-N to nitrate-N, as the bottleneck in BNR. This study will permit the validation of developed assays to rapidly measure the kinetics of the nitrification reaction using mixed liquor from a full-scale treatment plant. Part of this validation will entail a comparison of measured kinetics with observed reactor performance of bench-scale and full-scale BNR reactors across several seasons. Validation of the developed nitrification kinetics assay will yield a rapid tool to measure kinetics of the appropriate BNR rate-limiting step in full-scale POTWs, hitherto not available. In addition, this study will permit the validation of several analytical assays that are currently being developed to identify and quantify the presence of possible nitrification inhibitors in the complex reactor influents (raw domestic wastewaters) to full scale POTWs. These assays are geared towards measuring total heavy metal content, total cationic surfactant content, and total chelating agent content of a wastewater, expressed in terms of an appropriate normalizing equivalent. Such rapid tools will prove invaluable for rapid and intermittent screening of wastewaters to assess inhibitory character. Both kinetic and inhibitor quantification assays will be developed for transfer to wide use by POTWs across the state and region to rapidly identify and mitigate BNR inhibition.

Nature, Scope & Objective of Research. Under a LISS funded program, the University of Connecticut and the City of Stamford Water Pollution Control Authority (WPCA) are examining the contributions of process engineering (hydraulics, aeration, carbon and nutrient limitation), microbiology (kinetics and stoichiometry) and physical chemistry (nitrogen speciation, availability and matrix chemistry) to BNR limitation (Inhibition of Biological Nitrogen Removal: Microbiology, Physical Chemistry and Process

Page 5: Institute of Water Resources Annual Technical Report FY 2001

Engineering, by B. F. Smets, D. Grasso, and J. Semon-Brown, March 1999-March 2001). One of the primary objectives of that study is to develop predictive analytical and numerical tools that permit a rapid evaluation of BNR limitation. Consequently, with bench-scale nitrifying reactors at the University of Connecticut, fed with a defined inorganic medium, we are studying reactor performance and nitrification kinetics under undisturbed operation and in response to system perturbations, such as a transient load of toxic chemicals. We have developed and optimized batch respirometric assays to measure nitrification biokinetics from continuously operated bench-scale nitrifying reactors at the University of Connecticut [3, 4]. In addition, we are conducting shock load tests to the nitrifying reactors at UCONN to validate the biokinetic assays as rapid indicators of nitrification inhibition. Further, to enable examination of the complex dynamics of different microbial populations and substrates in actual wastewater treatment bioreactors and varying influent conditions and biocatalyst activity, we propose to monitor nitrogen removal in full-scale and bench-scale activated sludge bioreactor treating actual wastewater. Nitrification, the first requisite step in BNR, is predominantly catalyzed by autotrophic bacteria and involves the oxidation of ammonium-nitrogen (NH4

+-N) to nitrite-nitrogen (NO2--N) and nitrate-nitrogen

(NO3--N) [5]. Denitrification, the second requisite step in BNR, is primarily mediated by heterotrophic

bacteria, which biochemically reduce ionic nitrogen oxides such as NO3--N and NO2

--N to gaseous nitric oxide (NO), nitrous oxide (N2O) and nitrogen (N2) and sometimes even to NH4

+-N under extremely anaerobic conditions [6]. Due to their different substrate requirements, (e.g., nitrification requires a minimum O2 : NH4

+-N ratio of around 4.3, minimum alkalinity (as CaCO3) : NH4+-N ratio of around 8.6

and denitrification requires a minimum COD : NO3--N ratio of approximately 2.9), the presence and

growth of nitrifying and denitrifying bacteria depends somewhat on wastewater composition. BNR can be promoted by engineering reactors to ensure robust nitrifying and denitrifying populations. For instance, a commonly used Modified LÜdzack Etinger (MLE) configuration for BNR consists of an anoxic reactor for denitrification fed with influent carbon and recirculating NO3

--N from a downstream aerobic nitrification reactor [7]. The effect of process engineering on BNR efficacy can be evaluated and optimized based on certain key indicator stoichiometric ratios. As part of the ongoing project, we developed stoichiometric ratios that will permit a ready evaluation of different causes for the limitation of biological nitrogen removal. While some indicator ratios are either based on the wastewater composition, others arise from the design and operation of the biological nitrogen removal reactor (Tables 1-2). The effect of a range of the indicator stoichiometric ratios was evaluated by performing simulations of a Modified LÜdzak Ettinger process using BIOWIN 32 (EnviroSim Associates, Flamborough, Canada) using default model parameters and wastewater composition.

Table 1 : Indicator stoichiometric ratios based on wastewater composition

Ratio (units) Ratio describes

sCOD/NO3--N (mg sCOD/mg NO3

--N) Effect of influent soluble COD on denitrification

Salk/NH3-N

(mg HCO3- alkalinity/mg NH3-N oxidized to

NO3--N)

Effect of influent alkalinity on nitrification

fna (mg NH3-N/mg tTKN) Effect of nitrogen availability on nitrification

Table 2 : Indicator stoichiometric ratios based on process operation

Ratio (units) Ratio describes

Page 6: Institute of Water Resources Annual Technical Report FY 2001

2,

2

OK

O

AO + (mg O2/mg O2)

Effect of dissolved oxygen concentration in the aerobic zone on nitrification

�C, /�C,minimum

(Aerobic SRT provided/Minimum aerobic SRT required for nitrification)

Effect of reactor sizing on nitrification

fna (mg NO3--N produced/mg NH3-N

oxidized) Extent of nitrification under uninhibited or peak operation

It is commonly believed that nitrification is the bottleneck in BNR due to the slow growth kinetics and high susceptibility of nitrifying bacteria to numerous environmental disturbances [8]. Because of the inherent variability of wastewater composition and the dynamics of microbial communities, it is critical to develop tools to measure the activity of that fraction repeatedly, thereby necessitating an easy, rapid, yet accurate assay for routine monitoring. Further, in the same context, there is also a need for tools to rapidly screen a wastewater for potential inhibitors.

��Under the purview of the ongoing BNR limitation study, we have optimized a rapid respirometric nitrification assay to yield nitrification kinetic parameter estimates in a continuously operated bench-scale reactor containing an enriched nitrifying consortium [3, 4]. The developed assay relies on automated measurements of stoichiometric oxygen consumption in response to oxidation of a transient ammonia or nitrite spike. The resulting oxygen uptake profile is fit to Monod-based kinetic expressions to determine the respective kinetic constants qmax (maximum specific substrate consumption rate, 1/time) and KS (half saturation coefficient, mg-N/L) [3, 4]. In the proposed study, we will validate application of the batch respirometric assay to measuring nitrification kinetics in a full-scale BNR reactor treating actual domestic and industrial wastewater, across a wide range of seasonal, wastewater composition and biocatalyst activity dynamics, during a prolonged monitoring campaign.

��In addition, we will develop rapid screening tools to measure wastewater composition and correlate bulk composition measures to nitrification inhibition. Initially, we will focus on metals (cadmium, zinc, nickel and copper, moderate to high toxicity to nitrifying microorganisms [5]), metal binding agents (EDTA, CDTA, NTA, high susceptibility of copper cofactor based ammonia monooxygenase due to copper non-availability [9, 10]), anionic surfactants (sodium lauryl sulfate, found in influent to the Stamford WPCA, Operations Management Inc., New Haven , CT, Personal Communication). The inhibitory character of several classes of compounds will be related to bulk measurable properties using artificial neural networks (ANN). (See Section 13 for details). During the next few months, prior to the start of the monitoring study, we will optimize and validate the bulk chemical characterization tool in an synthetic matrix, such as the cultivation medium for nitrifying bacteria [11]. Subsequently, a more stringent assessment will be conducted using the primary effluent to the treatment train at the Stamford WPCA, subject to the seasonal changes in wastewater composition.

Methods, procedures, and facilities

Respirometric Assay to Measure of Nitrification Kinetics . The kinetics of nitrification and nitrification inhibition will be measured using an extant respirometric assay developed in our laboratories [3, 4]. The developed assay measures the kinetics of nitrification exhibited by biomass derived from a continuously operated nitrifying enrichment culture [12]. The developed respirometric technique is based on stoichiometric consumption of oxygen in response to ammonia and nitrite oxidation [13]. In contrast to nitrification kinetic assays that depend on analytically involved and chemical-specific time-series measurement of nitrogen depletion (for e.g.,[14, 15]), the respirometric is rapid, reproducible and facile since oxygen measurements can be accurately performed and can be fully automated. An additional

Page 7: Institute of Water Resources Annual Technical Report FY 2001

feature of this method is that it allows distinction in activity of ammonia oxidizing and nitrite oxidizing microorganisms from a mixed nitrifying culture [12]. We are currently applying this technique to determine nitrification kinetics during undisturbed operation and during an imposed disturbance (Figs 1 and 2). Reactor dynamics as measured by effluent concentrations (Fig 1) are strongly correlated with measured kinetic estimates (Fig. 2, SOUR is a measure of maximum NH4

+-N and NO2--N oxidation capacity) : an

SOUR increase in SOUR is accompanied by a decrease in effluent NH4+-N concentrations.

0

5

1015

20

25

30

3540

45

50

7/13 8/2 8/22 9/11 10/1 10/21 11/10

Date

NH

4+ -N

, mg

/l

0

50

100

150

200

250

300

350

400

NO

3- -N (

mg

/L)

Figure 1 : Performance Profiles for Bench Scale Nitrifying Reactor. ( ) : NH4+-N concentrations and (O) : NO3

--N concentrations.

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

0.220

7/13 8/2 8/22 9/11 10/1 10/21 11/10

Date

SO

UR

(l/h

)

Figure 2 : Biokinetics Profiles for Bench Scale Nitrifying Reactor. ( ) : NH4+-N oxidation rate and (O) : specific NO2

--N oxidation rate.

Page 8: Institute of Water Resources Annual Technical Report FY 2001

In addition, we have demonstrated in our laboratory that the proposed assay even permits determination of ammonia and nitrite oxidation kinetics estimates using actual activated sludge samples from a POTW, which contains a variety of microbial groups. We have optimized the developed respirometric assay to yield nitrification kinetic parameter estimates in a continuously operated reactor containing an enriched nitrifying consortium. In addition, in the proposed study, we will validate the method for activated sludge BNR reactors using an ASM2 model based simulation package (BIOWIN, EnviroSim Asoociates Inc. Flamborough, Ontario, Canada) by evaluating the congruence of kinetic estimates against observed reactor performance.

Chemical analtyical MEASURES OF Nitrification Inhibitory character. We propose to develop quantitative structure-activity relationships (QSARs) that are based on measurable bulk properties of a wastewater sample, (e.g., for metal binding capacity (chelating agents) surface active properties like critical micelle concentration (surfactants), anion binding capacity (metal ions)). Different bulk characteristics will be developed to measure the presence of the above chemical classes in wastewater. The inhibitory action of heavy metals is due to interaction with enzymes containing thiol groups and formation of metal sulfide complexes [16]. The metal content of a wastewater matrix will be determined by titrating against excess sulfide (in an anoxic environment) and measuring remaining sulfide concentrations. The bulk measure of heavy metal content will be expressed in terms of a lumped metal-sulfide solubility product of the constituent metal-sulfide solubility product (Table 3).

Table 3 : Solubility Products of Metal Sulfides [17]

Metal Log Solubility Product

Cadmium -26.1

Zinc -23.8 (��� -21.6 (��

Nickel -18.5 (��� -24 (��� -25.7 (��

Copper -47.6

Some metal chelating agents are postulated to function by rendering copper, (part of the ammonia monooxygenase cofactor) unavailable [10]. The presence of chelating agents in wastewater will be tested by titrating against copper or an alternate heavy metal (to be ascertained and optimized) and measuring residual ionic free concentration using ion selective electrodes. The bulk measure of chelator content will be expressed as an effective stability constant(s) for the metal-chelator complex, based on individual chelator-metal stability constants (Table 4).

Table 4 : Log Stability Constants for Chelator-Metal Complexes [18]

EDTA CDTA NTA Chelator

Metal

Ba2+ 7.76 7.99 4.82

Ca2+ 10.7 12.5 6.41

Mg2+ 8.69 10.32 5.41

Zn2+ 16.26 18.67 10.45

The toxicity of cationic surfactants has been expressed in terms of their individual critical micelle concentrations (CMC) [19]. A similar approach will be followed for anionic surfactants. The bulk measure for the presence of surface active agents will be the ratio of the total surfactant concentration to the bulk CMC (via contact angle measurements).

Page 9: Institute of Water Resources Annual Technical Report FY 2001

The inhibitory character of several classes of compounds will be related to bulk measurable properties using artificial neural networks (ANN). The ANN will be trained using toxicity-property data obtained from batch biokinetic tests. The ANN QSAR model will be validated and verified by its ability to predict the toxicity due to mixture of different classes of compounds and an untested wastewater matrix.

We believe that our approach is superior to existing QSAR models, which are restricted to classification of organic compounds in terms of their homologous series, for e.g., alcohols, halogenated aliphatics, alkanes, aromatics etc (for e.g., [20]). While such a simplified classification is adequate for deterministic toxicity modeling of a well defined waste-stream, it is of limited application when dealing with a typical wastewater sample, wherein the constituent classes of compounds are unknown.

Operation of Bench-Scale BNR Reactors. To verify proposed measurement techniques, two bench scale bioreactors initiated during our current Long Island Research Foundation funded study, will be operated in parallel at the Stamford WPCA. The bioreactors have an operating volume of 40L, and a flow rate of 10 gallons per day. The reactors consist of one anoxic basin followed by three aerated basins, followed by an internal clarifier and were constructed at the Technical Services Center, University of Connecticut. These reactors will be operated under identical HRT, SRT, aeration and mixing regimes as the full-scale treatment WPCA (i.e. as a Modified LÜdzack Ettinger configuration). The bench-scale reactor operation was commenced in October 2000 on a side stream of the actual Stamford POTW wastewater influent. Once established, baseline nitrification and denitrification performance and kinetics in each of these reactors -operated in tandem- will be measured using chemical specific assays (Details can be found in Table 5) [21] and respirometric assays, respectively [3, 4].

Table 5 : Sampling Specifications for Bench-scale Reactors at Stamford WPCA

Measurement

Classification

Sample Location

Sample Preservation

Maximum Holding Time

(Days)

Name of Chemical or Method

Type Frequency

(1/d)

Sample Equipment

pH (Bench scale Reactor ) C Not applicable Not applicable Reactor NA None, online

Chemical Oxygen Demand :

Colorimetric

I, C 2/7 d 35 ml glass vial Reactor 4oC 1

NH3-N

Colorimetric

I, C 2/7 d 200 ml glass beaker Reactor effluent

4oCΨ 1

NO2--N

Colorimetric

I, C 2/7 d 200 ml glass beaker Reactor effluent

4oCΨ 2

NO3--N

Colorimetric

I, C 2/7 d 200 ml glass beaker Reactor effluent

H2SO4, pH < 2 28

TKN

Colorimetric

I,C 2/7 d 200 ml glass beaker Reactor effluent

H2SO4, pH < 2 28

Biomass concentration (Mixed liquor suspended solids)

I, C 2/7 d 500 ml Erlenmeyer flask

Reactor 4oC 1

Biomass concentration (Mixed liquor volatile suspended solids)

I,C 2/7 d 500 ml Erlenmeyer flask

Reactor 4oC 1

Nitrification kinetics

(Extant Respirometry)

I As required 100 ml respirometric vessel

Reactor 4oC 1

Dissolved oxygen (Bench scale Reactor)

C Not applicable Bench scale Reactor Reactor NA None, Online

*: The tabulated sample volume is twice that required for routine duplicate analysis and is apportioned into two sample containers. The additional volume is collected to determine quality control measures such as accuracy (analysis of spiked samples), precision (duplicate analysis) and to account for potential sample loss while handling or analysis. (Also see section 1.7.5) C : continuous measurement; I : intermittent measurement; Frequency of measurement applies only to continuous measurements Ψ : Storage at 4oC. However, the biomass is removed from the sample via centrifugation at 3500 g for 10 minutes. Biomass removal arrests further biochemical oxidation of NH4

+-N and NO2--N.

NA : Not applicable

Page 10: Institute of Water Resources Annual Technical Report FY 2001

** : Performed at the Universi ty of Connecticut Frequency of measurement applies only to continuous measurements

Subsequently, one reactor will be subjected to different levels of a disturbance, (e.g. selected inhibitors will be added to the influent at several concentrations). Initially, we will choose anionic surfactants, such as sodium lauryl sulfate, since these have resulted in significant nitrification inhibition in POTWs in Stamford [2] and metal chelating agents (high susceptibility of metal cofactor based ammonia monooxygenase enzyme to compounds such as allylthiourea [9, 10]). In addition, as part of a parallel research investigation on heavy metal inhibition of nitrification, the bench-scale reactors will be dosed with nickel, copper, zinc and cadmium. During the imposed process disturbance, the BNR performance will be recorded. In addition, the proposed surrogate chemical measure of inhibitory character and biokinetics of nitrification and denitrification will be measured. The measured biokinetics will be input into the ASM2 model structure of BIOWIN. The biokinetics and surrogate chemical measurement techniques will be confirmed by comparing measured nitrogen removal performance with that simulated by BIOWIN. In the validation study, known nitrification inhibitors (e.g., metals, surfactants, metal chelators, and other compounds likely to occur in sewage waste streams) will selectively be added to one of the bench scale reactors. The ability to predict the effect of these inhibitors on nitrification kinetics via the bulk chemical measurements and developed QSARs will be assessed, while the kinetic assays will be verified to predict deterioriating reactor process performance prior to onset of reactor failure.

Evaluation of Full-Scale BNR performance. The treatment train at the Stamford Water Pollution Control Authority consists of two series of 2.46 million gallons volumetric capacity each. The total influent flow (average 20 million gallons per day) is equally split between the two trains. Each train consists of the equivalent of one anoxic and three aerobic reactors of 0.615 million gallons each. While bench scale testing is ongoing, the treatment train of the full scale Stamford POTW will be periodically sampled and analyzed (Details can be found in Table 6).

Table 6 : Sampling Specifications for Full-Scale Treatment Train at Stamford WPCA

Measurement

Classification

Sample Volume

(ml)

Sample Preservation

Maximum Holding Time

(Days)

Name of Chemical or Method

Type Frequency

(1/d)

Sample Equipment

Sample Location

pH C 8 1 L polypropylene bottle

1-5 10 Not applicable Within 15 min of sampling

Chemical Oxygen Demand – Colorimetric

C 8 1 L polypropylene bottle

1-5 1000 4oC 7

NH3-N

Colorimetric

C,G 8,1 1 L polypropylene bottle

1-5 100 4oCΨ 1

NO2--N

Colorimetric

C,G 8,1 1 L polypropylene bottle

1-5 100 4oCΨ 2

NO3--N

Colorimetric

C,G 8,1 1 L polypropylene bottle

1-5 100 H2SO4,

pH < 2

28

Soluble TKN

Colorimetric

C,G 8,1 1 L polypropylene bottle

1-5 100 H2SO4,

pH < 2

28

Biomass concentration

Total suspended solids

C,G 8,1 1 L polypropylene bottle

1-5 1000 4oC 7

Nitrification Kinetics (Extant Respirometry)

C As required 1 L polypropylene bottle

2-5 200 4oC 1

Biomass concentration

Volatile suspended solids

C,G 8 1 L polypropylene bottle

1-5 1000 4oC 7

Page 11: Institute of Water Resources Annual Technical Report FY 2001

Sample Location (See Figure 3) : 1 - influent, 2 - primary effluent, 3 - final effluent, 4 and 4’ - anoxic tank (trains 1 and 2), 5 and 5’- aerobic tank 3 (trains 1 and 2) * : Conducted at the University of Connecticut C : composite samples are flow weighted samples composed of grab samples obtained every 3 h. Four composite samples are taken every week. G : Grab sample Ψ : Storage at 4oC. However, the biomass is removed from the sample via centrifugation at 3500 g for 10 minutes. Biomass removal arrests further biochemical oxidation of NH4

+-N and NO2--N.

Flow proportioned composite samples will consist of samples taken every three hours over a twenty four hour period by plant operators. The average dynamics of nitrogen removal will be based on analysis of the flow proportioned composite samples. Grab sampling will also be performed to determine time-varying dynamics of biological nitrogen removal. By periodic sampling and nitrification kinetics testing, the baseline kinetics will be determined. Trends and variability in kinetic parameter estimates for the Monod constants describing nitrification and denitrification will be ascertained and input to the simulation and modeling package BIOWIN. The model performance output will be correlated to actual measured performance. In addition, we will conduct retrospective sampling, wherein samples taken during episodes of nitrogen removal failure will be subject to the bulk chemical parameter characterization and inhibition kinetics estimation. This sampling effort will assist in the validation of the bulk measurements, QSARs, and the kinetic assays.

Facilities. For conducting the periodic assays required in this study, facilities available in the Environmental Processes Laboratory at the University of Connecticut include : Batch respirometric station for kinetics measurement, Biological dissolved oxygen Monitor (YSI model 5300), Clark type polarographic dissolved oxygen probes (YSI model 5331), glass jacketed respirometric vessels, constant temperature controller and circulator (Fisher Isotemp 9501), Hach COD Digester (COD Reactor Model 45600), high speed centrifuges (Marathon 22KBR and Sorvall RC-5C+), fixed wavelength spectrophotometer (Spectronic 20+ and 20D+), High performance liquid chromatograph station (Jasco Instruments), Ion chromatograph station (Dionex, Model A500), Perkin Elmer CHNSO analyzer (Series II, Model 2400), Ion specific electrodes for nitrate (Hach) and copper (Orion), gas sensing ammonia electrode (HNU systems).

At the Stamford WPCA, are available a COD (Hach) and nutrients analysis station (SKALAR) and a respirometric station identical to the one at the University of Connecticut. The personnel at Stamford have already been introduced to the extant respirometric technique for measuring nitrification kinetics via a workshop held at the University of Connecticut in August, 2000. Both respirometers at the University of Connecticut and Stamford will be used to monitor nitrification kinetics.

Related Research. The demand for nutrient removal, especially nitrogen, from wastewaters has been a demand placed on publicly and privately owned treatment works for over a decade. The general process engineering requirements to attain nitrogen removal via the concerted activities of nitrification and denitrification are well documented and implemented [7]. Nevertheless, even with apparent adequate process engineering in place, nitrogen removal is often unreliable1. Although some site-specific assessment of nitrification and/or denitrification kinetics limitations continue to be performed [22-24], design of such studies permit little generalization. On the other hand, several researchers have studied in great detail the kinetics and inhibition of nitrification in pure culture and clean matrices [9, 10, 25-34]. These studies, although of significant inherent scientific value, are of limited relevance to situations of interest that involve complex matrices and mixed microbial activities. Our kinetic assays [3, 4] are similar to, and compete with similar assays that have been designed by researchers overseas [35-41]; our assays to measure bulk inhibitory character of wastewaters are truly novel. Hence, we believe that our study, commenced with funding from the LISS program, is truly on the forefront for the development of predictive tools to assess nitrogen removal from wastewater in treatment facilities. Our study combines a strong scientific based method development with a full-scale real-world evaluation of our methodology.

• 1 &KDQGUDQ� .�� DQG %� )� 6PHWV� ����� ´)DFWRUV /LPLWLQJ %LRORJLFDO 1LWURJHQ 5HPRYDO � 1LWULILFDWLRQ ,QKLELWLRQ DQG 1LWURJHQ $YDLODELOLW\µ� 1HZ

(QJODQG :DWHU (QYLURQPHQW $VVRFLDWLRQ �1(:($� 7HFKQLFDO 6SHFLDOW\ 6HPLQDU RQ %LRORJLFDO 1XWULHQW 5HPRYDO LQ 1HZ (QJODQG� 6WRUUV� &7�

Page 12: Institute of Water Resources Annual Technical Report FY 2001

Principal Results and Significance

Chemical analtyical MEASURES OF Nitrification Inhibitory character We are developing a rapid assay to determine the total concentration of heavy metal cations in a wastewater. The heavy metal cations are precipitated as metal sulfides by titrating the wastewater sample with sodium sulfide. We quantify the total concentration of metal cations in the wastewater sample by measuring sulfide consumption during the assay. We have calibrated the bulk metal assay to measure heavy metal concentrations using metal solutions in a deionized water matrix at pH 7.0. We are currently verifying the developed method in the feed medium to nitrifying bench-scale reactors. Subsequent verification will employ primary clarifier effluent at the Stamford WPCA as the test matrix. Following calibration and verification, we will apply test heavy metal solutions to both the bulk metal assay and the nitrification biokinetic assay and correlate the measured total heavy metal concentration to calculated heavy metal speciation and measured nitrification inhibition. Operation of Bench-Scale BNR Reactors Fabrication of the bench-scale reactors to be installed at the Stamford WPCA was performed by the University of Connecticut Technical Services Center and completed in March 2001. Bench-scale operation at Stamford is expected to commence during June 2001. Upon installation at the Stamford WPCA, the reactors will be seeded with biomass from the full-scale reactors at the same facility. Continuous monitoring of reactor performance and kinetics to infer biological nitrogen removal performance and BNR inhibition will commence after the reactors attain steady state performance. Evaluation of Full-Scale BNR performance Continuous monitoring of the full-scale reactors at Stamford commenced on November 6, 2001 and is being conducted in accordance with the schedule and particulars described in the monitoring proposal. Full-scale reactor monitoring will continue through November 2001 to enable collection of pertinent data across a wide range of seasonal, wastewater composition and biocatalyst activity dynamics. Project Personnel Supported Kartik Chandran Ph.D., Post Doctoral Fellow, Environmental Engineering Program, University of Connecticut. Monika Siwek, Undergraduate student, Microbiology Program, University of Connecticut. Wojciech Krach, Undergraduate student, Environmental Engineering Program, University of Connecticut.

Literature Cited

1. USEPA, Long Island Sound Study. Phase III Actions for Hypoxia Management. EPA 902-98-R-002, . 1998, EPA Long Island Sound Office: Stamford, CT; Stony Brook, NY.

2. Johnson, G., A Sound Solution. Water Environment and Technology, 1999(July): p. 47-51.

3. Chandran, K. and B.F. Smets, Single Step Nitrification Models erroneously describe batch ammonia oxidation profiles when nitrite oxidation becomes rate limiting. Biotechnology & Bioengineering, 2000. 68(4): p. 396-406.

4. Chandran, K. and B.F. Smets, Applicability of two-step models in estimating nitrification kinetics from batch respirograms under different relative dynamics of ammonia and nitrite oxidation. Biotechnology and Bioengineering, 2000. 70(1): p. 54-64.

5. Sharma, B. and R.C. Ahlert, Nitirification and Nitrogen Removal. Water Research, 1977. 11: p. 897-925.

6. Knowles, R., Denitrification. Microbiological Reviews, 1982. 46(1): p. 43-70.

7. Grady, C.P.L.J., G.T. Daigger, and H.C. Lim, Biological Wastewater Treatment. 2 ed. Environmental Science and Pollution Control Series. 1999, New York: Marcel Dekker.

8. Blum, D.J.W. and R.E. Speece, A Database of Chemical Toxicity to Environmental Bacteria and its use in Interspecies Comparisions and Correlations. Research Journal of the Water Pollution Control Federation, 1991. 63(3): p. 198-207.

9. Bedard, C. and R. Knowles, Physiology, Biochemistry and Specific Inhibitors of CH4, NH4+ and CO Oxidation by

Methanotrophs and Nitrifiers. Microbiological Reviews, 1989. 53(1): p. 68-84.

Page 13: Institute of Water Resources Annual Technical Report FY 2001

10. Hooper, A.B. and K.R. Terry, Specific Inhibitors of Ammonia Oxidation in Nitrosomonas. Journal of Bacteriology, 1973. 115(2): p. 480-485.

11. Hockenbury, M.R. and C.P.L.J. Grady, Inhibition of Nitrification - Effects of Selected Organic Compounds. Journal of the Water Pollution Control Federation, 1977: p. 768-777.

12. Chandran, K., Biokinetic Characterization of Ammonia and Nitrite Oxidation by a Mixed Nitrifying Culture using Extant Respirometry. Ph. D. Thesis, . 1999, University of Connecticut: Storrs.

13. Ellis, T.G., et al., Respirometric Technique for Determination of Extant Kinetic Parameters Describing Biodegradation. Water Environment Research, 1996. 68(5): p. 917-926.

14. Gee, C.S., M.T. Suidan, and J.T. Pfeffer, Modeling of Nitrification under Substrate-Inhibiting Conditions. Journal of Environmental Engineering, 1990. 116(1): p. 18-31.

15. Mauret, M., et al., Application of Experimental Research Methodology to the Study of Nitrification in Mixed Culture. Water Science and Technology, 1996. 34(1-2): p. 245-252.

16. Hugo, W.B., Disinfection Mechanisms, in Principles and Practice of Disinfection, Preservation and Sterilization, A.D. Russel, W.B. Hugo, and G.A.J. Ayliffe, Editors. 1992, Blackwell Scientific Publications: Oxford.

17. Dean, J.A., ed. Lange's Handbook of Chemistry. 13 ed. . 1985, McGraw-Hill Book Company: New York, NY.

18. Hugo, W.B. and A.D. Russell, Types of Antimicrobial Agents, in Principles and Practice of Disinfection, Preservation adn Sterilization, A.D. Russell, W.B. Hugo, and G.A.J. Ayliffe, Editors. 1992, Blackwell Scientific Publications: Oxford.

19. Weiner, N.D., F. Hart, and G. Zografi, Application of the Feruson Principle to the Antimicrobial Activity of Quarternary Ammonium Salts. Journal of Pharmacy and Pharmacology, 1965. 17: p. 350-355.

20. Nirmalakhandan, N., et al., Structure- and Property- Activity Relationship Models for Prediction of Microbial Toxicity of Organic Chemicals to Activated Sludge. Ecotoxicology and Environmental Safety, 1998. 39: p. 112-119.

21. Eaton, A.D., L.S. Clesceri, and A.E. Greenberg, eds. Standard Methods for the Examination of Water and Wastewater. 19 ed. . 1995, APHA, AWWA and WEF: Washington DC.

22. Fillos, J., et al. Determination of Nitrifier Growth Rates at NYC Water Pollution Control Plants. in WEFTEC 2000. 2000. Anaheim, CA.

23. Kaempfer, H., et al. Calibration and Verification of a Biological Nutirent Removal for a High Strength Wastewater. in WEFTEC 1999. 1999. New Orleans, LA.

24. Stensel, H.D. and G. Horne. Evaluation of Denitrification Kinetics at Wastewater Treatment Facilities. in WEFTEC 2000. 2000. Anaheim, CA.

25. Alleman, J.E. Respiration-Based Evaluation of Nitrification Inhibition using Enriched Nitrosomonas Cultures. in International Conference on Innovative Biological Treatment of Toxic Wastewaters. 1986. Arlington, VA.

26. Alleman, J.E., V. Keramida, and L.P. Kiser, Light Induced Nitrosomonas Inhibition. Water Research, 1987. 21(4): p. 499-501.

27. Hyman, M.R., I.B. Murton, and D.J. Arp, Interaction of Ammonia Monooxygenase from Nitrosomonas europaea with Alkanes, Alkenes and Alkynes. Applied and Environmental Microbiology, 1988. 54(12): p. 3187-3190.

28. Iizumi, T., M. Maizumoto, and K. Nakamura, A Bioluminiscence Assay Using Nitrosomonas europaea for Rapid and Sensitive Detection of Nitrification Inhibitors. Applied and Environmental Microbiology, 1998. 64(10): p. 3656-3662.

29. Loveless, J.E. and H.A. Painter, The Influence of Metal Ion Concentration and pH Value on the Growth of a Nitrosomonas Strain Isolated from Activated Sludge. Journal of General Microbiology, 1968. 52: p. 1-14.

30. Neufeld, R.D., A.J. Hill, and D.O. Adekoya, Phenol and Free Ammonia Inhibtion to Nitrosomonas Activity. Water Research, 1980. 14: p. 1695-1703.

31. Stein, L.Y. and D.J. Arp, Loss of Ammonia Monooxygenase Activity in Nitrosomonas europaea upon Exposure to Nitrite. Applied and Envionmental Microbiology, 1998. 64(10): p. 4098-4102.

32. Hyman, M.R., C.Y. Kim, and D.J. Arp, Inhibition of Ammonia monooxygenase in Nitrosomonas europaea by Carbon Disulfide. Journal of Bacteriology, 1990. 172: p. 4775-4782.

33. Logan, M.S.P., C. Balny, and A.B. Hooper, Reaction with Cyanide of Hydroxylamine Oxidoreductase of Nitrosomonas europaea. Biochemistry, 1995. 34: p. 9028-9037.

Page 14: Institute of Water Resources Annual Technical Report FY 2001

34. Rasche, M.W., M.R. Hyman, and D.J. Arp, Factors Limiting Aliphatic Chlorocarbon Degradation of Nitrosomonas europaea: Cometabolic Inactivationof Ammonia Monooxygenase and Substrate Specificity. Applied and Environmental Microbiology, 1991. 57: p. 2986-2994.

35. Vanrolleghem, P.A., et al., An On-Line Respirometric Biosensor for the Characterization of Load and Toxicity of Wastewaters. Journal of Chemical Technology and Biotechnology, 1994. 59: p. 321-333.

36. Kong, Z., P. Vanrolleghem, and W. Verstraete, Automated Respiration Inhibition Kinetics Analysis (ARIKA) with a Respirographic Biosensor. Water Science and Technology, 1994. 30(4): p. 275-284.

37. Vanrolleghem, P.A. and F. Coen, Optimal design of in-sensor experiments for on-line modeling of nitrogen removal processes. Water Science and Technology, 1995. 31(2): p. 149-160.

38. Kong, Z., P. Vanrolleghem, and W. Verstraete, Simultaneous Determination of Inhibition Kinetics of Carbon Oxidation and Nitrification with a Respirometer. Water Research, 1996. 30(4): p. 825-836.

39. Surmacz-Gorska, J., et al., Nitrification Monitoring in Activated Sludge by Oxygen Uptake Rate (OUR) Measurements. Water Research, 1996. 30(5): p. 1228-1236.

40. Gernaey, K., et al., A Titration Technique for Online Nitrification Monitoring in Activated Sludge. Water Science and Technology, 1998. 37(12): p. 103-110.

41. Vanrolleghem, P.A. and W. Verstraete, Simultaneous Biokinetic Characterization of Heterotrophic and Nitrifying Populations of Activated Sludge with an On-line Respirographic Biosensor. Water Science and Technology, 1993. 28(11-12): p. 177-187.

Page 15: Institute of Water Resources Annual Technical Report FY 2001

A Characterization of the Discontinuous Nature of KrigingDigital Terrain Models

Basic Information

Title:A Characterization of the Discontinuous Nature of Kriging Digital Terrain Models

Project Number: 2001CT721B

Start Date: 3/1/2001

End Date: 2/28/2002

Funding Source: 104B

Congressional District:

2nd

Research Category: Not Applicable

Focus Category: Hydrology, Models, Acid Deposition

Descriptors:hydrology, continuity, runoff, gradient, slope, surface interpolation, surfacemodeling,kriging digital terrain modeling

Principal Investigators:

Thomas Meyer

Publication

1. Meyer, Thomas H., 2003, The Discontinuous Nature of Kriging Interpolation for Digital TerrainModeling, in Proceedings of the ACSM Annual Conference , Phoenix, AZ, on CDROM.

Page 16: Institute of Water Resources Annual Technical Report FY 2001

������������ ���������� ���������������� ��! "�#�$%���$'&(���)���#*+ �,-�����. ���/ %�0���$%�1�2�3,4�5�������3��768 :9��;,���$

<:=)>@?BADCFEHG;IKJ/L@JNMO�JNPQADMSRT?UJNV#RF>DW�X�AYRTZ)MTAD[�\FJNC->@Z)M-]NJNC�I!ADVQAD^@JN?UJNV#R�ADV)_K`�V)^@abV)JNJNM-abV)^

cdV)afe@JNM-C-afRL5>DW�gh>@V)V)JN]/RTab]NZ�Ri RT>@M-M-CNj;gh>@V)V)JN]/RTab]NZ�R

k#l2mon2p�q�rsn2t@u�t@vxwDy;z#m|{�{:r.t@}@y~@ADV�ZQADMSLK�x�@j2�D�@�@�

�F�)�S�S���|������1� �/� �|�����3�:�����o�S� ���/�S�.�S�o�1�-�����.�1�|�o�� ¡�/�¢� �N�1�S�1�D�/�����1� �|�d���Y���-�s�1� �:���1� �|��S� �S£����1� �/�Y�� ¡�1�/���o� �/� �¤���)�S� �S£����1� �/�+�|���¤�|¥�¦§�¤���|���/�.�h�� ;�|�1�/��� �|�S�Y�.�h�����o¨|��1�©� �¤���S� �S�N���N���1�|�S�/�1�.�1���S�������Y�ª�|�¤�/��1���S���2�|�1�/�D�S�«�1� �-�S¥©¬|�1�/�­���4� �N�1�S�1�D��®�����1� �/�4�D�/� �N���� ¢£(� �S��¯2°(�1� �/� �|�©���h�-±N¨|� £���� �S�N�h�1�²�³�1�|� �o®§�|�����1���«�|� � �|�����Y����µ´s¨Y�s�%�/�|�F�«�D�-�.� �-�%�����/�|���1�|�:�:���(�H� �+�1�|�F�/�S�(¨Y���� µ���S� �/�N�1�-�H� �(£/�S�¤�«��o���s�¤���Y�.�����.�1�|�o�|�S¯���� ¶D�S� ����� �1�²���«�1�¤�/��1� £/�%�|�1�/�D�S�«�1� �-�S¥�·������S£/�S�-¯Y ¡�1�/�"��s�¤���1���s�1���S���/�D�/� �N���� |£(� �S��¯�°(�1� �/� �|��������¶D�-�s��� � �|�-���x¨|�(¶|���/�«�-���-�s�1� �:���1�/�����Y�#¯�.�/�Y�«�-±N¨|�S�N�1� �/¯-�Y�/�����|���/�.�;�� Y�o���s�1� �Y��1� �/�������/�|�¢��� �(�«�Y���1�����/�-�s�1� �:���1�/�¤��¶D�.®�S��¨Y�«�����(�����1�|�S�2�-�s�1� �:���1�/�Q�1�Y���;�D�S�« ¡�/�1�:�2�/�Q���S� �Y�/�Q°(�1� �/� �|�:¸¡� ���1�|��� �-�/�s��1±N¨Y���1�-�)�«�S�Y�«�T¹x��¨Y�s�2¶D���-±N¨|� £���� �S�N�)�1��°(�1� �/� �|�Y¥xºµ�|�S�1�. ¡�/�1�/¯�°(�1� �/� �|�3���Q�|�S���¶(���:���(�F�1�d¶D���1�|���/�/���³�s�¤���Y�|���¤���� 2�o� �/� �¤�����1�S�1�¤��� �����o�o�S�µ¸f»3º�¼H¹��S� �.®£����1� �/��� �N�1�S�1�D�/�����1� �/��¥;½2£/�S�³�«�Y¯Y�/�µ¨Y�«�-�� ¡�/�¢»3º�¼¾� �N�1�S�1�D�/�����1� �/��¯|°(�1� �/� �|��Y�/�Q���:¨|�Y�o�-�«� �¤��¶|� �µ�|�1�/�D�S�«�s�%�1�Y���2�Y�/�Q�|���;¶D�S�S���|�1�S£(� �/¨Y�«� �h�o�o�.¨|���S�N�1�-�#¥���1� �/� �|�H�|�1�o�o¨Y�.�-�:�o���1�.�/�N�1� �(¨|�/¨Y���«¨|�« f�/�.�-����� �/�|�H�1�|�³¶D�/¨|�Y�|���1� �-�h�� 3� �o®�1�S�1�D�/�����1� �/���Y���¤�¤�|�-�S¥�ºµ�|���¢�Y���D�S�3�o�o�.¨|���S�N�¤���1�|���«� �1¨Y���1� �/��¯D�.¿o�|����� �Y��� �¤��«�/¨|�¤�.�/¯Y�|�1��£(���o�-��¶D�/¨|�Y�|�¢�/�³�1�|�h�o���1�.�/�N�1� �(¨|� �s�/¯@���Y�³�|�1��£(���o�-���1�-��� ®§���/�1����.¿|�����|� �-�� ¡�1�/�À���o� �/� �¤���|�S� �S£����1� �/�����o�o�S�|�� @���/¨|�N�¤��� �|�/¨Y���1�S�1�¤��� �h� �:�.�S�o®�1�¤����Á��S�!¼³�.¿o���.�Y¥���S�(���/�¤�|�Sµ°(�1� �/� �|�Y¯#�o���1�.�/�N�1� �(¨|� �s�/¯#�o� �/� �¤�����1�S�1�¤��� �©���o�o�S� � �|�Y¯��«�Y���1������� �o®�1�S�1�D�/�����1� �/��¥

Ã#ÄÆÅÀÇÉÈ�ʾËÆÌ�ÅÀÃ�È�Ä

Í:ÎSÏÑÐ|Ï¡Ò#Ð4Ó§ÔBÕ(Ö.×#Ø�Î.Ù|ÒQÚ;Û�ÜoÝoÞ|ß%Ï¡à�Õ³á)Ùoáxâ�ã¡Õ(Î�ÖØ�äS×�Ò�Ï¡åDâ#Ø:æbÙoÎ�Ï¡ÒYÖØ�Î.á)Ù|ã¡Õ(Ö.Ï¡Ò#Ð�ÕoÒ�çªØ�àÖ.Ï�èé Õ(Ö.Ï¡Ò#Ð�Ø�ãÑØ�ê(Õ(Ö.ÏÑÙ|Ò²ê(Õoã¡â#Ø�à¢æbÎ.Ù é ç�ÏÑÐ|ÏÑÖ.ÕoãxÖØ�Î.ÎSÕoÏ¡Ò+ç�Õ(Ö.Õ@ë�ìhØ�Ò#Ø�ÎSÕoã�Î.Ø�æbØ�Î.Ø�Ò�äTØ�à�Ù|Ò+Ö.×#Øà.â#í@îØ�äTÖ�Õ(Î.Ø4ÓðïoÙ|â#ÎSÒ�Õoã�ÕoÒ�çBñhâ�Ï îí�Î.Ø�ÐoÖ.à�Ú�Û�Ü|ò(óDô;õ�Õ�ê@Ï¡çQÚµÛ�Ü|òoòYô2ö;Õ é Ú�Û�ÜoóoÞDôQ÷¤à.ÕoÕ(ø@àÕoÒ�çUùDÎSÏÑê(ÕoàÖ.Õ�ê(Õ@ÚQÛ�ÜoóoÜDô)ìhÙDÙ/ê(Õ(Ø�Î.Ö.à�Ú�Û�ÜoÜ|òoßSë3ú�ÕoÏ¡ãÑØ�ûüÓ¤Û�ÜoÜNýDß�Õoà.àØ�Î.Ö.à�Ö.×�Õ(Ö³þ¤Ö.×#Ø�Î.ØFÏ¡àÕoÒ�Õ(Î.Ð|â é Ø�ÒYÖ;æbÙoÎ�øDÎSÏÑÐ|Ï¡Ò#Ð�ÖÙ�í)Ø¢Õoç#Ùoá�ÖØ�ç�Õoà�Õ%íxÕoà.Ï¡ä é Ø�Ö.×#Ù@çFÙoæ�à.â#Î.æ§ÕoäTØ3Ï¡ÒYÖØ�Î.á)Ù|ã¡ÕNèÖ.ÏÑÙ|Ò+Ï¡Ò²ìh÷.ù©Õoà¢Ùoá�á)Ù|àØ�çHÖÙ�Ö.×#ØhàÖ.ÕoÒ�ç�Õ(ÎSç+ç#Ø�ÖØ�Î é Ï¡Ò�Ï¡àÖ.Ï¡ä�ÖØ�à.àØ�ã¡ã¡Õ(Ö.ÏÑÙ|Ò©ÖØ�äS×�Ò�Ï¡åDâ#Ø�à

Û

Page 17: Institute of Water Resources Annual Technical Report FY 2001

����������� ����� �������������������� ���"!#�$!%�'&�($�)!*���+��,.-/���10#���$0 2

3 ×�Ï¡äSשä�â#Î.Î.Ø�ÒYÖ.ãÑûdá�Î.Ø�ê(ÕoÏ¡ã�ÕoÒ�ç 3 ×�Ï¡äS׳ä�ÕoÒ©á�Î.Ù@ç�â�äTØ%Õ(Î.Ö.Ï14�ä�Ï¡Õoã¡ãÑûdà é ÙDÙoÖ.×Hà.â#Î.æ§ÕoäTØ�à�ë 56 ×�Ï¡à�Õ(Î.Ð|â é Ø�ÒYÖ 3 Õoà¢à.â#á�á)ÙoÎ.ÖØ�ç�íDû³ö;Õoà.ãÑØ�ÖÖhÓ¤Û�ÜoÜNýDß 3 ×#Ù|àØ�àÖ.â�ç#û�Ð|ÏÑêoØ�à¢ÕoÒ©Ø�7#Õ é èáxãÑØ%ÙoæQÕdç�Õ(Ö.ÕdàØ�Ö¢æbÙoÎ 3 ×�Ï¡äSשäTØ�Î.Ö.ÕoÏ¡ÒHàáxã¡Ï¡Ò#Ø�à�Õ(Î.Ø+þ¤ÖÙDÙ�à é ÙDÙoÖ.×QÚ 5 3 ×#Ø�Î.Ø�Õoà¢øDÎSÏÑÐ|Ï¡Ò#Ðá�Î.Ù@ç�â�äTØ�ç é ÙoÎ.Øhá�Î.Ø�ä�Ï¡àØ�Ø�àÖ.Ï é Õ(Ö.ÏÑÙ|Ò�à�ë�õhØ�ä�ãÑØ�ÎSä�åUÓ¤Û�ÜoÜoÝ|ß3äTÙ é áxÕ(Î.Ø�ç+á)Ù|ãÑû@Ò#Ù é Ï¡Õoã¡à�Úàáxã¡Ï¡Ò#Ø�à�Ú�ã¡Ï¡Ò#Ø�Õ(Î�ÖÎSÏ¡ÕoÒ#Ð|â�ã¡Õ(Ö.ÏÑÙ|ÒQÚ�á�Î.Ù87#Ï é Õ(Ö.ÏÑÙ|ÒQÚ�ç�Ï¡àÖ.ÕoÒ�äTØ 3 Ø�ÏÑÐ|×YÖ.Ï¡Ò#Ð#Ú¢ÕoÒ�ç øDÎSÏÑÐ|Ï¡Ò#ÐÖÙ�ÖØ�àÖ�Ö.×#Ø�ÏÑÎ3Ø�9+ä�ÕoäTûHÖÙ�ê@Ï¡à.â�Õoã¡Ï;:�Ø�àáxÕ(Ö.Ï¡ÕoãxáxÕ(ÖÖØ�ÎSÒ�à�Ï¡ÒHÕoç�ç�ÏÑÖ.ÏÑÙ|Ò©ÖÙ�Ö.×#Ø�ÏÑÎ3á)Ø�Î.æbÙoÎèé ÕoÒ�äTØ©Ï¡ÒUá�Î.Ø�ç�Ï¡äTÖ.Ï¡Ò#Ð+â�ÒYê@Ï¡à.ÏÑÖØ�çBà.Õ é áxãÑØ�ãÑÙ@ä�Õ(Ö.ÏÑÙ|Ò�à�ëFÍ:ÎSÏÑÐ|Ï¡Ò#ÐHá)Ø�Î.æbÙoÎ é Ø�çBÕ é Ù|Ò#ÐÖ.×#سí)Ø�àÖ:Ï¡ÒBí)ÙoÖ.×5ä�Õ(ÖØ�ÐoÙoÎSÏÑØ�à�ë©ÍFÕ(Ö�:�Ï¡ã�ÕoÒ�ç5õhÙ/ûDÖ.à.×#Ø�Î²Ó 2*<%<%<Yß�æbÙ|â�Ò�çBÖ.×�ÏÑÎSç@èsÙoÎSç#Ø�Îá)Ù|ãÑû@Ò#Ù é Ï¡Õoã¡à�ÖÙ�á)Ø�Î.æbÙoÎ é äTÙ é áxÕ(ÎSÕ(íxãÑû 3 ÏÑÖ.×�øDÎSÏÑÐ|Ï¡Ò#Ð�íxâ#ÖQÖ.×#Ø�û:ç�Ï¡ç:Ò#ÙoÖ;×�Õ�êoØ3Ø�ÏÑÖ.×#Ø�ÎÖ.×#Ø:Ò#Ø�Ø�ç²ÖÙ³äTÙ é áxâ#ÖØFÕ�ê(Õ(ÎSÏÑÙoÐoÎSÕ é ÙoÎ�øDÎSÏÑÐ|Ï¡Ò#Ð�= à�äTÙ é áxã¡Ï¡ä�Õ(ÖØ�ç é Õ(ÖÎSÏ17+äTÙ é áxâ#Ö.ÕNèÖ.ÏÑÙ|Ò�à�ë >¢ÕoÒ#вÕoÒ�çBñ�Ù@ç�ãÑØ�Î�Ó 2*<%<%<Yß%æbÙ|â�Ò�ç4Ö.×�Õ(Ö�øDÎSÏÑÐ|Ï¡Ò#ЩÙ|â#Öá)Ø�Î.æbÙoÎ é Ø�ç4æbÙ|â#Î�ÙoÖ.×#Ø�ÎÏ¡ÒYÖØ�Î.á)Ù|ã¡Õ(Ö.ÏÑÙ|Ò ÖØ�äS×�Ò�Ï¡åDâ#Ø�à²Ï¡Ò á�Î.Ø�àØ�Î.ê@Ï¡Ò#ÐKÖ.×#ØBê@Ï¡à.â�ÕoãhäS×�Õ(ÎSÕoäTÖØ�Î4Ùoæ�ç�ÏÑÐ|ÏÑÖ.Õoã%ÖØ�ÎèÎSÕoÏ¡Ò é Ù@ç#Ø�ã¡à�ë'?%Ø�Ð|Õ(ÎSç�Ï¡Ò#ÐHÖ.×#Øüþàáxã¡Ï¡Ò#ØFê@à�ë%øDÎSÏÑÐ|Ï¡Ò#Ð@5Hç#Ø�íxÕ(ÖØoÚQÏÑÖh×�Õoà�í)Ø�Ø�ÒBà.×#Ù 3 ÒÓ§ÍFÏ é Ø�ã¡ç#ÙoÎ.æ;ÕoÒ�çBA Õo×YíxÕ@Ú�Û�Ü|òDÛ(ôCA Õo×YíxÕ@Ú;Û�ÜoÜ*<Yß�Ö.×�Õ(Ö�øDÎSÏÑÐ|Ï¡Ò#гϡà é Õ(Ö.×#Ø é Õ(Ö.Ï¡ä�Õoã¡ãÑûØ�åDâ�ÏÑê(ÕoãÑØ�ÒYÖ²ÖÙ Ö.×�Ï¡ÒÀáxã¡Õ(ÖØ5àáxã¡Ï¡Ò#Ø�à�ëEDhã é ÕoÒ�à.Õ!ÕoÒ�ç ÙoÖ.×#Ø�ÎSà Ó 2*<%<@2|ß²Ø�àÖ.Õ(íxã¡Ï¡à.×#Ø�çøDÎSÏÑÐ|Ï¡Ò#Ð�= àháxã¡ÕoäTسϡÒBÕ é ÙoÎ.Ø�ÐoØ�Ò#Ø�ÎSÕoã�ä�ã¡Õoà.àhÙoæ3æ§â�Ò�äTÖ.ÏÑÙ|Ò�à�Ú)Ò�Õ é Ø�ãÑûoÚQÖ.×#سÕ(íxàÙ|ã¡â#ÖØ�ãÑûé Ï¡Ò�Ï é Ï;:�Ï¡Ò#Щö;ÏÑáxà.äS×�ÏÑÖ�:dØ�7@ÖØ�Ò�à.ÏÑÙ|ÒQë�DhãÑÖ.×#Ù|â#Ð|×UøDÎSÏÑÐ|Ï¡Ò#Ð+Ï¡àhÒ#ÙoÖ 3 ÏÑÖ.×#Ù|â#ÖhÏÑÖ.à�äTÎSÏÑÖ.Ï¡ä�àÓGF¢×�Ï¡ã¡ÏÑáªÕoÒ�çBA Õ(Ö.àÙ|ÒQÚ�Û�ÜoóoÝ|ßSÚ�Ö.×#Ø�Î.ØdÏ¡à�Ò#Ù©åDâ#Ø�àÖ.ÏÑÙ|ÒªÖ.×�Õ(Ö�ÏÑÖ.à%â�àØFÏ¡à 3 Ï¡ç#Ø�àá�Î.Ø�ÕoçQë

6 ×#Ø�á�Î.Ùoá)Ø�Î.Ö.ÏÑØ�àQÙoæ�ÕoÒYû é Õ(Ö.×#Ø é Õ(Ö.Ï¡ä�ÕoãDà.â#Î.æ§ÕoäTØ�í)Ø�Ï¡Ò#Ð%â�àØ�çdÕoà�Õ%ÖØ�Î.ÎSÕoÏ¡Ò é Ù@ç#Ø�ãç#Ø�4�Ò#Ø�Ö.×#Ø�á�Î.Ùoá)Ø�Î.Ö.ÏÑØ�àhÏ é íxâ#Ø�çUÖÙªÖ.×#Ø é Ù@ç#Ø�ãðë 6 ×#Ø�Ù|ÒDâ�à:Ï¡à�Ù|ÒüÖ.×#Ø é Ù@ç#Ø�ãÑØ�ÎhÖÙäS×#ÙDÙ|àØüÖ.×#ØBà.â#Î.æ§ÕoäTØ é Ù@ç#Ø�ã 3 Ï¡àØ�ãÑû!ÖÙ á�Î.Ùoá)Ø�ÎSãÑû é Õ(Ö.äS×ÀÖ.×#ØBá�Î.Ùoá)Ø�Î.Ö.ÏÑØ�à³ÙoæFÖ.×#Øà.â#Î.æ§ÕoäTØ 3 ÏÑÖ.×üÖ.×#Ø©ç#Ø�à.ÏÑÎ.Ø�çüÖÎSÕoÏÑÖ.àFÙoæ3Ö.×#Ø©ÖØ�Î.ÎSÕoÏ¡ÒQëIH3Ù|ÒYÖ.Ï¡ÒDâ�ÏÑÖ«ûUá�Î.Ùoá)Ø�Î.Ö.ÏÑØ�à:Õ(Î.Ø©ÙoæáxÕ(ÎSÕ é Ù|â�ÒYÖdÏ é á)ÙoÎ.Ö.ÕoÒ�äTØoë+õ�Ï¡à.äTÙ|ÒYÖ.Ï¡ÒDâ#Ù|â�àFà.â#Î.æ§ÕoäTØ�àd×�Õ�êoØ!þ×#Ù|ãÑØ�à)54ÙoÎBþ¤ÖØ�Õ(ÎSà)5UÏ¡ÒÖ.×#Ø é Ú�àÙBÖÙüàá)Ø�Õ(ø�ëJDÆäTÙ|ÒYÖ.Ï¡ÒDâ#Ù|â�à�à.â#Î.æ§ÕoäTØ�à é ÏÑÐ|×YÖ�Ò#ÙoÖ�í)Ø+à é ÙDÙoÖ.×QÚ é Ø�ÕoÒ�Ï¡Ò#ÐÖ.×�Õ(Ö�Ö.×#Ø�à.â#Î.æ§ÕoäTØ é ÏÑÐ|×YÖµ×�Õ�êoØ©þäTÎ.Ø�ÕoàØ�à)5FÏ¡Ò�ÏÑÖ�Ú|à.â�äS×�Õoà 3 ÏÑÖ.×�ÕhÖÎSÏ¡ÕoÒ#Ð|â�ã¡Õ(ÖØ�ç�ÏÑÎ.Î.Ø�Ð(èâ�ã¡Õ(ÎdÒ#Ø�Ö 3 ÙoÎ.ø Ó 6 ÷LK:ßSë2÷1ÖdÏ¡àFÏ é á)ÙoÎ.Ö.ÕoÒYÖ�ÖÙBä�Õ(Ö.ÕoãÑÙoÐ|â#Ø+à.â#Î.æ§ÕoäTØ é Ù@ç#Ø�ã�äTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ«ûá�Î.Ùoá)Ø�Î.Ö.ÏÑØ�à%ÕoÒ�ç4Ö.×�Ï¡à%áxÕ(á)Ø�Î%Ø�àÖ.Õ(íxã¡Ï¡à.×#Ø�à%Ö.×#Ø�àØdá�Î.Ùoá)Ø�Î.Ö.ÏÑØ�à�æbÙoÎ�øDÎSÏÑÐ|Ï¡Ò#ЩϡÒYÖØ�Î.á)Ù|ã¡ÕNèÖ.ÏÑÙ|ÒQë

M�NPORQ8SUT�VXWZY+[\V^])_

÷¤Ò+Ö.×#Ø�ÏÑÎ�àØ é Ï¡Ò�Õoã 3 ÙoÎ.ø�Ú�ÔBÏ¡ã¡ãÑØ�Î3ÕoÒ�ç²ö;Õ%`µã¡Õ é©é سӤÛ�Ü%aoó|ß�à.â#ÐoÐoØ�àÖØ�çQÚ�þ 6 ×#Ø:ç�ÏÑÐ|ÏÑÖ.ÕoãÖØ�Î.ÎSÕoÏ¡Ò é Ù@ç#Ø�ã2Ó§õ 6 Ô5ߵϡà�à.Ï é áxãÑûdÕ:àÖ.Õ(Ö.Ï¡àÖ.Ï¡ä�Õoã#Î.Ø�á�Î.Ø�àØ�ÒYÖ.Õ(Ö.ÏÑÙ|Ò©Ùoæ�Ö.×#Ø%äTÙ|ÒYÖ.Ï¡ÒDâ#Ù|â�àà.â#Î.æ§ÕoäTØFÙoæ�Ö.×#ØFÐoÎ.Ù|â�Ò�çªíDû²Õ©ã¡Õ(Î.ÐoØdÒDâ é í)Ø�Î�ÙoæµàØ�ãÑØ�äTÖØ�ç4á)Ù|Ï¡ÒYÖ.à 3 ÏÑÖ.ײø@Ò#Ù 3 ÒcbCd$eäTÙDÙoÎSç�Ï¡Ò�Õ(ÖØ�à©Ï¡Ò ÕoÒ Õ(Î.íxÏÑÖÎSÕ(Î.û!äTÙDÙoÎSç�Ï¡Ò�Õ(ÖØB4xØ�ã¡çQë 5fD õ 6 Ô 3 Õoà©Ø�ÒYê@Ï¡à.ÏÑÙ|Ò#Ø�ç!ÖÙí)ØHÕUàØ�ÖFÙoæ%×#Ø�ÏÑÐ|×YÖdà.Õ é áxãÑØ�à�Ú;Ö.×�Õ(Ö�Ï¡à:ÖÙBà.Õ�ûoÚ�ÕUàØ�ÖdÙoæ�á)Ù|Ï¡ÒYÖ.à�ëgA5Ø 3 Ï¡ã¡ãµç#Ø�Ò#ÙoÖØÖ.×�Ï¡à�àØ�Ö�Ùoæ3à.Õ é áxãÑØ�ãÑÙ@ä�Õ(Ö.ÏÑÙ|Ò�à�íDûih\jlkDÓmbCnLo�d%nsß)p©ÕoÒ�ç5ç#Ø�Ò#ÙoÖØ�Ö.×#سàØ�Ö�Ùoæ3×#Ø�ÏÑÐ|×YÖ.àé Ø�Õoà.â#Î.Ø�ç Õ(Ö+Ö.×#Ù|àØBãÑÙ@ä�Õ(Ö.ÏÑÙ|Ò�à©íDûrqsjtkuexÓmbCnLo�d%nsßRvTÓmbCnLo�d%nsßxwyh%p|ë0ÔBÏ¡ã¡ãÑØ�γÐoÙDØ�àÙ|ÒüÖÙªà.Õ�ûoÚ%þ.ï|â�àÖ:ÕoàhÖ.×#Ø�Ø�Ò#Ð|Ï¡Ò#Ø�Ø�Î é â�àÖ�Ï¡ÒYÖØ�Î.á)Ù|ã¡Õ(ÖØ�Ù|ÒüÖ.×#Ø�ÖÙoá)ÙoÐoÎSÕ(áx×�Ï¡ä é Õ(á2ÚÖ.×#Ø+äTÙ é áxâ#ÖØ�Î 3 Ï¡ã¡ã�×�Õ�êoزÖÙBÏ¡ÒYÖØ�Î.á)Ù|ã¡Õ(ÖØ 3 ÏÑÖ.×5Ö.×#Ø+õ 6 ÔKë 5 6 ×#Ø é Õ(Ö.×#Ø é Õ(Ö.Ï¡ä�Õoãà.äS×#Ø é زâ�àØ�ç æbÙoÎdÖ.×�Ï¡àdÏ¡ÒYÖØ�Î.á)Ù|ã¡Õ(Ö.ÏÑÙ|Ò Ï¡à 3 ×�Õ(Ö 3 Ø+ä�Õoã¡ã¢Õxzu{}|�~����@�r���R�.�$���iA5ØæbÙoÎ é Õoã¡ãÑûdç#Ø�4�Ò#Ø�Õ�à.â#Î.æ§ÕoäTØ é Ù@ç#Ø�ãDÖÙ:í)Ø�Õ�Î.Ø�Õoã �Yê(Õoã¡â#Ø�ç�æ§â�Ò�äTÖ.ÏÑÙ|Ò�ÙoæxÖ 3 Ù:ê(Õ(ÎSÏ¡Õ(íxãÑØ�à�Ú�i�@� w��I�'���UÚ�ÙoÎ�ePj � Ómb}o�d�ßSÚ 3 ×#Ø�Î.Ø/� ç#Ø�Ò#ÙoÖØ�à%Ö.×#ØFàØ�Ö%ÙoæµÎ.Ø�Õoã¡à�ë

ùDÙ é Ø+à.â#Î.æ§ÕoäTØ é Ù@ç#Ø�ã¡àFÕ(Î.Ø+ç#Ø�4�Ò#Ø�ç â#á)Ù|Ò Õoã¡ã�Ö.×#Ø+à.Õ é áxãÑسá)Ù|Ï¡ÒYÖ.àdÏ¡Ò�h|ëB��7DèÕ é áxãÑØ�à¢Ï¡Ò�ä�ã¡â�ç#Ø�ö;Õ(ÐoÎSÕoÒ#ÐoØ�á)Ù|ãÑû@Ò#Ù é Ï¡Õoã¡à�Ú%`#Ù|â#ÎSÏÑØ�΢ÖÎSÕoÒ�àæbÙoÎ é Õ(Ö.ÏÑÙ|Ò�à�ÚDÕoÒ�ç³øDÎSÏÑÐ|Ï¡Ò#Ð#ë

Page 18: Institute of Water Resources Annual Technical Report FY 2001

����������� ����� �������������������� ���"!#�$!%�'&�($�)!*���+��,.-/���10#���$0 Þ

ù@â�äSײæ§â�Ò�äTÖ.ÏÑÙ|Ò�à�Õ(Î.ØFà.ÕoÏ¡ç²ÖÙ©×�Õ�êoØ����m���.�C� zu{ �.� �C|��|Ú é Ø�ÕoÒ�Ï¡Ò#Ð�Ö.×�Õ(Ö%Ø�êoØ�Î.û+á)Ù|Ï¡ÒYÖÏ¡Ò hªäTÙ|ÒYÖÎSÏÑíxâ#ÖØ�à�ÖÙ5Ö.×#Ø+æbÙoÎ é â�ã¡Õ(Ö.ÏÑÙ|Ò!Ùoæ � ëKì�ãÑÙoíxÕoã�à.â#á�á)ÙoÎ.Ö�Ï¡à�ÐoØ�Ò#Ø�ÎSÕoã¡ãÑûKÒ#ÙoÖç#Ø�à.ÏÑÎSÕ(íxãÑØ+æbÙoÎHç�ÏÑÐ|ÏÑÖ.Õoã3ÖØ�Î.ÎSÕoÏ¡Ò é Ù@ç#Ø�ã¡Ï¡Ò#ÐBæbÙoÎHàØ�êoØ�ÎSÕoã�Î.Ø�ÕoàÙ|Ò�à�ëÀì�ãÑÙoíxÕoã�à.â#á�á)ÙoÎ.ÖÏ é á)Ù|àØ�à�Î.Ø�ã¡Õ(Ö.ÏÑêoØ�ãÑûK×#Ø�Õ�êDû äTÙ é áxâ#Ö.Õ(Ö.ÏÑÙ|Ò�Õoã�íxâ#ÎSç#Ø�Ò�à�ÚµØ�àá)Ø�ä�Ï¡Õoã¡ãÑû5æbÙoΩã¡Õ(Î.Ðoتç�Õ(Ö.ÕàØ�Ö.à�ë^Dhã¡àÙ#Ú�ÏÑÖ%×�Õoà�Ö.×#ØFäTÙ|â�ÒYÖØ�Îè«Ï¡ÒYÖ.â�ÏÑÖ.ÏÑêoØ:á�Î.Ùoá)Ø�Î.Ö«û+Ö.×�Õ(Ö�Ú�æbÙoÎ%äTØ�Î.Ö.ÕoÏ¡ÒªÖØ�äS×�Ò�Ï¡åDâ#Ø�àà.â�äS×�Õoà4ö;Õ(ÐoÎSÕoÒ#ÐoØ á)Ù|ãÑû@Ò#Ù é Ï¡Õoã¡à�Ú é Õ(ø@Ï¡Ò#Ð Õ à é Õoã¡ã�äS×�ÕoÒ#ÐoØKÏ¡Ò ÕoÒYûÀáxÕ(Î.Ö.Ï¡ä�â�ã¡Õ(Îà.Õ é áxãÑØ+ä�ÕoÒKá�Î.Ù@ç�â�äTØHã¡Õ(Î.ÐoØ+äS×�ÕoÒ#ÐoØ�à�Ù/êoØ�Î�Ö.×#ØHØ�ÒYÖ.ÏÑÎ.Ø+à.â#Î.æ§ÕoäTØoë 6 ×�Ï¡à:ÎSâ�Ò�àFäTÙ|Ò@èÖÎSÕ(Î.ûdÖÙ 6 ÙoíxãÑØ�Î8= àµö;Õ 3 ÙoæQìhØ�ÙoÐoÎSÕ(áx×YûoÚYÖ.×�Õ(ÖµØ�êoØ�Î.ûDÖ.×�Ï¡Ò#Ð:Ï¡à�Î.Ø�ã¡Õ(ÖØ�ç�ÖÙ:Ø�êoØ�Î.ûDÖ.×�Ï¡Ò#Ð#Úíxâ#Ö%ä�ãÑÙ|àØ�Î%Ö.×�Ï¡Ò#Ð|à�Õ(Î.Ø é ÙoÎ.Ø:Î.Ø�ã¡Õ(ÖØ�çQë^Dhã¡àÙ#Ú#á)Ù|ãÑû@Ò#Ù é Ï¡ÕoãxÐ|ãÑÙoíxÕoã2à.â#á�á)ÙoÎ.Ö�à.â#Î.æ§ÕoäTØé Ù@ç#Ø�ã¡à�Ö.×�Õ(Ö�Ï¡ÒYÖØ�Î.á)Ù|ã¡Õ(ÖØFÕoã¡ã)Ö.×#Ø:á)Ù|Ï¡ÒYÖ.à�Ï¡Ò�h é â�àÖ�í)Ø�Ùoæ�ÕoÒªÙoÎSç#Ø�Î�Ø�åDâ�ÕoãQÖÙ©Ö.×#Øä�Õ(ÎSç�Ï¡Ò�Õoã¡ÏÑÖ«û4Ùoæ h|ÚQÙoÎFÐoÎ.Ø�Õ(ÖØ�Î�ë 6 ×�Ï¡à�ä�ÕoÒüá�Î.Ù@ç�â�äTØ�â�Ò 3 ÕoÒYÖØ�ç5í)Ø�×�Õ�ê@ÏÑÙoÎSà�à.â�äS×5ÕoàØ�7@ÖÎ.Ø é Ø�à.â#Î.æ§ÕoäTØFç#Ø�áxÕ(Î.Ö.â#Î.Ø�à�ÕoÒ�ç4â�Ò#Î.Ø�Õoã¡Ï¡àÖ.Ï¡ähâ�Ò�ç�â�ã¡Õ(Ö.ÏÑÙ|Ò�à�ë

DhãÑÖ.×#Ù|â#Ð|× øDÎSÏÑÐ|Ï¡Ò#ÐüÏ¡à³ç#Ø�4�Ò#Ø�ç 3 ÏÑÖ.×!Ð|ãÑÙoíxÕoã%à.â#á�á)ÙoÎ.Ö�ڢϡÒ!á�ÎSÕoäTÖ.Ï¡äTØoÚ�ÏÑÖ©Ï¡à³Ò#ÙoÖÖ«ûDáxÏ¡ä�Õoã¡ãÑû�â�àØ�ç�Ö.×�Õ(Ö 3 Õ�û�æbÙoÎ5ÖØ�Î.ÎSÕoÏ¡Ò é Ù@ç#Ø�ã¡Ï¡Ò#Ð#ë ÷¤Ò�àÖØ�ÕoçQÚ\h Ï¡àBà.â#íQç�ÏÑê@Ï¡ç#Ø�çÏ¡ÒYÖÙ��}����� ���C|��}�R�R�.zoÚ;í)Ø�Ï¡Ò#Ð+à.â#íxàØ�Ö.à�Ùoæ h 3 ÏÑÖ.×BÎ.Ø�ã¡Õ(Ö.ÏÑêoØ�ãÑûUæbØ 3 Ø�ãÑØ é Ø�ÒYÖ.à�Ö.×�Õ(ÖÎ.Ù|â#Ð|×�ãÑû ÓbÙoÎ�àÖÎSÏ¡äTÖ.ãÑû�ßháxÕ(Î.Ö.ÏÑÖ.ÏÑÙ|Ò h|ë 6 ×#Ø�ÒQÚ;øDÎSÏÑÐ|Ï¡Ò#ЪϡàFâ�àØ�ç ÖÙUÏ¡ÒYÖØ�Î.á)Ù|ã¡Õ(ÖØ©Ù/êoØ�ÎÖ.×#Ø�àسÒ#Ø�ÏÑÐ|×Yí)ÙoÎS×#ÙDÙ@ç�à�Ï¡ÒUÖ.×#Ø�æbÙ|ã¡ãÑÙ 3 Ï¡Ò#Ð 3 Õ�ûoë�ù@â#á�á)Ù|àØ 3 Ø 3 ÕoÒYÖ�ÖÙ4Ï¡ÒYÖØ�Î.á)Ù|ã¡Õ(ÖØÕ4à.â#Î.æ§ÕoäTØ�ê(Õoã¡â#Ø©Õ(Ö:Ö.×#سá)Ù|Ï¡ÒYÖ � j Ómb}o�d�ß�ÕoÒ�ç ���w h|ë³ö2Ø�Ö����³ç#Ø�Ò#ÙoÖØ©Õ4Ò#Ø�ÏÑÐ|×@èí)ÙoÎS×#ÙDÙ@ç äTÙ|ÒYÖ.ÕoÏ¡Ò�Ï¡Ò#Ð � ë 6 ×#Ø�ÒQÚ�Ö.×#Ø+×#Ø�ÏÑÐ|×YÖdØ�àÖ.Ï é Õ(ÖزÕ(Ö � Ï¡àdÕ 3 Ø�ÏÑÐ|×YÖØ�ç à.â éÙoæ¢Ö.×#Ø�×#Ø�ÏÑÐ|×YÖ.àhÙoæ�Ö.×#Ø�á)Ù|Ï¡ÒYÖ.àhÏ¡Ò����(ë 6 ×#Ø 3 Ø�ÏÑÐ|×YÖ.à�Õ(Î.Ø�Î.Ø�ã¡Õ(ÖØ�çüÏ¡ÒYêoØ�ÎSàØ�ãÑûªÖÙ²Ö.×#Øç�Ï¡àÖ.ÕoÒ�äTØ�æbÎ.Ù é Ö.×#Ø:à.Õ é áxãÑØhÖÙ � Ï¡Ò²à.â�äS×²Õ 3 Õ�û+Ö.×�Õ(Ö é Ï¡Ò�Ï é Ï;:�Ø�à¢Ö.×#Ø�ê(Õ(ÎSÏ¡ÕoÒ�äTØ�ÙoæÖ.×#ØFØ�àÖ.Ï é Õ(ÖØoë 6 ×#ØFà.â#Î.æ§ÕoäTØFá�Î.Ù@ç�â�äTØ�ç+Ù/êoØ�Î�Õ©Ò#Ø�ÏÑÐ|×Yí)ÙoÎS×#ÙDÙ@ç²Ï¡à�ä�Õoã¡ãÑØ�ç4Õ � ���u����ë

6 ×#Ø�Î.تÕ(Î.Ø4àØ�êoØ�ÎSÕoã�×#Ø�â#ÎSÏ¡àÖ.Ï¡ä�àdæbÙoΩäS×#ÙDÙ|à.Ï¡Ò#Ð5Ò#Ø�ÏÑÐ|×Yí)ÙoÎS×#ÙDÙ@ç�àdæbÙoΩÕüá)Ù|Ï¡ÒYÖ�ÙoæÏ¡ÒYÖØ�Î.Ø�àÖ+ÓbØoë Ð#ëÑÚ�÷¤à.ÕoÕ(ø@àdÕoÒ�ç!ùDÎSÏÑê(ÕoàÖ.Õ�ê(Õ@Ú¢Û�ÜoóoÜDÚµá2ë;ÞoÞoó|ßSëªùDÙ é Ø©Ùoæ3Ö.×#ØH×#Ø�â#ÎSÏ¡àÖ.Ï¡ä�àÏ¡Ò�ä�ã¡â�ç#Ø:â�à.Ï¡Ò#гÕoã¡ãQà.Õ é áxãÑØ�à 3 ÏÑÖ.×�Ï¡Ò²àÙ é Ødä�ÏÑÎSä�ãÑØ:ÙoÎ%Ø�ã¡ã¡ÏÑáxàØ�Ø�Ò�ä�ãÑÙ|à.Ï¡Ò#Ð � Úxâ�à.Ï¡Ò#гÕoã¡ãà.Õ é áxãÑØ�à 3 ÏÑÖ.×�Ï¡Ò àÙ é Ø+äTÙ|ÒYêoØ�7!á)Ù|ãÑûDÐoÙ|ÒKØ�Ò�ä�ãÑÙ|à.Ï¡Ò#Ð � Ú�â�à.Ï¡Ò#Ð4ÕBã¡Ï é ÏÑÖØ�ç ÒDâ é í)Ø�ÎÙoæ�à.Õ é áxãÑØ�àdæbÎ.Ù é Ö.×#Ø+æbÙ|â#Î�åDâ�Õoç#ÎSÕoÒYÖ.à�Ø�Ò�ä�ãÑÙ|à.Ï¡Ò#Ð � Ú�Ùoγâ�à.Ï¡Ò#Ð���ÙoÎ.Ù|Ò#Ù|Ï�Ò#Ø�Õ(Î.Ø�àÖÒ#Ø�ÏÑÐ|×Yí)ÙoÎSà�ë

Ì Y��������+N�����

DhãÑÖ.×#Ù|â#Ð|×4Ö.×#Ødáx×Yû@à.Ï¡ä�Õoã2à.â#Î.æ§ÕoäTØdÙoæ�Ö.×#Ø��¢Õ(Î.Ö.×UÏ¡à�Õ(Î.Ð|â�Õ(íxãÑûªÒ#ÙoÖ é Õ(Ö.×#Ø é Õ(Ö.Ï¡ä�Õoã¡ãÑûäTÙ|ÒYÖ.Ï¡ÒDâ#Ù|â�àFÓ§ÔUØ�ûoØ�Î�Ú;Û�ÜoÜoÜ|ßSÚ�ÏÑÖ�Ï¡à3ÐoØ�Ò#Ø�ÎSÕoã¡ãÑû é Ù@ç#Ø�ãÑØ�ç²Õoà%ÏÑæ;ÏÑÖ 3 Ø�Î.Øoë 6 ×#Ø��¢Õ(Î.Ö.×R= àà.â#Î.æ§ÕoäTØ�Ï¡à%àØ�Ø�ÒUÕoà�í)Ø�Ï¡Ò#гáxÏÑØ�äTØTè 3 Ï¡àØFäTÙ|ÒYÖ.Ï¡ÒDâ#Ù|â�à�Ú é Ø�ÕoÒ�Ï¡Ò#гÖ.×�Õ(Ö�Ú�Ù|Ò4Ö.×#Ø 3 ×#Ù|ãÑØoÚÖ.×#ØHà.â#Î.æ§ÕoäTØ©Ï¡à:äTÙ|ÒYÖ.Ï¡ÒDâ#Ù|â�à:íxâ#Ö:ÏÑÖFÏ¡à�á)Ù|à.à.ÏÑíxãÑØ�Ö.×�Õ(ÖFÖ.×#Ø�Î.Ø©Õ(Î.ØHãÑÙ@ä�Õoã�ç�Ï¡à.äTÙ|ÒYÖ.Ï¡ÒDâ@èÏÑÖ.ÏÑØ�à:à.â�äS×5Õoà�ø@Ò�Ï¡ä.øUá)Ù|Ï¡ÒYÖ.à�ÕoÒ�ç5ä�ã¡Ï! Qà�ëPH3Ù|Ò�àØ�åDâ#Ø�ÒYÖ.ãÑûoÚQáxÏÑØ�äTØTè 3 Ï¡àسäTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ«ûBÏ¡àäTÙ é©é Ù|Ò�ãÑû²äTÙ|Ò�à.Ï¡ç#Ø�Î.Ø�çªÕ©ç#Ø�à.ÏÑÎSÕ(íxãÑØ�á�Î.Ùoá)Ø�Î.Ö«û+Ï¡Ò²ÖØ�Î.ÎSÕoÏ¡Ò4à.â#Î.æ§ÕoäTØ é Ù@ç#Ø�ã¡à�ë

DhÒYûªà.â#Î.æ§ÕoäTØ é Ù@ç#Ø�ã)Ö.×�Õ(Ö%Ï¡à�íxÕoàØ�çªÙ|Òªá)Ù|ãÑû@Ò#Ù é Ï¡Õoã¡à�Ó§Ïðë ØoëÑÚxÒ#ÙoÖ�Õ�æbÎSÕoäTÖ.Õoãbß 3 Ï¡ã¡ãí)سà é ÙDÙoÖ.× 3 ÏÑÖ.×�Ï¡ÒBÕ+áxÕ(Ö.äS×Që 6 ×�Ï¡àhÏ¡à�Õ²ç�ÏÑÎ.Ø�äTÖ�äTÙ|Ò�àØ�åDâ#Ø�Ò�äTسÙoæ¢Ö.×#سϡÒ$4�Ò�ÏÑÖØdç�ÏÑæfèæbØ�Î.Ø�ÒYÖ.Ï¡Õ(íxÏ¡ã¡ÏÑÖ«ûªÙoæ�á)Ù|ãÑû@Ò#Ù é Ï¡Õoã¡à�ë�ñ�Ù 3 Ø�êoØ�Î�ÚQÖ.×#Ø�áxÏÑØ�äTØTè 3 Ï¡àØ�äTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ«û4Ùoæ¢à.â#Î.æ§ÕoäTØáxÕ(Ö.äS×#Ø�à�ä�ÕoÒ�Ò#ÙoÖ;í)Ø�Ö.Õ(øoØ�ÒdæbÙoÎ;ÐoÎSÕoÒYÖØ�çQë 6 ×#Ø�Î.Ø�Ï¡à2Õ�×Dâ#ÐoØ¢í)Ù@ç#û�Ùoæ�ã¡ÏÑÖØ�ÎSÕ(Ö.â#Î.Ø�Ï¡Ò:Ö.×#ØH3Ù é áxâ#ÖØ�Î�DhÏ¡ç#Ø�ç³ìhØ�Ù é Ø�ÖÎSÏ¡ä�õhØ�à.ÏÑÐ|ÒªÓ H D�ì�õFß�äTÙ é©é â�Ò�ÏÑÖ«ûdç#Ø�êoÙoÖØ�ç³ÖÙ:äTÎ.Ø�Õ(Ö.Ï¡Ò#ÐáxÏÑØ�äTØTè 3 Ï¡àØdäTÙ|ÒYÖ.Ï¡ÒDâ#Ù|â�à%à.â#Î.æ§ÕoäTØ�à%Ùoæµê(Õ(ÎSÏÑÙ|â�à�ÙoÎSç#Ø�ÎSà 3 ÏÑÖ.×B4xÎSàÖ%ÕoÒ�çUàØ�äTÙ|Ò�ç4ÙoÎSç#Ø�Îí)Ø�Ï¡Ò#Ð4Ö.×#Ø é Ù|àÖ�äTÙ é©é Ù|Ò ÓbØoë Ð#ëÑÚ¢àØ�Ø+ö;ÕoÒ�ä�ÕoàÖØ�γÕoÒ�ç#"ù@ÕoãÑø(Õoâ�àø(Õoà+Ó¤Û�ÜoóoÝ|ßSô�`�Õ(ÎSÏ¡ÒÓ¤Û�ÜoÜoÞDÚ3Û�ÜoÜ%a|ßSô�õ�ÏÑØ�ÎSä.ø#7 Ó¤Û�ÜoÜ%a|ßßSë 6 ×#Ø�àØ�áxÕ(Ö.äS×#Ø�àFÕ(Î.سà é ÙDÙoÖ.×5Ï¡ÒUÖ.×#Ø�ÏÑÎ:Ï¡ÒYÖØ�ÎSÏÑÙoÎSà

Page 19: Institute of Water Resources Annual Technical Report FY 2001

����������� ����� �������������������� ���"!#�$!%�'&�($�)!*���+��,.-/���10#���$0 ý

`µÏÑÐ|â#Î.Ø³Û � õ��¢Ô Ùoæ�Ö.×#Ø�ù@ÕoÒ�ç�Ï¡Õ�ÔUÙ|â�ÒYÖ.ÕoÏ¡Ò�à%Ï¡ÒªÒ#ÙoÎ.Ö.×@è«äTØ�ÒYÖÎSÕoã K�Ø 3 ÔUØ�7#Ï¡äTÙ#ë

ÕoÒ�ç5æbÙoÎ é Ú�à.Õ�ûoÚµÕB4xÎSàÖ¤èsÙoÎSç#Ø�ÎFäTÙ|ÒYÖ.Ï¡ÒDâ#Ù|â�àFà.â#Î.æ§ÕoäTØ©Ù|Ò5Ö.×#Ø 3 ×#Ù|ãÑØoë 6 ×#سÎ.Ø é ÕoÏ¡Ò@èç#Ø�ÎhÙoæ�Ö.×#Ø�áxÕ(á)Ø�Î 3 Ï¡ã¡ã2ç#Ù@ä�â é Ø�ÒYÖ�Ö.×�Õ(ÖhøDÎSÏÑÐ|Ï¡Ò#ÐHäTÎ.Ø�Õ(ÖØ�à:Õg:�Ø�Î.Ù(èsÙoÎSç#Ø�Î�Ú)áxÏÑØ�äTØ 3 Ï¡àØäTÙ|ÒYÖ.Ï¡ÒDâ#Ù|â�à%à.â#Î.æ§ÕoäTØ é Ù@ç#Ø�ãðë

�������������� ���������������

6 ×#ØFØ�åDâ�ÏÑê(ÕoãÑØ�Ò�äTØ:ÙoæµøDÎSÏÑÐ|Ï¡Ò#гÕoÒ�çªÖ.×�Ï¡Ò �Yáxã¡Õ(ÖØFàáxã¡Ï¡Ò#Ø�à3Ð|â�Õ(ÎSÕoÒYÖØ�Ø�àhÖ.×�Õ(Ö�Ú 3 ÏÑÖ.×�Ï¡ÒªÕáxÕ(Ö.äS×QÚµøDÎSÏÑÐ|Ï¡Ò#Ъá�Î.Ù@ç�â�äTØ�àFÕ4äTÙ|ÒYÖ.Ï¡ÒDâ#Ù|â�àdà.â#Î.æ§ÕoäTØoë 6 ×#Ø©åDâ#Ø�àÖ.ÏÑÙ|Ò Ö.×#Ø�Ò í)Ø�äTÙ é Ø�à3 ×�Õ(Ö�äTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ«ûKä�ÕoÒ!í)Ø+Ø�7@á)Ø�äTÖØ�ç ÕoãÑÙ|Ò#ÐBÖ.×#زí)ÙoÎSç#Ø�Îdí)Ø�Ö 3 Ø�Ø�Ò Ö 3 Ù5Ò#Ø�ÏÑÐ|×Yí)ÙoÎè×#ÙDÙ@ç�à��� �m���G����A ×#Ø�ÒBâ�àØ�ç 3 ÏÑÖ.×UãÑÙ@ä�Õoã;à.â#á�á)ÙoÎ.Ö�ÚxøDÎSÏÑÐ|Ï¡Ò#ЩϡàhÏ¡Ò4Ö.×#Ø�ä�ã¡Õoà.à�Ùoæ�áxÏÑØ�äTØ 3 Ï¡àØoÚ:�Ø�Î.Ù(èsÙoÎSç#Ø�ÎhäTÙ|ÒYÖ.Ï¡ÒDâ#Ù|â�à%à.â#Î.æ§ÕoäTØ�à�ë�+|��R�C~�� 6 Ù³Ø�àÖ.Õ(íxã¡Ï¡à.ײÖ.×#ØFä�ã¡ÕoÏ é Ú�ÏÑÖ%à.â$9+äTØ�à�ÖÙ©á�Î.Ù@ç�â�äTØ:Õ³à.Ï¡Ò#Ð|ãÑØ�Ø�7#Õ é áxãÑØoë 6 ×#Øá�Î.ÙDÙoæ�á�Î.Ù@äTØ�Ø�ç�à%Õoà%æbÙ|ã¡ãÑÙ 3 à�ëÛ(ë/H�×#ÙDÙ|àØFÕ©à.Õ é áxãÑØ:×#Ø�ÏÑÐ|×YÖ%ç�Õ(Ö.Õ©àØ�Ö�ë2Dë:ù@â#íQç�ÏÑê@Ï¡ç#Ø%Ö.×#ØFç�Õ(Ö.Õ©àØ�Ö�Ï¡ÒYÖÙHÒ#Ø�ÏÑÐ|×Yí)ÙoÎS×#ÙDÙ@ç�à�ëÞDë:ùDØ�ãÑØ�äTÖ%Õ³í)ÙoÎSç#Ø�Î�í)Ø�Ö 3 Ø�Ø�Ò4Ö 3 Ù+Õ(íxâ#ÖÖ.Ï¡Ò#гÒ#Ø�ÏÑÐ|×Yí)ÙoÎS×#ÙDÙ@ç�à�ëý#ë�÷¤ÒYÖØ�Î.á)Ù|ã¡Õ(ÖØ:Ö.×#ØFí)ÙoÎSç#Ø�Î�Ö 3 Ï¡äTØoÚxÙ|Ò�äTØFæbÙoÎ%Ø�ÕoäS×UÒ#Ø�ÏÑÐ|×Yí)ÙoÎS×#ÙDÙ@çQëaDë�÷1æµÖ.×#ØFÖ 3 ٲϡÒYÖØ�Î.á)Ù|ã¡Õ(ÖØ�çªí)ÙoÎSç#Ø�ÎSà%ç�Ï! )Ø�Î�Ï¡ÒªØ�ãÑØ�ê(Õ(Ö.ÏÑÙ|ÒQÚxÖ.×#Ø�Ò4øDÎSÏÑÐ|Ï¡Ò#Щϡà%ç�Ï¡à¤èäTÙ|ÒYÖ.Ï¡ÒDâ#Ù|â�à%ÕoãÑÙ|Ò#гÖ.×#ØFí)ÙoÎSç#Ø�Î�ë

Page 20: Institute of Water Resources Annual Technical Report FY 2001

����������� ����� �������������������� ���"!#�$!%�'&�($�)!*���+��,.-/���10#���$0 a

10

20

10

2023502400245025002550

10

20

`µÏÑÐ|â#Î.Ø 2 � 6 ×#Ø:ÖÙoá)ÙoÐoÎSÕ(áx×�Ï¡ä:ç�Õ(Ö.Õ©àØ�Ö�ë

� �}�i�.���u��z8� �g���}� � �uz\�@������|��m���}�@��~ { �}� � �m���6 ×#Ø�ÖÙoá)ÙoÐoÎSÕ(áx×�Ï¡ä�ç�Õ(Ö.ÕªàØ�Ö:äTÙ é Ø�à:æbÎ.Ù é Ö.×#Ø�Ö.×#ØHù@ÕoÒ�ç�Ï¡Õ+ÔUÙ|â�ÒYÖ.ÕoÏ¡Ò�àhÙoæ3Ò#ÙoÎ.Ö.× �äTØ�ÒYÖÎSÕoã}K�Ø 3 ÔUØ�7#Ï¡äTÙ#ÚxàØ�Ø+`µÏÑÐ#ë�Û(ë 6 ×�Ï¡à�õ��¢Ô 3 Õoà�äS×#Ù|àØ�Òªí)Ø�ä�Õoâ�àØ:Ùoæ�Ö.×#Ø 3 Ï¡ç#Øê(Õ(ÎSÏÑØ�Ö«ûHÙoæ2ÖÙoá)ÙoÐoÎSÕ(áx×Yû 3 ÏÑÖ.×�Ï¡Ò©Õ�à.Ï¡Ò#Ð|ãÑØhõ��¢ÔKÚ@æbÎ.Ù é�� Õ(Ö�Ö.ÕoÏ¡ã¡à¢Ùoæ�Õoã¡ã¡â#ê@Ï¡Õoã#áxã¡ÕoÒ#Ø�àÖÙ4à.×#Ø�Ø�Î:ä�ã¡Ï! Qà�ë 6 ×#Ø�àØ é Ù|â�ÒYÖ.ÕoÏ¡Ò�à�Ú)ÕoãÑÖ.×#Ù|â#Ð|×üåDâ�ÏÑÖØ�ÎSâ#ÐoÐoØ�çQÚ2Õ(Î.سÒ#ÙoÖ�Î.Ø é ÙoÖسϡÒÖ.×#Ø�àØ�Ò�àØ�Ö.×�Õ(Ö/DhãÑíxâ�åDâ#Ø�ÎSåDâ#ØoÚ�K�Ø 3 ÔUØ�7#Ï¡äTÙ#ÚQÏ¡à�íxâ�Ï¡ãÑÖ�â#áBÖÙªÕoÒ�çBÕ(Î.Ù|â�Ò�çUÖ.×#Ø é ë6 ×#Ø�Î.Ø�æbÙoÎ.ØoÚxà.â#Î.êoØ�ûoÙoÎSà%ä�ÕoÒ4Ø�Ò�äTÙ|â�ÒYÖØ�Î�ÖØ�Î.ÎSÕoÏ¡Ò²ÙoæµÖ.×�Ï¡à�Ö«ûDá)ØdÏ¡Ò²Ö.×#Ø�ÏÑÎ 3 ÙoÎ.ø�ë

6 ×#ØFç�Õ(Ö.Õ�æbÙoÎ�Ö.×�Ï¡à�á�Î.ÙDÙoæ;äTÙ é Ø�à%æbÎ.Ù é Ö.×#Ø:æbÙDÙoÖ.×�Ï¡ã¡ã¡à¢Ùoæ;Ö.×#Ø�àØ é Ù|â�ÒYÖ.ÕoÏ¡Ò�à�Ú#àØ�Ø`µÏÑÐ#ë�2Dë 6 ×#Ø¢à.ÏÑÖØ3Ï¡à2ãÑÙ@ä�Õ(ÖØ�ç�Ï¡Ò�� 6 Ô :�Ù|Ò#ØhÛ�Þ 3 ÏÑÖ.×däTÙoÎSÒ#Ø�Î�äTÙDÙoÎSç�Ï¡Ò�Õ(ÖØ�à3ÓbØ/ÞoÝNý�ÛTý@<@ÚÒxÞoÜ*<%<|ÝoÜ*<Yß:ÕoÒ�ç ÓbØ/ÞoÝNýYÜoó*<@Ú�ÒxÞoÜ*<#Û8aoÜ*<Yß:ÕoÒ�ç é Ø�Õoà.â#Î.Ø�àFóNý@< é Ø�ÖØ�ÎSà�Ø�ÕoàÖ:ÖÙ 3 Ø�àÖÕoÒ�ç ó@Û< é Ø�ÖØ�ÎSàHÒ#ÙoÎ.Ö.× ÖÙKàÙ|â#Ö.×Që 6 ×#Ø4äTÙoÎSÒ#Ø�ÎSà©ÕoÒ�ç Ø�7@ÖØ�ÒYÖHÙoæhÖ.×#ØUà.ÏÑÖØ 3 Ø�Î.ØäS×#Ù|àØ�ÒKÖÙBäTÙ|Ï¡Ò�ä�Ï¡ç#Ø 3 ÏÑÖ.×5Ø�ãÑØ�ê(Õ(Ö.ÏÑÙ|Ò�àdÕ�ê(ÕoÏ¡ã¡Õ(íxãÑØ©Ï¡Ò5Ö.×#Ø��:ù�ìFù ù@ÕoÒ�ç�Ï¡ÕxH3Î.Ø�àÖ�ò��é Ï¡ÒDâ#ÖØFç�ÏÑÐ|ÏÑÖ.Õoã)Ø�ãÑØ�ê(Õ(Ö.ÏÑÙ|Ò é Ù@ç#Ø�ã)ÙoæµÖ.×#ØFÕ(Î.Ø�Õ@ë

6 ×#Ø5Ù é Ò�Ï �Dç�ÏÑÎ.Ø�äTÖ.ÏÑÙ|Ò�Õoãhê(Õ(ÎSÏÑÙoÐoÎSÕ é Ùoæ�Ö.×#ØKç�Õ(Ö.Õ àØ�Ö 3 Õoà4äTÙ é áxâ#ÖØ�ç0â�à.Ï¡Ò#ÐÎ.Ø�ã¡Õ(Ö.ÏÑÙ|Ò�Õoã2ç�Õ(Ö.Õ(íxÕoàØ�åDâ#Ø�ÎSÏÑØ�à%Õoà�ç#Ø�à.äTÎSÏÑí)Ø�çªÏ¡ÒKÓ§ÔBÕ(ÐoÐ|ÏÑÙ²ÕoÒ�çªÙoÖ.×#Ø�ÎSà�Ú�Û�ÜoÜ|òoßSë 6 ×#ØÎ.Ø�à.â�ãÑÖ�Ï¡à:à.×#Ù 3 ÒüÏ¡ÒJ`µÏÑÐ#ë�ÞDë 6 ×#Ø�Î.سϡà�Ò#Ùªç�Ï¡à.äTØ�ÎSÒ�Õ(íxãÑØ�ÕoÒ�Ï¡àÙoÖÎ.ÙoáDûUæbÙoÎFç�Ï¡àÖ.ÕoÒ�äTØ�àãÑØ�à.àdÖ.×�ÕoÒKÖ 3 Ù5×Dâ�Ò�ç#Î.Ø�ç é Ø�ÖØ�ÎSà�Ú�ÕBç�Ï¡àÖ.ÕoÒ�äTØHÐoÎ.Ø�Õ(ÖØ�Î�Ö.×�ÕoÒKÖ.×#زã¡Õ(Î.ÐoØ�àÖ�Ò#Ø�Õ(Î.Ø�àÖÒ#Ø�ÏÑÐ|×Yí)ÙoÎ�ç�Ï¡àÖ.ÕoÒ�äTØoë 6 ×#Ø�Î.Ø�æbÙoÎ.ØoÚ|Ö.×#Ø%Ù é Ò�Ï �Dç�ÏÑÎ.Ø�äTÖ.ÏÑÙ|Ò�ÕoãYê(Õ(ÎSÏÑÙoÐoÎSÕ é 3 Õoà�î.â�ç#ÐoØ�ç�ÖÙí)سÕoÒ5Õoç#Ø�åDâ�Õ(ÖØ é Ù@ç#Ø�ãµÕoÒ�ç5Ò#Ùªç�ÏÑÎ.Ø�äTÖ.ÏÑÙ|Ò�Õoã;ê(Õ(ÎSÏÑÙoÐoÎSÕ é à 3 Ø�Î.Ø©äTÙ é áxâ#ÖØ�çQë 6 ×#Øê(Õ(ÎSÏÑÙoÐoÎSÕ é 3 Õoà%ç#Ø�Ø é Ø�ç4ÖÙ©í)Ødì�Õoâ�à.à.Ï¡ÕoÒ4ÕoÒ�çQÚ#Ö.×Dâ�à�Ú#í)Ø:ÙoæµÖ.×#Ø:æbÙoÎ é

Ó q�ß^jÉÛ��� ���������������o

3 ×#Ø�Î.Ø qUÏ¡à�Ö.×#Ødã¡Õ(Щç�Ï¡àÖ.ÕoÒ�äTØFÕoÒ�ç��²Ï¡à�Ö.×#ØFá�ÎSÕoäTÖ.Ï¡ä�ÕoãQÎSÕoÒ#ÐoØoë¢÷¤ÒªÖ.×�Ï¡à�ä�ÕoàØoÚ�� 3 Õoà

Page 21: Institute of Water Resources Annual Technical Report FY 2001

����������� ����� �������������������� ���"!#�$!%�'&�($�)!*���+��,.-/���10#���$0 Ý

0 100 200 300 400 500

lag distance, meters

0

500

1000

1500

2000

2500

3000

3500

gamma

`µÏÑÐ|â#Î.ØdÞ � 6 ×#Ø:Ù é Ò�Ï �Dç�ÏÑÎ.Ø�äTÖ.ÏÑÙ|Ò�Õoã�ê(Õ(ÎSÏÑÙoÐoÎSÕ é ÕoÒ�ç4ÏÑÖ.à%ãÑØ�ÕoàÖ%à.åDâ�Õ(Î.Ø�à é Ù@ç#Ø�ãðë

1

2

3

4

5

6

78

9

10

11121314

15

16

17

18

1920

`µÏÑÐ|â#Î.Ø�ý � 6 ×#Ø ��ÙoÎ.Ù|Ò#Ù|Ïxç�Ï¡Õ(ÐoÎSÕ é æbÙoÎ�Ö.×#Ø�àÖ.â�ç#û�Õ(Î.Ø�Õ@ë�÷¤Ò�ç�ÏÑê@Ï¡ç�â�ÕoãDà.Õ é áxãÑØ�á)Ù|Ï¡ÒYÖ.àÕ(Î.Ø%Ï¡Ò�ç�Ï¡ä�Õ(ÖØ�ç�íDû�ÒDâ é í)Ø�ÎSà�ë 6 ×#Ø�á)Ù|ãÑûDÐoÙ|Ò�àµÕ(Î.Ø%à.â#í�Î.Ø�Ð|ÏÑÙ|Ò�à�Ùoæ���à.â�äS×�Ö.×�Õ(Ö�Ø�êoØ�Î.ûá)Ù|Ï¡ÒYÖ%Ï¡ÒªÕ³á)Ù|ãÑûDÐoÙ|ÒªäTÙoÎ.Î.Ø�àá)Ù|Ò�ç�à�ÖÙ©Ö.×#Ødà.Õ é ØFÏ¡ÒYÖØ�Î.á)Ù|ã¡Õ(Ö.ÏÑÙ|ÒªÒ#Ø�ÏÑÐ|×Yí)ÙoÎS×#ÙDÙ@çQë

Page 22: Institute of Water Resources Annual Technical Report FY 2001

����������� ����� �������������������� ���"!#�$!%�'&�($�)!*���+��,.-/���10#���$0 ò

`µÏÑÐ|â#Î.Ø+a � 6 ×#Ø�í)ÙoÎSç#Ø�Î%Õoà%Ï¡ÒYÖØ�Î.á)Ù|ã¡Õ(ÖØ�ç 3 ÏÑÖ.ײÖ.×#ØFÒ#Ø�Õ(Î.Ø�àÖ%Ò#Ø�ÏÑÐ|×Yí)ÙoÎSà3Ùoæ�á)Ù|Ï¡ÒYÖ�ÝDë

äS×#Ù|àØ�Ò4ÖÙ©í)Ø a*<%< é Ø�ÖØ�ÎSà�ë^D�ãÑØ�ÕoàÖ�à.åDâ�Õ(Î.Ø�à 4xÖ�û@ÏÑØ�ã¡ç#Ø�ç²Ö.×#Ø é Ù@ç#Ø�ã

Ó q�ß�j�Þ%2@Û�Ü�� Ý|ò � Û��� ����� � � ������������� �6 ×#Ø é Ù@ç#Ø�ãQÕoÒ�çªÖ.×#Ødç�Õ(Ö.Õ©Õ(Î.Ødç#Ø�áxÏ¡äTÖØ�çªÏ¡Òc`µÏÑÐ#ë3ÞDë

ú3û4Õoà.à.â é Ï¡Ò#ЩàÖ.Õ(Ö.ÏÑÙ|Ò�Õ(ÎSÏÑÖ«ûoÚxÖ.×#ØdäTÙ/ê(Õ(ÎSÏ¡ÕoÒ�äTØdæ§â�Ò�äTÖ.ÏÑÙ|Ò4Ï¡à�Î.Ø�ã¡Õ(ÖØ�ç4ÖÙHÖ.×#Ødê(Õ(ÎSÏ�èÙoÐoÎSÕ é íDû

��� Ó q�ß^j� � � Ó q�ß�o Ó¤Û/ß

3 ×#Ø�Î.Ø� R�:Ï¡à�Ö.×#Ø:ê(Õ(ÎSÏ¡ÕoÒ�äTØ:ÙoæµÖ.×#Ødç�Õ(Ö.Õ©àØ�Ö�ÕoÒ�çª×�Õoà%Õ³ê(Õoã¡â#Ø:Ùoæ�2oÞ%a%2Dë ó%2oÜ é �Në

�����u���}� zñhÕ�ê@Ï¡Ò#Ð äTÎ.Ø�Õ(ÖØ�ç Õ!äTÙ/ê(Õ(ÎSÏ¡ÕoÒ�äTØBæ§â�Ò�äTÖ.ÏÑÙ|Ò 3 ÏÑÖ.× 3 ×�Ï¡äS× ÖÙ!øDÎSÏÑÐoØoÚ%Ö.×#ØBÒ#Ø�7@ÖHÖ.Õoàø3 Õoà�ÖÙ5ÖØ�à.àØ�ã¡ã¡Õ(ÖزÖ.×#Ø+Î.Ø�Ð|ÏÑÙ|Ò Ï¡ÒYÖÙüÒ#Ø�ÏÑÐ|×Yí)ÙoÎS×#ÙDÙ@ç�à�ëB÷1Ö 3 Õoà³ç#Ø�ä�Ï¡ç#Ø�çKÖÙ5äTÎ.Ø�Õ(ÖØÒ#Ø�ÏÑÐ|×Yí)ÙoÎS×#ÙDÙ@ç�à�â�à.Ï¡Ò#Ð ��ÙoÎ.Ù|Ò#Ù|Ï%Ò#Ø�Õ(Î.Ø�àÖHÒ#Ø�ÏÑÐ|×Yí)ÙoÎSà�ë 6 ×�Ï¡à�äS×#Ù|Ï¡äTØUÏ¡à³Õ(Î.íxÏÑÖÎSÕ(Î.û�ôÕoÒYûBÙoÖ.×#Ø�ÎFÒ#Ø�ÏÑÐ|×Yí)ÙoÎS×#ÙDÙ@çBà.äS×#Ø é Ø 3 Ù|â�ã¡çüäTÙ|Ò$4xÎ é Ö.×#سä�ã¡ÕoÏ é ë 6 3 Ø�ÒYÖ«û���������������������� !������áxÕoÏÑÎSà 3 Ø�Î.ØhÐoØ�Ò#Ø�ÎSÕ(ÖØ�ç+ÎSÕoÒ�ç#Ù é ãÑû�æbÎ.Ù é Õ�â�Ò�ÏÑæbÙoÎ é ç�Ï¡àÖÎSÏÑíxâ#Ö.ÏÑÙ|ÒQë 6 ×#Ø�àØáxÕoÏÑÎSà 3 Ø�Î.Ø4äTÙ|Ò�àÖÎSÕoÏ¡Ò#Ø�ç ÖÙ æ§Õoã¡ã 3 ÏÑÖ.×�Ï¡Ò!Ö.×#Ø4àÖ.â�ç#û!Õ(Î.Ø�Õ@ë `µÏÑÐ|â#Î.زý à.×#Ù 3 à³Ö.×#Øá)Ù|Ï¡ÒYÖ.à%ÕoÒ�ç²Ö.×#Ø ��ÙoÎ.Ù|Ò#Ù|Ï;ç�Ï¡Õ(ÐoÎSÕ é ÙoæµÖ.×#Ø:á)Ù|Ï¡ÒYÖ.à�ë

�+|��R�C~��#" �!$ �C� � �m�H3Ù|Ò�à.Ï¡ç#Ø�Î�Ö.×#زí)ÙoÎSç#Ø�Î�í)Ø�Ö 3 Ø�Ø�Ò Ö.×#زá)Ù|ãÑûDÐoÙ|Ò�à�ÐoØ�Ò#Ø�ÎSÕ(ÖØ�ç íDûKá)Ù|Ï¡ÒYÖ.à³ÝBÕoÒ�ç Û<@ë6 ×#Ø:Ò#Ø�Õ(Î.Ø�àÖ�Ò#Ø�ÏÑÐ|×Yí)ÙoÎSà3Ùoæ;á)Ù|Ï¡ÒYÖ%Ý�Õ(Î.ØPkYÛ<$oSÜ oý�o�a o�Û82#p|ë 6 ×#Ø:Ò#Ø�Õ(Î.Ø�àÖ�Ò#Ø�ÏÑÐ|×Yí)ÙoÎSàÙoæ2á)Ù|Ï¡ÒYÖhÛ<�Õ(Î.Ø kNÝ o�Û82 o�Û�Ý o�Û/ò#oSÜ#pYë 6 ×#Ø�Ö 3 Ù ��ÙoÎ.Ù|Ò#Ù|Ï�êoØ�Î.Ö.Ï¡äTØ�à�ç#Ø�4�Ò�Ï¡Ò#ÐFÖ.×#Ø�äTÙ é èé Ù|ÒBí)ÙoÎSç#Ø�Îhí)Ø�Ö 3 Ø�Ø�ÒBá)Ù|Ï¡ÒYÖ.à�ÝHÕoÒ�ç Û<²Õ(Î.ØªÓ 2oó%aDë ý#Ú2ýYÝoÝDë òoß�ÕoÒ�ç ÓðÞ%2*<@ë aDÚ.2oÝ@Û(ë Þ|ßSë6 ×#Ø:í)ÙoÎSç#Ø�Î�í)Ø�Ö 3 Ø�Ø�Ò4Ö.×#Ø:á)Ù|ãÑûDÐoÙ|Ò�à 3 Õoà�ç#Ø�4�Ò#Ø�ç+íDû+øDÎSÏÑÐ|Ï¡Ò#Ð�Ö.×#ØFà.â#Î.æ§ÕoäTØFÕ(ÖdÛ<%<á)Ù|Ï¡ÒYÖ.à�ç�Ï¡àÖÎSÏÑíxâ#ÖØ�ç©Ø�êoØ�Ò�ãÑûHí)Ø�Ö 3 Ø�Ø�ÒªÖ.×#Ø�àØ�Ö 3 Ù���ÙoÎ.Ù|Ò#Ù|Ï)êoØ�Î.Ö.Ï¡äTØ�à�ë 6 ×#Ø�ÙoÎSç�Ï¡Ò�Õ(Î.ûøDÎSÏÑÐ|Ï¡Ò#Ð 3 Õoà%ç#Ù|Ò#Ø:â�à.Ï¡Ò#Ð�ÔBÕ(Ö.×#Ø é Õ(Ö.Ï¡ä�Õ³ê#ÞDë <³íDû+äTÙ|Ò�àÖÎSâ�äTÖ.Ï¡Ò#Ð�Ö.×#Ø é Õ(ÖÎSÏ¡äTØ�à%ÕoÒ�ç

Page 23: Institute of Water Resources Annual Technical Report FY 2001

����������� ����� �������������������� ���"!#�$!%�'&�($�)!*���+��,.-/���10#���$0 ó

`µÏÑÐ|â#Î.ØhÝ � 6 ×#Ø%í)ÙoÎSç#Ø�Î�Õoà¢Ï¡ÒYÖØ�Î.á)Ù|ã¡Õ(ÖØ�ç 3 ÏÑÖ.×�Ö.×#Ø�Ò#Ø�Õ(Î.Ø�àÖ¢Ò#Ø�ÏÑÐ|×Yí)ÙoÎSàµÙoæ)á)Ù|Ï¡ÒYÖ%Û<@ë

0 20 40 60 80 100

Point along Border

-1

0

1

2

3

Discontinuity,meters

`µÏÑÐ|â#Î.ØBò � 6 ×#تç�Ï! )Ø�Î.Ø�Ò�äTزÙoæhÖ.×#ØªÖ 3 ÙKÏ¡ÒYÖØ�Î.á)Ù|ã¡Õ(ÖØ�ç í)ÙoÎSç#Ø�ÎSà�ë DhÒYû!ê(Õoã¡â#تÒ#ÙoÖØ�åDâ�ÕoãQÖÙ :�Ø�Î.Ù+Ï¡Ò�ç�Ï¡ä�Õ(ÖØ�à�Õ©ç�Ï¡à.äTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ«ûoë

äTÙ é áxâ#Ö.Ï¡Ò#Ð�Ö.×#Ø�ÏÑÎ�Ï¡ÒYêoØ�ÎSàØ�à�ë�ñ�Ù 3 Ø�êoØ�Î�Ú�Ö.×#Ø�ÙoÖ.×#Ø�Î%Ö«ûDá)Ø�à:Ó§â�Ò�ÏÑêoØ�ÎSà.Õoã�øDÎSÏÑÐ|Ï¡Ò#Ð#ÚDøDÎSÏÑÐ(èÏ¡Ò#Ð 3 ÏÑÖ.×�Õ�ÖÎ.Ø�Ò�çQÚoíxãÑÙ@ä.ødøDÎSÏÑÐ|Ï¡Ò#Ð#ÚoÕoÒ�ç³äTÙoøDÎSÏÑÐ|Ï¡Ò#ÐDß;×�Õ�êoØ�Ö.×#Ø%à.Õ é Ø�íxÕoà.Ï¡ä�àÖÎSâ�äTÖ.â#Î.ØÕoÒ�çªÖ.×#ØdÕ(Î.Ð|â é Ø�ÒYÖ%Õ(á�áxã¡ÏÑØ�à�Ø�åDâ�Õoã¡ãÑûHÖÙ©Ö.×#Ø é ÚxÕoà 3 Ø�ã¡ãðë

6 ×#ØUÎ.Ø�à.â�ãÑÖ.àHÕ(Î.ØBà.×#Ù 3 Ò Ï¡Òr`µÏÑÐ#ë aKÕoÒ�çÀÝDë 6 ×#Ø4ê@Ï¡à.â�Õoã%à.Ï é Ï¡ã¡Õ(ÎSÏÑÖ«û!Ùoæ:Ö.×#ØÖ 3 Ù²í)ÙoÎSç#Ø�ÎSà%äTÙ|Ò$4xÎ é à%Ö.×�Õ(Ö�Ö.×#Ø�Ï¡ÒYÖØ�Î.á)Ù|ã¡Õ(Ö.ÏÑÙ|Ò4Ï¡à 3 ÙoÎ.ø@Ï¡Ò#Ð+äTÙoÎ.Î.Ø�äTÖ.ãÑû�ô�Ù|Ò#Ø�äTÙ|â�ã¡çØ�7@á)Ø�äTÖ�Ö.×#Ø é ÖÙHí)Ø:êoØ�Î.ûªà.Ï é Ï¡ã¡Õ(Î�ë�ñ�Ù 3 Ø�êoØ�Î�Ú�Ö.×#Ødç�Ï! )Ø�Î.Ø�Ò�äTØ:ÙoæµÖ.×#ØdÏ¡ÒYÖØ�Î.á)Ù|ã¡Õ(ÖØ�çê(Õoã¡â#Ø�à�à.×#Ù 3 ÒüÏ¡Òi`µÏÑÐ#ë�òHä�ãÑØ�Õ(ÎSãÑû4ç#Ø�áxÏ¡äTÖ.àhÖ.×#سç�Ï¡à.äTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ«ûoë 6 ×#Ø�ç�Ï¡à.äTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ«ûÎSÕoÒ#ÐoØ�à%Ï¡ÒHê(Õoã¡â#Ø�æbÎ.Ù é ÞDë <|ó é Ø�ÖØ�ÎSà�ÖÙ�èSÛ(ë ò*2 é Ø�ÖØ�ÎSà�ë 6 ×�Ï¡à3äTÙ é áxãÑØ�ÖØ�à�Ö.×#Ø:á�Î.ÙDÙoæ1ë

��� �������

6 ×#Ø:àÙ|â#ÎSäTØ�Ùoæ;Ö.×#ØFç�Ï¡à.äTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ«û©äTÙ é Ø�à�æbÎ.Ù é Ö.×#Ø�ÙoíxàØ�Î.ê(Õ(Ö.ÏÑÙ|Ò²Ö.×�Õ(Ö�Ö.×#Ø:í)ÙoÎSç#Ø�ÎÏ¡à�í)Ø�Ï¡Ò#ÐüÏ¡ÒYÖØ�Î.á)Ù|ã¡Õ(ÖØ�ç ê@Ï¡ÕBÖ 3 ÙKç�Ï! )Ø�Î.Ø�ÒYÖ³äTÙ/ê(Õ(ÎSÏ¡ÕoÒ�äTØ é Õ(ÖÎSÏ¡äTØ�à�ë 6 ×#Ø é Õ(ÖÎSÏ¡äTØ�à

Page 24: Institute of Water Resources Annual Technical Report FY 2001

����������� ����� �������������������� ���"!#�$!%�'&�($�)!*���+��,.-/���10#���$0 Ü

ì�Õ(á!Ó é ß H3Ù|â�ÒYÖ<NèSÛ 2*<|ÝoÜoÞoÜÛ-è 2 Û<@2@Û<%<2/è1Þ Û�ÞoÞoóoÞÞ/èsý ÞNýoýYÜý(è a Û<(ýDòa/è1Ý ý#a*<Ý/è¤ò 2%2oóò�è1ó Û�Þ%2ó/è1Ü ó%aÜ/èSÛ< ýYÜÛ<NèSÛoÛ ý@<ÛoÛ-èSÛ82 2*<Û82/èSÛ�Þ Û8aÛ�Þ/èSÛTý Û/òÛTý(èSÛ8a aÛ8a/èSÛ�Ý óÛ�Ý/èSÛ/ò 2Û/ò�èSÛ�ó ÛÛ�ó/èSÛ�Ü ÛÛ�Ü/è 2*< Û

6 Õ(íxãÑØ©Û � õ�Ï¡àÖÎSÏÑíxâ#Ö.ÏÑÙ|Ò+Ùoæµõ�Ï¡à.äTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ«û²ÔBÕ(Ð|Ò�ÏÑÖ.â�ç#ØHÓ é ßSë

Page 25: Institute of Water Resources Annual Technical Report FY 2001

����������� ����� �������������������� ���"!#�$!%�'&�($�)!*���+��,.-/���10#���$0 Û<

Õ(Î.زç�Ï! )Ø�Î.Ø�ÒYÖFí)Ø�ä�Õoâ�àØ+Ö.×#Ø+Ï¡ÒYÖØ�Î.á)Ù|ã¡Õ(Ö.ÏÑÙ|Ò Ò#Ø�ÏÑÐ|×Yí)ÙoÎS×#ÙDÙ@ç�àFÕ(Î.زç�Ï! )Ø�Î.Ø�ÒYÖ�ëª÷1æ�Ö.×#Øà.Õ é áxãÑØ�à�Õ(Î.Ø�Ò#ÙoÖ�Î.Ø � Ø�äTÖ.ÏÑêoØ�àû é©é Ø�ÖÎSÏ¡ä(ÚxÖ.×#Ø�Ò4Ö.×#Ø�Î.Ø�Ï¡à�Ò#ÙHÎ.Ø�ÕoàÙ|ÒUÖÙ+Ø�7@á)Ø�äTÖ�Ö.×#ØáxÕ(Ö.äS×#Ø�à:ÖÙ é Õ(Ö.äS×5Ù|ÒüÖ.×#Ø�ÏÑÎ�í)ÙoÎSç#Ø�ÎSà�ë 6 ×#Ø�Î.Ø�æbÙoÎ.ØoÚQÖ.×�Ï¡à�Ï¡à�Õ²äTÙ é áxãÑØ�ÖØ�ãÑûUÐoØ�Ò#Ø�ÎSÕoãÎ.Ø�à.â�ãÑÖ�ô�ÏÑÖ%Ï¡à�Ò#ÙoÖ�àá)Ø�ä�Ï14�ähÖÙ©Ö.×#ØdäS×#Ù|àØ�ÒUç�Õ(Ö.Õ©àØ�Ö�ë

6 ×�Ï¡à�á�Î.Ùoá)Ø�Î.Ö«ûKÙoæhá)Ù|ãÑû@Ò#Ù é Ï¡Õoã3à.â#Î.æ§ÕoäTØ�à©Ï¡à�Ø�à.àØ�ÒYÖ.Ï¡Õoã¡ãÑû 3 ×Yû H D�ì�õ Ø�7#Ï¡àÖ.à�ëì�ãÑÙoíxÕoã%à.â#á�á)ÙoÎ.Ö³×�Õoà©ãÑÙ|Ò#Ð5í)Ø�Ø�Ò ø@Ò#Ù 3 Ò ÖÙ í)Ø4â�Ò�ç#Ø�à.ÏÑÎSÕ(íxãÑØ+æbÙoΩÎ.Ø�ÕoàÙ|Ò�à©ã¡Ï¡àÖØ�çÕ(í)Ù/êoØoë 6 ×#Ø�àزç#ÎSÕ 3 íxÕoä.ø@à�ãÑØ�ÕoçKÖÙ5â�à.Ï¡Ò#Ð4áxÏÑØ�äTØ 3 Ï¡àØ+ä�â#Î.êoØ�à�ÕoÒ�ç à.â#Î.æ§ÕoäTØ�àdÖ.×�Õ(Ö×�Õ�êoØ�ãÑÙ@ä�ÕoãDà.â#á�á)ÙoÎ.Ö�ë�ñ�Ù 3 Ø�êoØ�Î�ÚYÏÑÖ�Ï¡à�â�à.â�Õoã¡ãÑû�ç#Ø�à.ÏÑÎSÕ(íxãÑØ�ÖÙ:×�Õ�êoØ�à.â#Î.æ§ÕoäTØTè 3 Ï¡ç#Ø¢äTÙ|Ò@èÖ.Ï¡ÒDâ�ÏÑÖ«ûªÙoæ�4xÎSàÖ%ÙoÎ:àØ�äTÙ|Ò�çUÙoÎSç#Ø�Î�ë�÷1æ�Ö.×#Ø�áxÏÑØ�äTØ 3 Ï¡àØdä�â#Î.êoØ�à�Õ(Î.Ø�Ò#ÙoÖ�äTÙ|Ò�àÖÎSâ�äTÖØ�çÖÙ5í)زäTÙ|ÒYÖ.Ï¡ÒDâ#Ù|â�à�ڢϡÒKÐoØ�Ò#Ø�ÎSÕoãðÚ�Ö.×#Ø�û 3 Ï¡ã¡ã3Ò#ÙoÖ�í)Ø5Ó§ç#تú3ÙDÙoÎ�Ú�Û�Ü|ò(ó|ßSë 6 ×#زäTØ�Ò@èÖÎSÕoã2Ö.×#Ø é ØFÙoæ H D�ì�õ�Ï¡à�ÖÙ+ç#Ø�êoØ�ãÑÙoáUáxÏÑØ�äTØ 3 Ï¡àØFä�â#Î.êoØ�à�ÕoÒ�çUà.â#Î.æ§ÕoäTØ�à%Ö.×�Õ(Ö�Ø�ÒNîÙ/ûäTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ«ûªÕoäTÎ.Ù|à.à%Ö.×#Ø�ÏÑÎ�í)ÙoÎSç#Ø�ÎSà�Ú#Ï¡ÒªÕoç�ç�ÏÑÖ.ÏÑÙ|Ò²ÖÙ©ÙoÖ.×#Ø�Î%á�Î.Ùoá)Ø�Î.Ö.ÏÑØ�à�Õoà 3 Ø�ã¡ãðë

��� S�� ���PS ���)Y�� Y�Q S Ê � W

6 ÙüØ�7@áxãÑÙoÎ.Ø+Ö.×#Ø+ÎSÕoÒ#ÐoزÙoæ�á)Ù|à.à.ÏÑíxãÑØHç�Ï¡à.äTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ.ÏÑØ�à:æ§â#Î.Ö.×#Ø�Î�Ú�Ö.×#Ø+Ø�ÒYÖ.ÏÑÎ.Ø4ù@ÕoÒ�ç�Ï¡ÕH3Î.Ø�àÖ�õ��¢Ô 3 Õoà�ÕoÒ�ÕoãÑû :�Ø�ç!Ï¡Ò5Ö.×#Ø é ÕoÒ�Ò#Ø�Î�ç#Ø�à.äTÎSÏÑí)Ø�ç Õ(í)Ù/êoØoë 6 ×�Õ(ÖdÏ¡àFÖÙüà.Õ�ûoÚÎSÕoÒ�ç#Ù é á)Ù|Ï¡ÒYÖ.à 3 Ø�Î.ØUÐoØ�Ò#Ø�ÎSÕ(ÖØ�çÀÖÙ!äTÙ/êoØ�ΪÖ.×#ØUØ�ÒYÖ.ÏÑÎ.ØUõ��¢Ô ÕoÒ�ç Ö.×#ØUí)ÙoÎSç#Ø�ÎSàí)Ø�Ö 3 Ø�Ø�ÒUÕoã¡ã2ÕoçNî.ÕoäTØ�ÒYÖhÒ#Ø�ÏÑÐ|×Yí)ÙoÎS×#ÙDÙ@ç�à 3 Ø�Î.ØdÏ¡ÒYÖØ�Î.á)Ù|ã¡Õ(ÖØ�çQë 6 ×�Ï¡à3Î.Ø�à.â�ãÑÖØ�ç4Ï¡Ò²Ö.×#ØÕoÒ�ÕoãÑû@à.Ï¡à%Ùoæ¢Þ%2|ò(Ü|ò*2Hí)ÙoÎSç#Ø�ÎSà�ë�ÜNý#ë 2��ÆÙoæ�Ö.×#Ødí)ÙoÎSç#Ø�ÎSà%×�ÕoçBÕ é Õ�7#Ï é â é Õ(íxàÙ|ã¡â#ÖØç�Ï¡à.äTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ«û ÓbÐ|Õ(á)ßhÙoæ3Ù|Ò#Ø é Ø�ÖØ�ÎFÙoÎdãÑØ�à.à�ë 6 ×#Ø é Õ�7#Ï é â é Ð|Õ(á ÙoíxàØ�Î.êoØ�ç 3 ÕoàÛ�ÜDë ýYó é Ø�ÖØ�ÎSà�ë 6 ×#Ø�Õ�êoØ�ÎSÕ(ÐoØ é Õ�7#Ï é â é Ð|Õ(á 3 Õoà�<@ë aNý é Ø�ÖØ�ÎSà 3 ÏÑÖ.×4Õ+àÖ.ÕoÒ�ç�Õ(ÎSçç#Ø�ê@Ï¡Õ(Ö.ÏÑÙ|ÒªÙoæ�<@ë Ý%2 é Ø�ÖØ�ÎSà�ë�ùDØ�Ø 6 Õ(íxãÑØ©Û(ë

A5ØüÙoíxàØ�Î.êoØ�çÀÕKäTÙoÎ.Î.Ø�ã¡Õ(Ö.ÏÑÙ|Ò í)Ø�Ö 3 Ø�Ø�Ò à.ãÑÙoá)ØUÕoÒ�ç Ï¡Ò�äTÎ.Ø�Õoà.Ï¡Ò#ÐKç�Ï¡à.äTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ«ûà.Ï;:�ØFàÙ 3 ØFÐoÎ.Ù|â#á)Ø�ç²Ö.×#Ø:ÖØ�àÖ.à�íDû²à.ãÑÙoá)Ø:ÕoÒ�ç4äTÎ.Ø�Õ(ÖØ�çU×�Ï¡àÖÙoÐoÎSÕ é à�Ùoæ�Ö.×#Ødç�Ï¡à.äTÙ|Ò@èÖ.Ï¡ÒDâ�ÏÑÖ«ûHà.Ï;:�Øoë3ù@ãÑÙoá)Ø 3 Õoà�äTÙ é áxâ#ÖØ�çªâ�à.Ï¡Ò#Ð�Õ�ÖØ�äS×�Ò�Ï¡åDâ#Ø:àá)Ø�ä�Ï14�ä�Õoã¡ãÑû©ç#Ø�à.ÏÑÐ|Ò#Ø�çHæbÙoÎÏÑÎ.Î.Ø�Ð|â�ã¡Õ(ÎSãÑû4àáxÕoäTØ�ç ç�Õ(Ö.Õ Ó§ÔUØ�ûoØ�Î�ÕoÒ�çüÙoÖ.×#Ø�ÎSà�Ú}2*<%<#Û/ßSë 6 ×#Ø�Ð|Õ(áxà 3 Ø�Î.سÐoÎ.Ù|â#á)Ø�çíDû à.ãÑÙoá)Øoë 6 Õ(íxãÑØx2üà.×#Ù 3 à³Ö.×#Ø4ç�Ï¡àÖÎSÏÑíxâ#Ö.ÏÑÙ|Ò�àdÙoæhÖ.×#تÐ|Õ(áxà³æbÙoΩæbÙ|â#ΩáxÕ(Î.Ö.Ï¡ä�â�ã¡Õ(Îà.ãÑÙoá)Ø�ê(Õoã¡â#Ø�à�ëP`#ÙoÎ�<��NÚ é Ø�ÕoÒ�Ï¡Ò#Ð � Õ(Ö:ÐoÎ.Ù|â�Ò�çBæbÙoÎFí)ÙoÖ.×5Ò#Ø�ÏÑÐ|×Yí)ÙoÎS×#ÙDÙ@ç�à�Ú2óoÝ�� ÙoæÖ.×#Ø4Ð|Õ(áxàHÕ(Î.Ø4í)Ø�Ö 3 Ø�Ø�Ò :�Ø�Î.ÙKÕoÒ�ç Ù|Ò#Ø é Ø�ÖØ�Î+Ï¡Ò é Õ(Ð|Ò�ÏÑÖ.â�ç#ØoÚ 3 ÏÑÖ.× Ö.×#Ø4Ù/êoØ�ÎSÕoã¡ãà.×�Õ(á)سÙoæ3Ö.×#ØHç�Ï¡àÖÎSÏÑíxâ#Ö.ÏÑÙ|ÒBÕ(á�á)Ø�Õ(ÎSÏ¡Ò#Ð+ÖÙUí)سÕ4ç#Ø�äTÎ.Ø�Õoà.Ï¡Ò#ЪØ�7@á)Ù|Ò#Ø�ÒYÖ.Ï¡Õoãðë³÷¤ÒYÖØ�ÎèØ�àÖ.Ï¡Ò#Ð|ãÑûoÚ;Ö.×#Ø�Î.Ø 3 ÕoàdÕ4à.Ï¡Ò#Ð|ãÑØ©Ï¡Ò�àÖ.ÕoÒ�äTØHÏ¡Ò 3 ×�Ï¡äS× � Õ(ÖdÐoÎ.Ù|â�Ò�ç5á�Î.Ù@ç�â�äTØ�ç5Õ4Ò�Ï¡Ò#Øé Ø�ÖØ�εÐ|Õ(á2ë.A5Ø�Ò#Ø�7@Öµà.×#Ù 3 Ö.×#Ø¢Î.Ø�à.â�ãÑÖ.à2æbÙoÎ;Ö.×#Ø�Ò#Ø�7@Ö�à.ãÑÙoá)Ø�ÐoÎ.Ù|â#á2ÚNÖ.×#Ù|àØ�ãÑØ�à.à2Ö.×�ÕoÒÞ�� ò*a��(ë�D�Ð|ÕoÏ¡ÒQÚYÖ.×#Ø%ç�Ï¡àÖÎSÏÑíxâ#Ö.ÏÑÙ|Ò�Õ(á�á)Ø�Õ(ÎSÏ¡Ò#Ð�ÖÙFí)Ø%ÕFç#Ø�äTÎ.Ø�Õoà.Ï¡Ò#Ð:Ø�7@á)Ù|Ò#Ø�ÒYÖ.Ï¡Õoãðë.A5Øàø@ÏÑáKÖÙBÖ.×#ØHÎ.Ø�à.â�ãÑÖ.àFæbÙoÎ�ýYÜ�� ò�(ëxK�ÙoÖ.Ï¡äTØ+Ö.×�Õ(Ö�Ö.×#Ø+ç�Ï¡àÖÎSÏÑíxâ#Ö.ÏÑÙ|Ò5Ò#Ù 3 Õ(á�á)Ø�Õ(ÎSàFÖÙí)تãÑÙoÐ|Ò#ÙoÎ é Õoã 3 ÏÑÖ.×!Õ é Ø�ÕoÒ Õ(Î.Ù|â�Ò�ç Þ é Ø�ÖØ�ÎSà�ë `µÏ¡Ò�Õoã¡ãÑûoÚ�Ö.×#تç�Ï¡àÖÎSÏÑíxâ#Ö.ÏÑÙ|Ò5æbÙoÎÖ.×#Ø�àÖØ�Ø�á)Ø�àÖ�à.ãÑÙoá)Ø�çUÒ#Ø�ÏÑÐ|×Yí)ÙoÎS×#ÙDÙ@ç�à%×�ÕoàhêoØ�Î.û4æbØ 3 à.Õ é áxãÑØ�à�íxâ#ÖhÕ(á�á)Ø�Õ(ÎSà%ÖÙ²í)ØÎ.Ù|â#Ð|×�ãÑû+â�Ò�ÏÑæbÙoÎ é ë

Ì Y��PT�]�NP_ �)Y��P_ S �P[ Ê �)_�T�NP_�_ �)Y��

A5ØHÒ#ÙoÖØ©àØ�êoØ�ÎSÕoã�ÖÎ.Ø�Ò�ç�à:Ï¡ÒBÖ.×#Ø�Ð|Õ(áKç�Ï¡àÖÎSÏÑíxâ#Ö.ÏÑÙ|Ò�à�ë�hêoØ�ÎSÕoã¡ãðÚQÖ.×#Ø©ç�Ï¡àÖÎSÏÑíxâ#Ö.ÏÑÙ|Ò�àÙoæ�Ö.×#Ø4Ð|Õ(áxàHÕ(á�á)Ø�Õ(ΩÖÙ í)Ø4ãÑÙoÐ|Ò#ÙoÎ é Õoãðë K�Ø�7@Ö�Ú�Ö.×#Ø4Õ�êoØ�ÎSÕ(ÐoØüÐ|Õ(áÀà.Ï;:�Ø4àÖØ�Õoç�Ï¡ãÑûÏ¡Ò�äTÎ.Ø�ÕoàØ�à 3 ÏÑÖ.תà.ãÑÙoá)Øoë 6 ×�ÏÑÎSçQÚDÖ.×#ØFê(Õ(ÎSÏ¡Õ(íxÏ¡ã¡ÏÑÖ«ûHÙoæ�Ð|Õ(áüà.Ï;:�ØFÏ¡Ò�äTÎ.Ø�ÕoàØ�à 3 ÏÑÖ.×4à.ãÑÙoá)Øoë

Page 26: Institute of Water Resources Annual Technical Report FY 2001

����������� ����� �������������������� ���"!#�$!%�'&�($�)!*���+��,.-/���10#���$0 ÛoÛ

Ó é ß <�� Þ�� ò*a�� ýYÜ�� ò� a%2�� ò�< Û�Ü*<#Û Þoó|ò(Ý%a ÛÛ 2oóoó ÞoÝNýoý ò2 Ü óoÜ Û�ó 2Þ a Û82 Û�Þ Ûý ý ÛTý 2a 2 Û82 ýÝ ò Ûò òó ÞÜ Û ýÛ< ÞÛoÛ <Û82 2Û�ÞÛTýÛ8a ÞÛ�ÝÛ/ò ÛÛ�óÛ�Ü2*< Û

6 Õ(íxãÑØ 2 � ù@ãÑÙoá)Ø©Ó§ç#Ø�ÐoÎ.Ø�Ø�à-ß�ê@à�ë�õ�Ï¡à.äTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ«û²ÔBÕ(Ð|Ò�ÏÑÖ.â�ç#ØHÓ é ßSë

Page 27: Institute of Water Resources Annual Technical Report FY 2001

����������� ����� �������������������� ���"!#�$!%�'&�($�)!*���+��,.-/���10#���$0 Û82

6 ×�Ï¡à¢à.â#ÐoÐoØ�àÖ.à�Ö.×�Õ(Ö3øDÎSÏÑÐ|Ï¡Ò#Ð 3 ÏÑÖ.×HÕdÖÎ.Ø�Ò�ç é ÏÑÐ|×YÖ3á)Ø�Î.æbÙoÎ é í)Ø�ÖÖØ�Î�Ö.×�ÕoÒHÖ.×#ØhÙoÎSç�Ï�èÒ�Õ(Î.û©øDÎSÏÑÐ|Ï¡Ò#Ðdâ�àØ�ç+Ï¡Ò©Ö.×�Ï¡à3àÖ.â�ç#û³í)Ø�ä�Õoâ�àØhøDÎSÏÑÐ|Ï¡Ò#Ð 3 ÏÑÖ.×HÕ�ÖÎ.Ø�Ò�çHÎ.Ø é Ù/êoØ�à�ÖÎ.Ø�Ò�ç�àÓ§à.ãÑÙoá)ØNß2Ï¡ÒFÖ.×#Ø�ç�Õ(Ö.Õ@Ú 3 ×�Ï¡äS×�ä�ÕoÒ�Õ(Î.Ð|â�Õ(íxãÑû:í)Ø¢ê@ÏÑÙ|ã¡Õ(Ö.Ï¡Ò#Ð�Ö.×#Ø�àÖ.Õ(Ö.ÏÑÙ|Ò�Õ(ÎSÏÑÖ«ûdÕoà.à.â é á#èÖ.ÏÑÙ|Ò4â#á)Ù|Ò 3 ×�Ï¡äSײøDÎSÏÑÐ|Ï¡Ò#гϡà�íxÕoàØ�çQë 6 ×�Ï¡à�Ï¡à%Õ³à.â#í@îØ�äTÖ%æbÙoÎ%æ§â#Ö.â#Î.Ø�Î.Ø�àØ�Õ(ÎSäS×Që

6 ×#زÎSÕ é Ï14�ä�Õ(Ö.ÏÑÙ|Ò�à�ÙoæhÖ.×�Ï¡à�ç�Ï¡à.äTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ«ûKç#Ø�á)Ø�Ò�ç ã¡Õ(Î.ÐoØ�ãÑû!â#á)Ù|Ò!Ö.×#تÒ#Ø�Ø�ç�àÙoæ¢Ö.×#Ø�â�àØ�Î�ë:õ�Ï¡à.äTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ.ÏÑØ�àhà.â�äS×üÕoà�Ö.×#Ø�Ù|Ò#Ø�á�Î.Ø�àØ�ÒYÖ.ãÑûUÕ(í)Ù/êoØ 3 Ï¡ã¡ã2í)Ø�ä�ãÑØ�Õ(ÎSãÑûê@Ï¡à.ÏÑíxãÑسÙ|ÒK×�ÏÑÐ|× �DÕoä�ä�â#ÎSÕoäTû5ÖÙoá)ÙoÐoÎSÕ(áx×�Ï¡ä é Õ(áxà�ëUù@â#Î.êoØ�û é Õ(áxàdæbÎ.Ø�åDâ#Ø�ÒYÖ.ãÑû5×�Õ�êoØÙ|Ò#Ø �YæbÙDÙoÖ�äTÙ|ÒYÖÙ|â#Îhã¡Ï¡Ò#Ø�à�ÕoÒ�çUç�Ï¡à.äTÎ.Ø�áxÕoÒ�ä�ÏÑØ�à�ÙoæµÖ.×#Î.Ø�Ø é Ø�ÖØ�ÎSà 3 Ï¡ã¡ã)í)ØFà.ÏÑÐ|Ò�Ï14�ä�ÕoÒYÖ�ë÷¤ÒªäTÙ|ÒYÖÎSÕoàÖ�Ú#Ö.×#Ø�àØFç�Õ(Ö.Õ 3 Ø�Î.Ø:Ö.Õ(øoØ�ÒªæbÎ.Ù é Õ³ç�ÏÑÐ|ÏÑÖ.ÕoãxØ�ãÑØ�ê(Õ(Ö.ÏÑÙ|Ò é Ù@ç#Ø�ã)ç#Ø�êoØ�ãÑÙoá)Ø�çæbÎ.Ù é Õ é Õ(á 3 ÏÑÖ.×�ý@<:æbÙDÙoÖ�äTÙ|ÒYÖÙ|â#΢ã¡Ï¡Ò#Ø�à�ë 6 ×#Ø�àØ%ç�Ï¡à.äTÙ|ÒYÖ.Ï¡ÒDâ�ÏÑÖ.ÏÑØ�à�ç#ÙFÒ#ÙoÖ�äTÙ é á�Î.Ù(èé Ï¡àØ�à.â�äS×+Õ é Õ(á = à3äTÙ|Ò#æbÙoÎ é ÕoÒ�äTØ 3 ÏÑÖ.׳Ö.×#Ø�KhÕ(Ö.ÏÑÙ|Ò�ÕoãxÔBÕ(ácDhä�ä�â#ÎSÕoäTû+ùDÖ.ÕoÒ�ç�Õ(ÎSç�àÕoÒ�çQÚ#Ö.×#Ø�Î.Ø�æbÙoÎ.ØoÚxäTÙ|â�ã¡çªí)ØFÏÑÐ|Ò#ÙoÎ.Ø�çªÏ¡ÒªÏÑÖ.à%äTÙ é áxÏ¡ã¡Õ(Ö.ÏÑÙ|ÒQë

� T����PY�� ])V�[���V � V ���"_

6 ×�Ï¡à 3 ÙoÎ.ø 3 Õoà�æ§â�Ò�ç#Ø�çBíDûUÖ.×#ØIH3Ù|Ò�Ò#Ø�äTÖ.Ï¡ä�â#Ö�÷¤Ò�àÖ.ÏÑÖ.â#ÖØ�Ùoæ A Õ(ÖØ�Î�?%Ø�àÙ|â#ÎSäTØ�à:Ï¡ÒäTÙDÙoá)Ø�ÎSÕ(Ö.ÏÑÙ|Ò 3 ÏÑÖ.×+Ö.×#Ø�ùDÖ.Õ(ÖØ+A Õ(ÖØ�Î�?%Ø�àÙ|â#ÎSäTØ�à'?%Ø�àØ�Õ(ÎSäS×4÷¤Ò�àÖ.ÏÑÖ.â#ÖØ/F�Î.ÙoÐoÎSÕ é ÙoæÖ.×#Ø �dë ù�ë¢ìhØ�Ù|ãÑÙoÐ|Ï¡ä�Õoãhù@â#Î.êoØ�ûKâ�Ò�ç#Ø�Î �:ù�ìFùKÕ 3 Õ(ÎSç ÒDâ é í)Ø�Î\<#Û�ñ��Fì�?�<%<Yò(óDÚ�ÕoàÕoâ#Ö.×#ÙoÎSÏ;:�Ø�çBíDû4Ö.×#Ø�A Õ(ÖØ�Î ?%Ø�àÙ|â#ÎSäTØ�à�?%Ø�àØ�Õ(ÎSäS× DhäTÖ�Ùoæ�Û�ÜoóNýKÓGF�ë ö�ë2Üoó/è 2Ný#2|ßSÚ�ÕoàÕ é Ø�Ò�ç#Ø�çQë

Ç V�Q8V�ORV �PT�V�_

Dhã é ÕoÒ�à.Õ@Ú�DhÒ�ç#ÎØ�à�Ú H�Õ(Ù#Ú/`#ÎØ�ç�Ø�ÎSÏ¡ä(Ú�ìhÙ|â�à.àØ�ÕoâQÚ�>¢ÕoÒ�ÒQÚ:ÕoÒ�ç ?%Ù|â#Ð�ØoÚFú3Ø�ÎSÒ�Õ(ÎSçQÚ2*<%<@2DÚD÷¤ÒYÖØ�Î.á)Ù|ã¡Õ(Ö.ÏÑÙ|Ò�ÙoæQõ�ÏÑÐ|ÏÑÖ.Õoã��¢ãÑØ�ê(Õ(Ö.ÏÑÙ|Ò©ÔUÙ@ç#Ø�ã¡à �hà.Ï¡Ò#Ð/DhÔBö}�KÕoÒ�ç ?%Ø�ã¡Õ(ÖØ�çÔUØ�Ö.×#Ù@ç�à � ÷L�^�^� 6 ÎSÕoÒ�à.ÕoäTÖ.ÏÑÙ|Ò�à�Ù|Ò5ìhØ�Ù|à.ä�ÏÑØ�Ò�äTسÕoÒ�çi?%Ø é ÙoÖØ©ùDØ�Ò�à.Ï¡Ò#Ð#Úxê�ëxý@<@ÚÒ#Ù#ë�2DÚ�á�á2ë�Þ@ÛTý��@Þ%2%aDë

ú�ÕoÏ¡ãÑØ�ûoÚ 6 Î.Ø�êoÙoÎ�HhëÑÚQÛ�ÜoÜNý#Ú�D�Î.Ø�ê@ÏÑØ 3 Ùoæ�àÖ.Õ(Ö.Ï¡àÖ.Ï¡ä�Õoã)àáxÕ(Ö.Ï¡Õoã)ÕoÒ�ÕoãÑû@à.Ï¡à3Ï¡Ò+ÐoØ�ÙoÐoÎSÕ(áx×@èÏ¡ä�Õoã)Ï¡Ò#æbÙoÎ é Õ(Ö.ÏÑÙ|Ò+àû@àÖØ é à � ���x`#ÙoÖ.×#Ø�ÎSÏ¡Ò#Ð|×�Õ é Ú�ùDÖØ 3 Õ(Î.Ö�ÕoÒ�çB?%ÙoÐoØ�ÎSàÙ|ÒQÚ�F�Ø�ÖØ�ÎÓbØ�ç�à�ë ßSÚQùDáxÕ(Ö.Ï¡ÕoãRDhÒ�ÕoãÑû@à.Ï¡à�ÕoÒ�çBìh÷.ù�Ú 6 Õ�û@ãÑÙoÎ� `#ÎSÕoÒ�ä�Ï¡à�Ú�ö2Ù|Ò�ç#Ù|ÒQÚ#á�á2ë2Û�Þ8�Yýoý#ë

õ�Õ�ê@Ï¡çQÚxÔKëÑÚ;Û�Ü|òoòYÚ2ìhØ�Ù|àÖ.Õ(Ö.Ï¡àÖ.Ï¡ä�Õoã hÎ.Ø+?%Ø�àØ�Î.êoØ �¢àÖ.Ï é Õ(Ö.ÏÑÙ|Ò � �¢ã¡àØ�ê@ÏÑØ�Îhù@ä�ÏÑØ�ÒYÖ.Ï14�äF¢â#íxã¡Ï¡à.×�Ï¡Ò#ÐPH3Ù é áxÕoÒYûoÚCD é àÖØ�ÎSç�Õ é ë

ç#ØHú3ÙDÙoÎ�Ú�H�Õ(ÎSãðÚ¢Û�Ü|ò(óDÚ�D F�ÎSÕoäTÖ.Ï¡ä�Õoã3ì�â�Ï¡ç#سÖÙüùDáxã¡Ï¡Ò#Ø�à � ùDá�ÎSÏ¡Ò#ÐoØ�ÎL� ��Ø�ÎSã¡Õ(Ð#Ú}K�Ø 3>�ÙoÎ.ø�ë

õhØ�ä�ãÑØ�ÎSä�åxÚ^`#ÎSÕoÒ#øDû�DhãÑí)Ø�Î.Ö K�Ù�Ø�ãðÚ�Û�ÜoÜoÝDÚ¢÷¤ÒYÖØ�Î.á)Ù|ã¡Õ(Ö.ÏÑÙ|ÒKÔUØ�Ö.×#Ù@ç�àP`#ÙoÎHù@ä�Õ(ÖÖØ�Î.Ø�çù@Õ é áxãÑØ�õ�Õ(Ö.Õ � Dhä�ä�â#ÎSÕoäTûoÚ�ùDáxÕ(Ö.Ï¡Õoã$FµÕ(ÖÖØ�ÎSÒ�à�Ú$F�Î.Ù@äTØ�à.à.Ï¡Ò#Ð 6 Ï é Ø � H�Õ(Î.ÖÙoÐoÎSÕ(áx×YûÕoÒ�çBìhØ�ÙoÐoÎSÕ(áx×�Ï¡ä:÷¤Ò#æbÙoÎ é Õ(Ö.ÏÑÙ|ÒUùDû@àÖØ é à�Ú#ê�ë�2oÞDÚxÒ#Ù#ë�ÞDÚ�á�á2ëQÛ82oó8��ÛTýoý#ë

õ�ÏÑØ�ÎSä.ø#7)Ú@FµÕoâ�ãðÚ#Û�ÜoÜ%aDÚ$H�â#Î.êoØ3ÕoÒ�ç³ù@â#Î.æ§ÕoäTØ `µÏÑÖÖ.Ï¡Ò#Ð 3 ÏÑÖ.׳ùDáxã¡Ï¡Ò#Ø�à � �7@æbÙoÎSç�ù@ä�ÏÑØ�Ò�äTØF¢â#íxã¡Ï¡ä�Õ(Ö.ÏÑÙ|Ò�à�Ú �7@æbÙoÎSçQë

`�Õ(ÎSÏ¡ÒQÚ�ìhØ�ÎSÕoã¡çQÚ�Û�ÜoÜoÞDÚUH�â#Î.êoØ�à³ÕoÒ�ç ù@â#Î.æ§ÕoäTØ�à�æbÙoÎIH3Ù é áxâ#ÖØ�Î\DhÏ¡ç#Ø�ç ìhØ�Ù é Ø�ÖÎSÏ¡äõhØ�à.ÏÑÐ|Ò � DsF�ÎSÕoäTÖ.Ï¡ä�Õoãµì�â�Ï¡ç#ØoÚ�ÞNÎSçªØ�çQë � Dhä�Õoç#Ø é Ï¡ä+F�Î.Ø�à.à�Ú�K�Ø 3 >�ÙoÎ.ø�ë

Page 28: Institute of Water Resources Annual Technical Report FY 2001

����������� ����� �������������������� ���"!#�$!%�'&�($�)!*���+��,.-/���10#���$0 Û�Þ

`�Õ(ÎSÏ¡ÒQÚ|ìhØ�ÎSÕoã¡çQÚ@Û�ÜoÜ%aDÚ@K ��?�ú H�â#Î.êoØ�à;ÕoÒ�ç�ù@â#Î.æ§ÕoäTØ�à � `#Î.Ù é F�Î.ÙNîØ�äTÖ.ÏÑêoØ�ìhØ�Ù é Ø�ÖÎ.ûÖÙgF�ÎSÕoäTÖ.Ï¡ä�Õoã �hàØ � D�ÍEF�Ø�ÖØ�ÎSà�ÚCA5Ø�ã¡ãÑØ�à.ãÑØ�ûoÚ�ÔiDdë

ìhÙDÙ/ê(Õ(Ø�Î.Ö.à�Ú F¢ÏÑØ�Î.Î.ØoÚ³Û�ÜoÜ|òYÚ�ìhØ�Ù|àÖ.Õ(Ö.Ï¡àÖ.Ï¡ä�à4æbÙoÎxKhÕ(Ö.â#ÎSÕoã+?%Ø�àÙ|â#ÎSäTØ�àx��ê(Õoã¡â�Õ(Ö.ÏÑÙ|Ò ��7@æbÙoÎSç��hÒ�ÏÑêoØ�ÎSà.ÏÑÖ«ûIF�Î.Ø�à.à�Ú�K�Ø 3 >�ÙoÎ.ø�ë

÷¤à.ÕoÕ(ø@à�ÚC�¢ç 3 Õ(ÎSç²ñ�ÕoÒ�çUùDÎSÏÑê(ÕoàÖ.Õ�ê(Õ@Ú�?Fë�ÔUÙ|×�ÕoÒQÚ2Û�ÜoóoÜDÚCDhÒª÷¤ÒYÖÎ.Ù@ç�â�äTÖ.ÏÑÙ|Ò+ÖÙ D�á#èáxã¡ÏÑØ�ç4ìhØ�Ù|àÖ.Õ(Ö.Ï¡àÖ.Ï¡ä�à � �7@æbÙoÎSç��hÒ�ÏÑêoØ�ÎSà.ÏÑÖ«ûIF�Î.Ø�à.à�Ú�K�Ø 3 >�ÙoÎ.ø�ë

ïoÙ|â#ÎSÒ�ÕoãðÚ Ddë#ì�ë@ÕoÒ�ç+ñhâ�Ï îí�Î.Ø�ÐoÖ.à�Ú$Hhë@ï#ëÑÚ)Û�Ü|ò(óDÚ�ÔBÏ¡Ò�Ï¡Ò#Ð�ìhØ�Ù|àÖ.Õ(Ö.Ï¡àÖ.Ï¡ä�à � Dhä�Õoç#Ø é Ï¡äF�Î.Ø�à.à�Ú�ö2Ù|Ò�ç#Ù|ÒQë

ÍFÕ(Ö�:�Ï¡ãðÚ >�ë�ÕoÒ�ç õhÙ/ûDÖ.à.×#Ø�Î�Ú.>�ëÑÚ�2*<%<%<@Ú�ñ�Ø�ÏÑÐ|×YÖ �¢àÖ.Ï é Õ(Ö.ÏÑÙ|Ò ÔUØ�Ö.×#Ù@ç�àFæbÙoÎ�`µÏ¡ã¡ã¡Ï¡Ò#Ðì�Õ(áxàhÏ¡ÒüìhÎSÏ¡ç�ç#Ø�ç4õ 6 Ô � ïoÙ|â#ÎSÒ�ÕoãQÙoæ3ù@â#Î.êoØ�û@Ï¡Ò#Ðg�¢Ò#Ð|Ï¡Ò#Ø�Ø�ÎSÏ¡Ò#Ð#Ú�ê�ë�Û82oÝDÚ)Ò#Ù#ëxý#Úá�á2ë2ÛTý#a8��Û�Ý%2Dë

ÍFÏ é Ø�ã¡ç#ÙoÎ.æ1Úxì�ë�ÕoÒ�çcA Õo×YíxÕ@ÚQì�ëÑÚ�Û�Ü|òDÛ(Ú2ùDÙ é ØFÎ.Ø�à.â�ãÑÖ.à�Ù|Ò 6 äS×#Ø�íDû@äS×#Ø�9+ÕoÒUàáxã¡Ï¡Ò#Øæ§â�Ò�äTÖ.ÏÑÙ|Ò�à � ïoÙ|â#ÎSÒ�ÕoãdÙoæ²ÔBÕ(Ö.×#Ø é Õ(Ö.Ï¡ä�Õoã DhÒ�ÕoãÑû@à.Ï¡à D�á�áxã¡Ï¡ä�Õ(Ö.ÏÑÙ|Ò�à�Údê�ëFÞoÞDÚá�á2ëxó%28�@Ü%aDë

ö;Õ é ÚCKhÏ¡Ò�ÕHù�ëÑÚ;Û�ÜoóoÞDÚQùDáxÕ(Ö.Ï¡ÕoãQ÷¤ÒYÖØ�Î.á)Ù|ã¡Õ(Ö.ÏÑÙ|ÒªÔUØ�Ö.×#Ù@ç�à � D ?%Ø�ê@ÏÑØ 3 � 6 ×#Ø+D é Ø�ÎèÏ¡ä�ÕoÒiH�Õ(Î.ÖÙoÐoÎSÕ(áx×#Ø�Î�Ú�ê�ë2Û<@Ú�Ò#Ù#ëC2DÚ�á�á2ë2Û82oÜ8��ÛTýYÜDë

ö;ÕoÒ�ä�ÕoàÖØ�Î�Ú$F�Ø�ÖØ�Î�ÕoÒ�ç "ù@ÕoãÑø(Õoâ�àø(Õoà�ÚYÍ�Ø�àÖ.â#Ö.Ï¡à�ÚxÛ�ÜoóoÝDÚCH�â#Î.êoØ%ÕoÒ�ç²ù@â#Î.æ§ÕoäTØ'`µÏÑÖÖ.Ï¡Ò#Ð �

DhÒª÷¤ÒYÖÎ.Ù@ç�â�äTÖ.ÏÑÙ|Ò � Dhä�Õoç#Ø é Ï¡ä/F�Î.Ø�à.à�Ú�K�Ø 3 >�ÙoÎ.ø�ëö;Õoà.ãÑØ�ÖÖ�Ú#ì�ëYÔKëÑÚ�Û�ÜoÜNý#Ú@Í:ÎSÏÑÐ|Ï¡Ò#Ð:ÕoÒ�çHùDáxã¡Ï¡Ò#Ø�à � DhÒ�Ø é á)Ø�ÎSÏ¡ä�Õoã#äTÙ é áxÕ(ÎSÏ¡àÙ|Ò³Ùoæ�Ö.×#Ø�ÏÑÎá�Î.Ø�ç�Ï¡äTÖ.ÏÑêoزá)Ø�Î.æbÙoÎ é ÕoÒ�äTØªÏ¡Ò àÙ é Ø4Õ(á�áxã¡Ï¡ä�Õ(Ö.ÏÑÙ|Ò�à � ïoÙ|â#ÎSÒ�Õoã3ÙoæhÖ.×#Ø�D é Ø�ÎSÏ¡ä�ÕoÒùDÖ.Õ(Ö.Ï¡àÖ.Ï¡ä�Õoã Dhà.àÙ@ä�Ï¡Õ(Ö.ÏÑÙ|ÒQÚ#ê�ë�óoÜDÚxÒ#Ù#ë�ý#2oÝDÚxá�á2ë�ÞoÜ@Û��Yý@<|ÜDë

ÔBÕ(ÐoÐ|ÏÑÙ#Ú�?%Ùoí)Ø�Î.Ö�HhëÑÚ�ÔUØ�ûoØ�Î�Ú 6 ×#Ù é ÕoàdñdëÑÚ�ÕoÒ�ç!ù@Ï¡àø(Õ@Ú}F�Ø�ÖØ�ÎPF�ëÑÚ3Û�ÜoÜ|òYÚ¢ùDáxÕ(Ö.Ï¡ÕoãØ�ç�â�ä�Õ(Ö.ÏÑÙ|Ò�â�à.Ï¡Ò#ÐKÎ.Ø�ã¡Õ(Ö.ÏÑÙ|Ò�Õoãhç�Õ(Ö.Õ(íxÕoàØ�à � ���sF�Î.Ù@äTØ�Ø�ç�Ï¡Ò#Ð|àHÙoæ³ìh÷.ù��Nö2÷.ù = Ü|òYÚH�Ï¡Ò�ä�Ï¡Ò�Ò�Õ(Ö.ÏðÚ �×�ÏÑÙ#Ú@á�á2ë#ýYÞ%28�Yýoý@<@ë

ÔBÕ(Ö.×#Ø�Î.Ù|ÒQÚ�ì�ëÑÚ�Û�ÜoÝoÞDÚ�F�ÎSÏ¡Ò�ä�ÏÑáxãÑØ�à�Ùoæ�ÐoØ�Ù|àÖ.Õ(Ö.Ï¡àÖ.Ï¡ä�à � �¢äTÙ|Ò#Ù é Ï¡ä+ìhØ�Ù|ãÑÙoÐoûoÚµê�ë.aoóDÚá�á2ë2Û82NýYÝ8��Û82oÝoÝDë

ÔUØ�ûoØ�Î�Ú 6 ×#Ù é Õoà�ñdëÑÚ���ÎSÏÑø@à.àÙ|ÒQÚDÔBÕ(ÎSÏ¡ÕoÒQÚ#ÕoÒ�ç²ÔBÕ(ÐoÐ|ÏÑÙ#Ú�?%Ùoí)Ø�Î.Ö'HhëÑÚ�2*<%<#Û(Ú)ìhÎSÕoç�Ï�èØ�ÒYÖ.�¢àÖ.Ï é Õ(Ö.ÏÑÙ|Ò:æbÎ.Ù é ÷1Î.Î.Ø�Ð|â�ã¡Õ(ÎSãÑû:ùDáxÕoäTØ�çdõ�Õ(Ö.Õ�ùDØ�Ö.à � ÔBÕ(Ö.×#Ø é Õ(Ö.Ï¡ä�Õoã#ìhØ�Ù|ãÑÙoÐoûoÚê�ë�ÞoÞDÚxÒ#Ù#ë�ÝDÚ�á�á2ë�ÝoÜoÞ8�#òDÛ/òYë

ÔUØ�ûoØ�Î�Ú 6 ×#Ù é Õoà�ñ�Ø�Ò#Î.ûoÚ�Û�ÜoÜoÜDÚ}D H3Ù|Ò�äTØ�á�Ö.â�Õoã�`#ÎSÕ é Ø 3 ÙoÎ.øUæbÙoÎ:õ�ÏÑÐ|ÏÑÖ.Õoã 6 Ø�Î.ÎSÕoÏ¡ÒÔUÙ@ç#Ø�ã¡Ï¡Ò#Ð � F¢×Që õ�ëµÖ.×#Ø�à.Ï¡à�Ú 6 Ø�7#Õoà\D� :Ô �hÒ�ÏÑêoØ�ÎSà.ÏÑÖ«ûoÚ¢õhØ�áxÕ(Î.Ö é Ø�ÒYÖ�Ùoæ�`#ÙoÎ.Ø�àÖù@ä�ÏÑØ�Ò�äTØoÚ"H3Ù|ã¡ãÑØ�ÐoØ�ùDÖ.Õ(Ö.ÏÑÙ|ÒQÚ 6 Ø�7#Õoà�ë

ÔBÏ¡ã¡ãÑØ�Î�Ú�Hhë%ö�ë�ÕoÒ�ç�ö;Õ%`µã¡Õ é©é ØoÚ�?FëUDdëÑÚ³Û�Ü%aoóDÚ 6 ×#Ø5õ�ÏÑÐ|ÏÑÖ.Õoã 6 Ø�Î.ÎSÕoÏ¡Ò ÔUÙ@ç#Ø�ãhè6 ×#Ø�ÙoÎ.û ÕoÒ�ç D�á�áxã¡Ï¡ä�Õ(Ö.ÏÑÙ|Ò � F¢×#ÙoÖÙoÐoÎSÕ é©é Ø�ÖÎSÏ¡äi�¢Ò#Ð|Ï¡Ò#Ø�Ø�ÎSÏ¡Ò#Ð#Ú�ê�ëU2Ný#ÚhÒ#Ù#ë%òYÚá�á2ë#ýYÞoÞ8�Yýoý#2Dë

F¢×�Ï¡ã¡ÏÑá2Ú�ì�ë�ÔKëµÕoÒ�ç A Õ(Ö.àÙ|ÒQÚ3õ�ë�`3ëÑÚ�Û�ÜoóoÝDÚ3ÔBÕ(Ö.×#Ø�Î.Ù|Ò�Ï¡ÕoÒ ìhØ�Ù|àÖ.Õ(Ö.Ï¡àÖ.Ï¡ä�à�è ��â#Ù��Õoç�Ï¡à�� � ÔBÕ(Ö.×#Ø é Õ(Ö.Ï¡ä�Õoã�ìhØ�Ù|ãÑÙoÐoûoÚxê�ë;Û�óDÚxÒ#Ù#ë;Û(Ú�á�á2ë�ÜoÞ8��ÛoÛ/òYë

Page 29: Institute of Water Resources Annual Technical Report FY 2001

����������� ����� �������������������� ���"!#�$!%�'&�($�)!*���+��,.-/���10#���$0 ÛTý

A Õo×YíxÕ@Ú)ì�ëÑÚ2Û�ÜoÜ*<@Ú)ùDáxã¡Ï¡Ò#ØhÔUÙ@ç#Ø�ã¡à3æbÙoÎ híxàØ�Î.ê(Õ(Ö.ÏÑÙ|Ò�Õoã)õ�Õ(Ö.Õ � ùDÙ@ä�ÏÑØ�Ö«û+æbÙoÎ�÷¤Ò�ç�â�à¤èÖÎSÏ¡ÕoãQÕoÒ�ç�D�á�áxã¡ÏÑØ�ç²ÔBÕ(Ö.×#Ø é Õ(Ö.Ï¡ä�à�Ú�F¢×�Ï¡ã¡Õoç#Ø�ãÑáx×�Ï¡Õ@ë

>¢ÕoÒ#Ð#Ú���ë/ÕoÒ�çFñ�Ù@ç�ãÑØ�Î�Ú 6 ëÑÚ*2*<%<%<@Ú ��Ï¡à.â�ÕoãoÕoÒ�ç�ùDÖ.Õ(Ö.Ï¡àÖ.Ï¡ä�Õoã H3Ù é áxÕ(ÎSÏ¡àÙ|Ò�à)Ùoæ�ù@â#Î.æ§ÕoäTØÔUÙ@ç#Ø�ã¡Ï¡Ò#Ð 6 Ø�äS×�Ò�Ï¡åDâ#Ø�à%æbÙoÎ�F�Ù|Ï¡ÒYÖ¤èsíxÕoàØ�çx�¢ÒYê@ÏÑÎ.Ù|Ò é Ø�ÒYÖ.Õoã;õ�Õ(Ö.Õ � H�Õ(Î.ÖÙoÐoÎSÕ(áx×YûÕoÒ�çBìhØ�ÙoÐoÎSÕ(áx×�Ï¡ä:÷¤Ò#æbÙoÎ é Õ(Ö.ÏÑÙ|ÒUù@ä�ÏÑØ�Ò�äTØoÚ#ê�ë�2|òYÚxÒ#Ù#ë�2DÚ�á�á2ëQÛ�Ý%a8��Û/ò(ÝDë

Page 30: Institute of Water Resources Annual Technical Report FY 2001

A Tracer Dilution Method for Deriving Fracture Properties inCrystalline Bedrock Wells

Basic Information

Title:A Tracer Dilution Method for Deriving Fracture Properties in Crystalline Bedrock Wells

Project Number: 2001CT741B

Start Date: 3/1/2001

End Date: 2/28/2002

Funding Source: 104B

Congressional District:

2nd

Research Category:

Not Applicable

Focus Category: Groundwater, Water Supply, Solute Transport

Descriptors:well hydraulics, water quality, water levels, solute transport, hydrogeology,fracture hydrology, contaminant transport, bedrock fractures,aquifer characteristics

Principal Investigators:

Gary Robbins

Publication

1. Brainerd, Richard J.; 2002, "A Stepwise Discharge Tracer Dilution Method for Deriving FractureProperties in Crystalline Bedrock Wells", "MS Dissertation", Department of Geology andGeophysics, University of Connecticut, Storrs, CT, 162pp.

Page 31: Institute of Water Resources Annual Technical Report FY 2001

Title: A Tracer Dilution Method for Deriving Fracture Properties in Crystalline Bedrock Wells.

Statement of Critical Regional or State Water Problem: Most rural domestic wells in New England derive their water from fractured crystalline rocks. Unfortunately, our knowledge of the hydraulic characteristics of subsurface, water-bearing fractures is sparse. Such information is critical in evaluating ground water supplies, in conducting wellhead protection, and in preventing and remediating ground water contamination in crystalline rock. In recent years, the U.S. Geological Survey (USGS) has developed cutting edge techniques to perform downhole fracture testing. These techniques, however, may be cost prohibitive to be applied on a large scale. This research is aimed at developing more cost-effective methods for conducting downhole fracture characterization. As such, it should aid the rural community and state and local environmental regulators in assessing the availability of ground water and the source and transport of contamination in fractured crystalline rock. Statement of Results or Benefits: The goal of this research is to develop a cost effective, technically sound method for conducting downhole fracture characterization using tracers. The research is focused on developing a unifying method that can identify water bearing fractures that intersect a well, that can provide information on the interconnectiveness of fractures in relation to a well (recharging and discharging fractures), that can be used to determine the transmissivity of fractures, used to determine the hydraulic head in fractures, and that can quantify fracture water quality (including contamination). Uniquely, we have an opportunity to compare our tracer results with those of the U.S. Geological Survey, derived using their integrated downhole geophysical and hydraulic packer test methods. If brought to fruition, the tracer test method may make downhole testing more practical. As such, it can help in assessing the availability of ground water in fractured crystalline rock and in protecting the ground water resource. Nature, Scope and Objectives of the Research: Most rural domestic wells in New England derive their water from fractured crystalline rocks. Unfortunately, our knowledge of the hydraulic characteristics of subsurface, water-bearing fractures is sparse. As such, drilling productive domestic wells in crystalline rock is a hit or miss proposition that could result in consumers laying out thousands of dollars for a “dry hole”. This lack of information also prohibits performing, in any quantitative fashion, ground water resource estimates that can be used in guiding developers or land use planners. A lack of information also inhibits applying the concepts of wellhead protection to municipal wells founded in rock. Importantly, when bedrock wells are impacted by contamination, the absence of fracture information complicates evaluating contaminant sources, and means to remediate these problems. Over the last several years, the USGS has conducted geophysical and hydrologic research aimed at developing techniques to characterize fracture hydrology as part of their Toxic Substances Hydrology Program. This research has shown that that superficial investigations of ground water conditions in bedrock wells (that basically entail water level measurements and well sampling) can be highly misleading owing the nature of fracture flow. Their research has shown that fracture rock assessments requires detailed characterization. In that light, they have developed “tool boxes” of techniques that can be applied in characterizing fracture hydraulics and water quality. A detailed borehole investigation might entail the use of the following tools: a downhole television camera that provides a 360 degree digital image of the borehole wall for defining rock characteristics and location of fractures, an acoustic televiewer that provides magnetically oriented borehole wall images for determining fracture dip and strike, and a high resolution flowmeter for discerning water bearing fractures and identifying inflowing

Page 32: Institute of Water Resources Annual Technical Report FY 2001

and outflowing fractures under both pumping and static conditions. These logging techniques would then be followed by packer testing to determine the hydraulic head in individual fracture zones, to conduct hydraulic testing for fracture transmissivity, and to collect water quality samples. Although the information derived by applying the USGS methods is comprehensive and definitive, it is also costly. The costs and the timeframe associated with the approach can inhibit its practicality. The objective of this proposal is to develop a tracer technique to derive fracture information downhole, as a cost-effective compliment to the USGS “tool box” methods. Methods, Procedures and Facilities: The research will be divided into three tasks: Task 1 Literature Review A literature review will be conducted to summarize past research on the use of chemical tracers downhole in crystalline fractured rock. The review will derive an annotated bibliography of methods, procedures and results. Also, it will aid in developing our test technique in task 2. Task 2. Field Tracer Test The USGS Branch of Geophysical Applications and Support is located on the University of Connecticut’s, Mansfield Depot Campus. The Mansfield Campus is underlain by crystalline metamorphic bedrock. The USGS drilled three 6’’ diameter bedrock wells, ranging in depth between 223 and 443 ft., on the Campus. These wells will be used to test the tracer method. A conceptual model of the tracer method is shown on Figure 1.

Figure 1. Conceptual Tracer Method The method consists of the following elements. A relatively inert, non-toxic tracer will be pumped at a constant rate (Qin) into the bottom of the well. Simultaneously, water will be pumped out the top of the well but at a rate (Qout) greater than Qin. This will induce ground water flow into the well from fractures. The tracer concentration leaving the well will be monitored until it is constant. Then the tracer concentration in the well will be profiled from bottom to top. This procedure will then be repeated at different flow rates. The procedure will permit determining the location and recharge rate (QI) of fractures. As an example consider the lower fracture shown on Figure 1. The concentration of tracer below the fracture equals the injected concentration (C in). If the fracture was contributing flow to the well, just above the fracture the tracer concentration will equal: (1) C 1 = C in * Qin/ (Qin + Q1) Equation 1 permits solving for Q1. Knowing Q1 along with the head in the well would permit determining the fracture transmissivity using equations for a constant head flow test (e.g., in Hvorslev (1951). To be more rigorous we propose to determine the recharge rate and the hydraulic head in the well at three different pumping rates. By continuing to sampling up the well, one can determine the recharge rates of each inflowing fracture using equation 2. (2) Ci = Cin * Qin/ (Qin + Q1 + Q2…Qi) Again, given the recharge rates and the head in the well, the transmissivity of fractures can be calculated.

Page 33: Institute of Water Resources Annual Technical Report FY 2001

To be successful in identifying outflowing fractures that intersect a well, the head in the well must be lowered below that of the lowest head of any outflowing fracture. Under static conditions, the head in the well represents a weighted average head with respect to inflowing and outflowing fractures and their transmissivities, as shown in equation 3 (3) hw = ∑(hi * Ti) ∑/(Ti) where hw = hydraulic head in the well, hi = hydraulic head in fracture i, and Ti is the transmissivity of fracture i. By monitoring the tracer concentration profile at different flow rates, one can determine when a fracture is converted from outflowing to inflowing. This approach also permits determining the hydraulic head in fractures. By pumping tracer in at the top of the well and out at the bottom at a rate that causes the head in the well to rise, one can determine the head in the inflowing fractures through tracer profiling. A number of details are still to be worked out. For example, what should the optimum flow rates be for pumping and sampling, how should the tracer be delivered at the bottom of the well, how should the tracer be sampled so as not to disturb the vertical tracer profile, and what water treatments are needed following experiments. Presently, we are considering the use of a dual tracer approach using bromide for field measurement and rhodamine for laboratory measurement. The bromide would be measured in the field using ion specific electrodes. The analytical sensitivity for rhodamine is several orders of magnitude, which would permit identifying fractures having several orders of magnitude difference in transmissivity. We have available to us in our Department or on campus all the field and analytical equipment to perform this research including water level sounders, peristaltic pumps, ion specific electrodes and meters and a florescence spectrometer. Additionally, we have access through cooperative efforts with QED Environmental Incorporated, to downhole sampling pumps if needed. Task 3 Comparison to USGS Methods The tracer tests will be performed without knowledge of any fracture information about the wells. Our results will then be compared to downhole tests performed by the USGS using the methods cited above. This will provide a unique opportunity to evaluate the tracer test results with those derived by the USGS methods. If successful, this research would put us in a position to seek NSF, EPA or private sector funding to conduct a joint study with the USGS on the use of the tracer method at contamination sites. Here, we could conduct comparative testing as well as evaluate the use of the method for discerning which fracture may be contaminated. Related Research

The use of tracers has long been used to characterize hydraulic properties in fractured rock. Methods that have been used include conventional well-pumping tests, tracer travel time between wells, and tracer dilution (Lewis et al., 1966). Various tracer dilution tests have been conducted by Raymond and Bierschenk (1957), Moser et al. (1957), Nuemaier (1960), Ochiachi and Rodriguez (1962) Michalski and Klepp (1990), Tsang (1990) and the United States Geologic Survey, to name a few. Although there are similarities in some of these methods with the method we are proposing, there are substantial differences. Most of the previous methods involve injecting a slug of tracer into the borehole, mixing the borehole fluids to achieve a homogeneous state, and then measuring tracer dispersion throughout the well depth. Certain methods also included the use of packers to isolate a specific fracture. The proposed research will involve active pumping of a specific concentration of tracer into and out of the borehole. This greatly simplifies interpreting the tracer data. A brief summary of previous tracer research follows.

Page 34: Institute of Water Resources Annual Technical Report FY 2001

Raymond and Beirschenk used hydraulic conductivity logging in 1957, as a means to determine the velocity of ground water passing through a well. Salt solutions were added to the well and then allowed to mix. Conductivity measurements were taken, using two probes, every five minutes, for a certain time period at a specific depth (Lewis et al, 1966).

Moser et al., as well as several others, (Lewis et al., 1966) has implemented the use of radioactive isotopes. The isotopes were introduced to the well. The radioactive activity was monitored for a period from a few hours to a day. The hydraulic conductivity was then computed from the data. The hydraulic conductivity computed was very close to that derived from pumping tests (Lewis et al., 1966).

Ochiachi and Rodriguez refined the radioactive isotope method in 1962 (Lewis et al, 1966). They designed the flow meter such that their model not only determined ground water velocity but also direction of flow.

In 1990, Michalski and Klepp reported on the use of a single well tracer study to compute the transmissivity of fractures intersected by the well (Mickalski and Klepp, 1990). A slug of deionized sodium chloride water was introduced to the well. The solution was introduced to what is considered "upstream", dependent on vertical flow direction. The volume of slug injected was kept to below one well diameter to reduce any hydraulic head or flow change. An electric conductivity probe was lowered into the well and used to measure electric conductivity throughout the depth of the well. From the tracer profiles, not only could intrawell flow and transmissivity of fractures be characterized, but also incoming water quality could be determined.

Tsang, Hufschmied and Hale (1990) also used an electric conductivity method to estimate the transmissivities of intersected fractures within a single well. The water in the well was first replaced with deionized water. Then the well was pumped at a low flow rate. An electric conductivity probe was then lower through the well depth. This was performed a number of times and several conductivity logs were created. Using these logs the inflow characteristics of the fractures could be determined (Tsang et al, 1990).

Recently (1997) the United States Geological Survey as part of their Toxic Substances Hydrology Program (USGS, 2000), has also used tracer dispersion methods to determine water predicting and water receiving zones in the Newark basin area in Pennsylvania. (Sloto, 1997) This was a dual method test, using both a brine-tracing method and a heat-pulse flowmeter. 93 boreholes were logged, 83 using the brine-method and 10 using the flowmeter. A slug of high conductivity fluid was injected into the 83 boreholes and vertical movement was tracked using a fluid resistivity tool under nonpumping conditions. By correlating caliper logs with the fluid resistance and fluid temperature logs, it was possible to determine water receiving and water producing fractures (Sloto, 1997).

Similar methods were also used by the USGS in 1997, for the Lockatong and Brunswick Formations in Montgomery County, Pennsylvania. By correlating caliper, natural gamma, fluid-resistivity and fluid-temperature, fluid-movement (brine-tracing or heat-pulse flowmeter), and borehole video logs it was possible to determine water producing fractures (Senior and Conger, 1997).

In 1997 and 1998 the USGS used similar methods at a Superfund site in Chester County, Pennsylvania to determine horizontal and vertical distribution of contaminated water moving from the source area. Fluid temperature and resistivity logs were used to determine water producing and water receiving fractures. Slug tests were then used to determine the transmissivity of those fractures (Conger et al., 1999).

Page 35: Institute of Water Resources Annual Technical Report FY 2001

All of this research is similar to the proposed research in that tracer dilution methods were used to measure certain hydraulic properties (i.e. receiving vs. producing fractures, flow direction within those fractures and the fracture transmissivity.) The number of hydraulic properties was limited to about two parameters in each case. Our proposed research characterizes at least four hydraulic properties during one testing period. In addition, the proposed research will be compared to results computed by the United States Geological Survey using downhole tools and packer tests to characterize fractures. This will permit a rigorous evaluation of the accuracy of the tracer method. Principal Findings and Significance The results of this study are described in the masters thesis, "A Stepwise Discharge Tracer Dilution Method for Deriving Fracture Properties in Crystalline Bedrock Wells," Richard J. Brainerd, Dept. Geology and Geophysics, University of Connecticut, 2002. The major conclusions of this study include: * The ability to characterize the flow properties of transmissive fractures in bedrock aquifers is of the utmost importance, not only for water supply but also contamination transport. Throughout the years, many methods have been used to try to gain knowledge of these flow properties. These methods include various geophysical, borehole logging, conventional hydraulic test and tracer test techniques. * This research evaluated a tracer method to characterize the flow properties of water-conducting fractures intersecting a borehole in fractured crystalline bedrock. This method allows the determination of the fracture hydraulic head directly. Thus, the calculated transmissivity, which is directly related to the effective drawdown of the fracture, is not subject to ambiguities associated with the assumption of a uniform aquifer head. * Fracture hydraulic head and ambient flow are determined graphically, thus avoiding the use of any of the multiple equations for flow which all require, in some way or another, assumptions to be made. As is known, these assumptions were developed for unconsolidated material and are often invalid when describing fracture flow. * The tracer dilution test method was able to characterize two fractured bedrock wells. One fracture was identified and characterized in BGAS-3, while four fractures were identified in BGAS-1. Only tow of the fractures in BGAS-1 could be completely characterized. * The three wells are hydraulically, very connected by a highly transmissive fracture. This is seen in the imeediate response in the observation wells to a change in the water level in the pumping well. * Several recommendations to improve the developed method are given. These include: lowering the injection rate and concentration, using more accurate flowmeters, and using a different criteria for identifying the presence of a fracture. * Tracer tests are a valuable tool in helping to characterize flow conditions in fractured bedrock aquifers. They can be used as a preliminary screening tool or as a stand-alone method. * In recent years great strides have been made in our ability to decipher the subsurface but we have far to go to. It is only with the integration of many such techniques that the pieces of the puzzle of teh subsurface fracture networks will become clear.

Page 36: Institute of Water Resources Annual Technical Report FY 2001

* The unknown aspects of fracture interconnectivity will continue to test the ability to put those pieces of the puzzle together. It is for that reason that the ability to describe the interconnectivity of fractures and how that interconnectivity effects flow properties could be one of the most important areas that further research needs to concentrate on. Citations: Conger, Randell w., Goode, Daniel J, Sloto Ronald A, 1999. Evaluation of Geophysical Logs and Slug tests, Phase II, at AIW Frank/Mid County Mustang Superfund Site, Chester County Pennsylvania, United States Geologic Survey, Open File Report 99-452 Lewis, David C., Kriz, George J., Burgy, Robert H, 1966. Tracer Dilution Sampling Techniques to Determine Hydraulic Conductivity of Fractured Rock, Water Resources Research, vol. 2, no. 3, p.533-542. Michalski, Andrew, Klepp, George M., 1990. Characterization of Transmissive Fractures by Simple Tracing of In-Well Flow, Ground Water, vol. 28, no. 2, p. 191-198. Senior, L.A., and Conger, R.W., 1997. Use of Borehole Geophysical Logging and Water-Level Data to Characterize the Ground-Water System in the Lockatong and Brunswick Formations: (abs.), GSA Abstracts with Programs, vol. 29, no. 1, p. 78. Sloto, Ronald A., 1997. Use of Borehole Geophysical Methods to Define Ground-Water-Flow Systems in the Stockton Formation, Newark Basin, Pennsylvania: (abs.), GSA Abstracts with Programs, Northeast Section, vol. 29, no. 1, p. 81. Tsang, Chin-Fu, Hufschmied, Peter, Hale, Frank V, 1990. Determination of Fracture Inflow Parameters With A Borehole Fluid Conductivity Logging Method, Water Resources Research, vol. 26, no. 4, p. 561-578. United States Geologic Survey, 2000. Toxic Substances Hydrology Program, http://toxics.usgs.gov/about.html.

Page 37: Institute of Water Resources Annual Technical Report FY 2001

Information Transfer ProgramThe Institute conducts a number of information and technology transfer activities through its ongoingseminar series and publications program and through cooperative efforts with other water groups in thestate.

In 2001, WR collaborated with the CT DEP on the Golf Course Compliance Assistance Project. TheInstitute facilitated the development of the "Best Management Practices for Golf Course Water"document, and managed an outreach effort that included a one-day conference for industry professionals,"Water Resources Management in a Golf Course Environment."

Also this past year, the CT IWR became involved in the work of the statewide Water Planning Council,created by an act of the state legislature. The Council’s mission is to "... identify issues and strategieswhich bridge the gap between the water supply planning process and water resources management ..." TheInstitute contributed technical expertise regarding water resources research needs, methodologies for waterresource investigations and decision support strategies.

Seminar Series: The theme of the 2001-2002 series, "Public Health and Water Quality" was chosen basedon needs expressed by our Advisory Board. Talks included: "Social Justice and Connecticut’s WaterResources." Senator Donald E. Williams, Jr., Chair, Environment Committee, Connecticut State Senate;"Waterborne Infectious Agents" Dr. David Hill, Professor of Medicine, UCONN Medical School ; "TheState Aquifer Protection Area Program" Robert Hust, Planning and Standards, Connecticut Department ofEnvironmental Protection; "Pesticides and Private Residential Wells." Nancy Alderman, President,Environment and Human Health, Inc.; "The Financial Cost of Toxics in the Water Supply." Dr. EdwardRossomando, Director, Waterborne Disease Center, UCONN Health Center, Farmington, CT.;"Monitoring Water Quality in the Willimantic Reservoir and Mansfield Hollow Lake." Dr. George Hoag,Director, Environmental Research Institute, University of Connecticut; "An Introduction to the SourceWater Assessment Program." Lori Mathieu, Lead Planning Analyst, Water Supplies Section, CTDepartment of Public Health

Web Site and Publications: The Institute’s web site contains abstracts of recent research projects, thecurrent year’s seminar series, a publication database, special project information and links to other waterrelated sites. The Institute is scanning many of its older publications for distribution over the web or onCD. We will shortly be publishing a report on updated historical precipitation statistics for Connecticutthat shows changes in long-term trends and the probabilities of extreme events.

The Institute also accepts proposals for funded Information Transfer projects as a part of its competitiveRFP process explained in the Research Program below. This year, 104B funds were used to support twoIT projects:

Clausen: Co-sponsorship of the 8th National Nonpoint Source Monitoring Workshop.

Clausen et al.: Rain Garden Demonstration and Workshop.

Page 38: Institute of Water Resources Annual Technical Report FY 2001

8th National Nonpoint Source Monitoring Workshop

Basic Information

Title: 8th National Nonpoint Source Monitoring Workshop

Project Number: 2000CT11B

Start Date: 9/10/2000

End Date: 9/14/2001

Funding Source: 104B

Congressional District: 2nd

Research Category: None

Focus Category: None, None, None

Descriptors:

Principal Investigators: John Clausen

Publication

Page 39: Institute of Water Resources Annual Technical Report FY 2001

Rain Garden Demonstration and Workshop

Basic Information

Title: Rain Garden Demonstration and Workshop

Project Number: 2001CT601B

Start Date: 3/1/2001

End Date: 2/28/2002

Funding Source: 104B

Congressional District: 2nd

Research Category: Not Applicable

Focus Category: Education, Non Point Pollution, Surface Water

Descriptors: rain garden, nonpoint source pollution, education,storm water management

Principal Investigators: John Clausen, John Alexopoulos, Michael Dietz, Laurie Giannotti

Publication

Page 40: Institute of Water Resources Annual Technical Report FY 2001

��� �������� ����������� ��������������������� �������������� ��������� ������������������������������������ !��� ���"�� #�$�%��&������� �%���� ����� �����&����������'����������'�����������������&�����(�� ��������) ��*+$������ ��*+$���,����+-�.�+-���/�� ��&��������&����01�---���1�� ���.��&��������&����0���2(����2�� �����'�����3�������4���� �����&����3����$���5�*��6��6��������5�*��7��8�'�������!������

9��������:�*�������;�����3����$��<�6��������=�� 6�������������&������ ����&���-�� ��� ����<�����������������������%����'����� ���>��*�����������'������������<�'��������*�3���������'���&����������������� '��� ��������1?��<�*����3�����"-?��<�*����@������&��=?��<������$������� )�������7���==2,����������$������������<<���&���� ���%�����������'��������<�����?��<�� '����&���3�������?��<�� '����&���@������&�"/?��<�� '����&�����������>��6���������2?��<���3������/?��<���@����������&�(�?��<������$�������&�������''���&���@�����<��*�������&��%� ������������*��'�� ��$��������<�� '��� �������6��������������������6A��� �������8$����&� ��&����%������� �����������������&�*��������������)�������7���==2,�����������<�*����'������������&������������<<���&���� ���%�������&�������&��*������� ����'�����%������� ���'��������&���.'������� ��������B$'�8��������%�&��'���&�'����� ����!����>����&�����&�)6��������=2=C�!>�����==-�,����*��!����>����&�����&���������������������� *������%*�*�'��3�&����������$���� <��*��$�<������� �����������������&����������<����-� ����������*�������)7����������=2=,����

��3�����'������*�3���������� ��&�&�����&���'�������������� �%��������<<�)�������7���==�,��D�����*�'��������*�������<�����������&����%*�*������� ������*����%�&�'������������&�&�������*��<����<���*��<�����<<�<�� �� '��3��������<����)�������7���===,���7�*���*�*���'�������������������%*�����'���������<<��������&�&�������������������6���������������%���� �<� *�%� �� &������ ��&� �''�$� ����� ���&���� �� ��%� ��&� �8������ ������ ��&� ���������&�3���' ����������� ��� ����<���������������<������*��'��'���&�%��@�*�'�%��������<��������3��$�������*�����$��������&��������6�������*�����'�� ����$����'��������<���'����������&�����������*����� ����<���� �%��������<<����*���'�����%�����������''���&�3���' ����<�%��@�*�'� ����������&��������&� �����������������������6�����������������*����������&���*����� ������ �''�������� ��� �� ��%� �*�����$� ���� ����� ��� '����� ��� 6������� ��&�����%*��������� ���������'�����&������3����<�*��������*���

Page 41: Institute of Water Resources Annual Technical Report FY 2001

�*���3�����������3�������&�3���'���&���&�������.&�$�%��@�*�'����*��&��������&���������� �<� ��������&���� <��� ��� �%���� ��� ���� �7� ����&��$������3��%���&���� ����������&� �����������������&�����*��6�������6��'����3���8��������$�� �6��������B�&&� ��6���

�*���%��@�*�'�������&�&��������������������&�������<<�������������%�����<�*�%���&��������&���������������&������&�%*����*�$������''����������*�����������������<�����������&���%������3����&� �������������<���<�����%��@�*�'���������� :�*�&���'���&��������&�<����������

7����������&����������*����%�&�'������������&�&�������*��<����<���*��<�����<<�<�� �� '��3��������<������!������<��%������&�3���&�*����*���������&�*����������&������*������������� ����� ���'�����%���&�3���'�&����:��$���&���'��3�&��������������<���� �%����'�������� )������ 9�������� 6���$�� �==�,�� A��������� ��3�$� *������ �� ����@� &�%�� �<���� ����������<�� ��*�������&�*�������*�������&����������@���'��A$�&�3������*��<����<���*��<���� ����&�����<<�������������&����<�%������ �����������*����� �%�����$�� ����&�*�����&��������%������&�����������������&���7���&&���������&�� '���������<���<�����������&������*��(?���1?��<�����<<������<�����&�����*���������*���*����������������3�����&�<��%��

7�$'������������&���%���&����������&�����'����<����'��@�����������<<���7���������&������������$��� �8� � ��<��(� �)/���,�&��'�<���'��&�����*��������&���&��3���%*�*����'���&��'�������&� ��*����&����'����&�%�*�3��������*������������� '����$����&����%������&�<��������%������3�������*����;���<�����������&������&��� ���&����(?���1?��<�*��&�������������� ���*���6����<<�����<�� �*�����������E���������*����<<������6��3������%�*����&�������&������$'���)6*�%���=/",��������8� '����*���6��<�����'*����������<�� �-�1-���-�=(��%*������*���6��<�����%����������<�� �-�-(���-��(��&�'��&�������*�������$'����&�*�����'����:���� ���$����������&����*�3��������''���&������<<�������&�����'��@����������&������&�3�&���������������&����������*���*��&���

7����.&�$�%��@�*�'�%�������&�3���'�&����*�������&���&�����%������������'���������<<��������&����������������������<�� ����>��������<���*��%��@�*�'�%��������&��*��'����'�����3������������%�����������&���8'���������������&���&��������7�&��<��������<���*��%��@�*�'������3�������%��

7�%��@���@�%�������&�3���'�&�<���%��@�*�'����&����*��%����������'����'�������&�������������������&���%�*���<�������6���������&���������*��%��@�*�'�%���������&��&���*��B�&&� �6��'����3���8�������6��������*��6�����*�������<������<����$�*�����*��&��'����((����&������!��*���������������3�&����*����<������<����$��

7���������&���%�������&������&��$�*��'����'�����3���������<����''���������*��B�&&� �6��'����3���8�������6��������*����������&���%������� ���$�������&�'�������*��%��@�*�'��$�����������������B�%�3���*�������'��������<�*����������&���%�������� '���&��$�%��@�*�'�'����'������*����&��<�*��%��@�*�'���

������ �� ��$��<�*��>�<�� ����������<���7�3�$����*�� F����� 9��&��� ���@�*�'F� %��� *��&� ��� D����� ��� �--��� ��� B�&&� � 6���������7''��8� ���$�/��'��'������&�&����*��%��@�*�'�������&��<���8�'����������������&���*��

Page 42: Institute of Water Resources Annual Technical Report FY 2001

'��'������&�&�������<���������&�������&�����&�&�%�*���&� �����������B��&����'��3�&�&���*�����&��������&�&G����� �*��������9�����4��6���$���'�� ����<���3���� ���������������:��$���&G�

H��F�����9��&���G��*����������������F�H��FB�%������I����9��&���9��%JF�H��F�*��A����������:�����F�

���� �*�����3����$��<�6��������:�&&����8�6���$�6��'����3���8�������6����G�

H��F�������������������������F����*�����@�*�'�'����� �����*�%�����*��<����%����'�����

Page 43: Institute of Water Resources Annual Technical Report FY 2001

��������������� ���� ���������������������������������������

���!�"����!��

��

=G--����������=G�(�������������-G�(����������-G�-�

>���&�������&�����E�����&�#�����!�� ���7����������<���������3����$��<�6���������'�� ����<�����������������:����� �����&���������������1/��������&���.21���������6��-/�/=."-21�)2/-,�"2/.-��=���*��������K������&���>���&���������������&������&�������������������$����%%��'����� �������������9�����4��6���$���'�� ����<���3���� ��������������="--���''�����������������/�-�!������:���-11"�)�-�,�2��.(=-��&�%������&�<<K��'�� &�������:D�&������������������:D�������6��6���&������:�&&����8��8�������6������-//���$����@��&���D�A�8�1-��B�&&� ��6��-/"�2�)2/-,��"(."(����������������K������&���A���@�

� ��G--�������G--���G--���������G�-����������G--�����G�-�

�����9��&����������>�.�*$&�����$����;����&��������#�����!�� ������3����$��<�6��������!��*�)���3�&�&,�������9��&����������>>�.�������&� ��'��!!�����������������7�.�����������������6�����3��������3����"�B$&��73���L������6��-/-//�)2/-,�12(.�22��8����-������@����K���&����3�������9��&����������>>>�.�������#����(!)����!� ��7����������<���������3����$��<�6����������'�� ����<��������������1/��������&���./1���������6��-/�/=."-/1�)2/-,"2/.�="��������9��&����������>L�.�6�����������'��3������*���

���������*�������9��&���

Page 44: Institute of Water Resources Annual Technical Report FY 2001

Student Support

Student Support

CategorySection 104Base Grant

Section 104RCGP Award

NIWR-USGS Internship

Supplemental Awards

Total

Undergraduate 2 0 0 0 2

Masters 2 0 0 0 3

Ph.D. 0 0 0 0 0

Post-Doc. 1 0 0 0 1

Total 6 0 0 0 6

Notable Awards and Achievements

Publications from Prior Projects