Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe,...

47
Innovations, Ricatti and Kullback- Leibler Divergence Dept. of Electrical Engineering KAIST Daejeon, Korea Youngchul Sung Presented at Niigata University, Japan, Oct 22, 2010 This visit and talk is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0021269).

Transcript of Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe,...

Page 1: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

Innovations, Ricatti and Kullback-Leibler Divergence

Dept. of Electrical EngineeringKAISTDaejeon, Korea

Youngchul Sung

Presented at Niigata University, Japan, Oct 22, 2010

This visit and talk is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0021269).

Page 2: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 2

Research Background

Signal Processing

InformationTheory

Communications

Networking

Statistical Signal Processing(Detection & Estimation)

SPTMSAMAdaptiveMachine LearningAudioVideoMultirateBiomedical...

Signal Processing forCommunications

Page 3: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Outline

3

Introduction

Neyman-Pearson detection of hidden Gauss-Markov signals

Optimal sampling for detection

Application to wireless sensor networks

Conclusion

Page 4: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Mathematical Engineering

4

Page 5: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010Friedrich Leibnitz

Thomasus (1643)

Mencke

Wichmannshausen

Hausen

Kastner

Pfaff

Gauss

Gudermann Gerlings Bessel

WeierstrassPlucker

Euler d’Alembert

Lagrange Laplace

Fourier Poisson

ChaslesDirichlet

Lipschitz

Klein (1868)

Nicola Bugaev

Nikolai Luzin

Andrei Kolmogorov

Albert Shiryaev

Lindemann (26172) Story

Sommerfeld

Guillemin (degree 1926, Munchen > MIT)

Hilbert

Fano (MIT)

Wozencraft (MIT)

T. Kailath (MIT=>Stanford)

Gaston Darboux

Emile Borel StieltjesPicard

Hadamard Henri Lebesgue

Paul Levy

Michel Loeve (Ecole poletechnique => UCB)

Emanuel Parzen

German Root French Root

Russian branch

Norbert Wiener (Havard 1913 =>MIT)

Royce (JHU 1878 > Harvard)

Konig

Heyne

Bach

Kustner

Ernesti

Gesner

Budeus

Walthier

Strauch

Abraham Kein (1632)

Bose Tufts (Havard)

Morris(1878, U. Berlin >JHU)

Trendelenburg(1868 U. Berlin)

도미

도미도미

Vannevar Bush(MIT)

Ragazzini (columbia)

John Russel(MIT)

ZadehKalman (MIT,Columbia: Stanford)

Arther Kennely(MIT)

Frank Hitchkock(MIT)

Claude Shannon Caldwell

Huffman

?

?

? ?

Bernoulli?

...

?Jacob Andreae

G. Riemann

Truxal (Polytech)

Braun (Polytechnic)

Mendel (USC)

Linvill (MIT) Tuttle

Arthurs

I. Jacobs L. Kleinrok

B. Widrow

(German studying in France)

Bieberbach

Schroder

Reissig

Bunke

Nussbaum

Page 6: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Modern Probability and Statistics

Lebesgue: Measure theory

Kolmogorov: Measure-theoretic probability

Wiener: Probabilistic approach to system theory

Shannon: Probabilistic approach to communication theory

6

Page 7: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

The Key Problem in Statistics

7

X YBlackbox

Page 8: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

The Key Problem in Statistics

8

YP(Y|X)

The Wiener Model

X

Page 9: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Areas in Statistical Signal Processing

Detection theory Radar setup

Digital communication setup: Shannon formulation and following 60,000 Ph.D.’s

Applications: Radar, sonar, distributed (team) detection, digital communications

Point estimation theory Applications: Frequency/spectral estimation, DOA estimation, Beamforming, (Blind)

parametric system identification

Signal tracking Optimal, adaptive, particle filtering

Applications: Radar, sonar, control, digital communications, equalization, negative feedback recovery

Time series analysis Applications: Finance, prediction theory

Machine learning Applications: Pattern recognition, voice recognition, face recognition, financial

modeling

9

Page 10: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 10

Statistical Inference: Detection & Estimation

Pr{ X != X_guess(Y)} || X – X_guess(Y) ||^2

E { || X – X_guess(Y) ||^2 }

Deterministic Least Squares

Stochastic Least Squares orMinimum Mean Square Error

Detection Estimation

Neyman Pearson

H. Chernoff

Kullback Leibler

Claude Shannon

Carl Friedrich Gauß(1777 ~ 1855)

Norbert Wiener

Thomas Bayes(1702 ~ 1762)

Rudolf Kalman

Bernard Widrow

R. Fisher(FIM,1925)

C. R. Rao H. Cramer

(I-divergence)

Lucien Le Cam

Page 11: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 1111

Pr{ X != X_guess(Y)} || X – X_guess(Y) ||^2

E { || X – X_guess(Y) ||^2 }

Deterministic Least Squares

Stochastic Least Squares orMinimum Mean Square Error

Detection Estimation

Neyman Pearson

H. Chernoff

Kullback Leibler

Claude Shannon

Carl Friedrich Gauß(1777 ~ 1855)

Norbert Wiener

Thomas Bayes(1702 ~ 1762)

Rudolf Kalman

Bernard Widrow

R. Fisher(FIM,1925)

C. R. Rao H. Cramer

(I-divergence)

Lucien Le Cam

Statistical Inference: Detection & Estimation

State-space model

Page 12: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 1212

Introduction

Neyman-Pearson detection of hidden Gauss-Markov signals

Optimal sampling for detection

Application to wireless sensor networks

Conclusion

Page 13: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 13

Related Work

S. Kullback & R. A. Leibler, “On information and sufficiency,” Ann. Math. Stat., 1951

R. I. Price, “Optimum detection of stochastic signals in noise with application to scatter-multipath channels,” IRE Trans. Infor. Theory, 1957

F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory, 1965

S. Saito and F. Itakura, “The theoretical consideration of statistically optimum methods for speech spectral density,” Electrical Communication Laboratory, NTT, Tokyo, Rep. 3107, Dec. 1966.

T. Kailath, “A general likelihood-ratio formula for random signals in Gaussian noise,” IEEE Trans. Infor. Theory, 1966

T. Kailath, “Likelihood ratios for Gaussian processes,” IEEE Trans. Infor. Theory, 1970

M. Donsker & S. Varadhan, “Large deviations for stationary Gaussian processes,” Comm. Math. Phys., 1985

I. Vajda, “Distance and discrimination rates of stochastic processes,” Stoch. Proc. Appl. 1993

Y. Sung, L. Tong and H. V. Poor, “Neyman-Pearson detection of Gauss-Markov signals in noise: Closed-form error exponent and properties,” IEEE Trans. Infor.Theory, 2006

Y. Sung, X. Zhang, L. Tong and H. V. Poor, “Sensor configuration and activation for field detection in large sensor arrays,” IEEE Trans. Signal Processing, 2008

Y. Sung, H. V. Poor and H. Yu, “How much information can one get from a wireless ad hoc sensor network over a correlated random field?” IEEE Trans. Infor.Theory, 2009

Page 14: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 14

Detection of correlated random fields

Sensor field

0H

1H

Data collection

1H or0H

Page 15: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 15

Detection of correlated random fields

Sensor field

0H

1H

Data collection

1H or0H

Spatial correlation

Measurement noise

Sensor deployment Signal sampling

)(xs

2x1ix1x nx

1nx

ix

1s2s

is 1is

1ns

ns

3x

Page 16: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 16

Correlation and Noise

SNR=10dB

SNR=10dB

SNR= -3dB

SNR= -3dB

Dif

fere

nt

sa

mp

le c

orr

ela

tio

n

Different SNR

Design parameter: Number of samples and spacing

Page 17: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 17

Problem Formulation: The Gauss-Gauss Problem

)()()(

xBuxAsdx

xds

iii uass 1

Aea

)( ii xss

Underlying diffusion phenomenon (Ornstein-Uhlenbeck process)

Sampled signal

)(xs

2x1ix1x nx

1nx

ix

1s2s

is 1is

1ns

ns

3x

10 a

2

2

E

ESNR

i

i

w

s

ii wyH :0

iii

iii

wsy

uassH

1

1 :

vs.

Page 18: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Hidden Gauss-Markov Model: The State-Space Model

18

1i i i

i i i

s as u

y s w

Hidden Gauss-Markov model

Burg’s Theorem

The maximum-entropy-rate stochastic process {S_i} satisfying the constraints

, 0,1,...,i i k kES S a k p

is the p-th order Gauss-Markov process.

Kalman filtering

Optimal estimation of state using observations is based on the state-space model.

Page 19: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 19

Optimal Detection: Neyman & Pearson

n

nn

nn

yyp

yyp

),,(

),,(log

1,0

1,1

}|nPr{Decisio 01 HHPF

}|nPr{Decisio 10 HHPM

Likelihood ratio detector

Threshold design

Minimize miss probability

satisfying false alarm probability level

(Neyman-Pearson formulation)

0H

1HNeyman Pearson

Page 20: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Structure for Optimal Detection R. I. Price, “Optimum detection of stochastic signals in noise with application to scatter-multipath channels,” IRE Trans.

Infor. Theory, 1957

Extension by Middleton, Shepp

F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory, 1965

T. Kailath, “A general likelihood-ratio formula for random signals in Gaussian noise,” IEEE Trans. Infor. Theory, 1966

T. Kailath, “Likelihood ratios for Gaussian processes,” IEEE Trans. Infor. Theory, 1970

20

where

Page 21: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Schweppe’s Recursion

21

(Schweppe, 1965)

Page 22: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 22

Performance Analysis:Known Results - I.I.D. Case

n

n

i

iy

1

2

FM Pnn

P 1;2SNR1

1;

2

1

Number of samples

PM

(lo

g s

cale

)

Slope = - K

Energy detector

Performance

1H

0H

nKPM log

Page 23: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 23

General Case

Challenge: Exact error probability is not available!

nK

M eP

nKPM log

PM

(lin

ear

scale

)

PM

(lo

g s

cale

)

Number of samplesNumber of samples

Page 24: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 24

Error Exponent

n

PK M

n

loglim

nKPM log

PM

(lo

g s

cale

)Number of samples

Performance metric for large samples!

Slope=-K

Page 25: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 25

Previous Results on Error Exponents

I.i.d. observation Stein’s lemma

Kullback Leibler

dyypyp

yp

Yp

YpEppDK

)()(

)(log

)(

)(log)||(

0

1

0

1

0010

2

20

2 220 0

21

1

2

2 2 2202 2 2 0 01

0 1 1 2 2 2 2 2

0 1 0 1 12

2

1

1

2 1 1 1 1 1( (0, ) || (0, )) log log log 1

2 2 21

2

x

x

e

D N N E E x

e

Page 26: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Interpretation via Sanov’s Theorem

26

E

Q

P*

*Pr( ) min exp( ( || )) exp( ( || ))Y P EP E nD P Q nD P Q

}|nPr{Decisio 10 HHPM

Page 27: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Previous Results on Error Exponents

27

0, 1 2

1, 1 2

( , , , )lim log

( , , , )

n n

nn n

p y y yK

p y y y

under H0

Asymptotic Kullback-Leibler rate Bahadur, Vaida (1980,1989,1990)

Page 28: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Previous Results on Error Exponents

28

Between two Markov or Gauss-Markov observations Koopmans (1960), Hoeffding (1965), Boza (1971), Natarajan(1985)

Donsker & Varadhan(1985), Benitz & Bucklew (1995), Bryc & Dembo(1997), etc.

Luschgy (1994) Neyman-Pearson detection between two Gauss-Markov signals

)|()|()|()(),,( 1231211 nnn yypyypyypypyyp

Page 29: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 29

Previous Results on Error Exponents

Markov Gauss-Markov observation Koopmans (1960), Hoeffding (1965), Boza (1971), Natarajan(1985)

Donsker & Varadhan(1985), Benitz & Bucklew (1995), Bryc & Dembo (1997), etc.

Luschgy (1994) Neyman-Pearson detection between two Gauss-Markov signals

State-space model: Hidden Markov)|()|()|()(),,( 1231211 nnn yypyypyypypyyp

s1 s2 s3 s4

y1 y2 y3 y4

Observation process is not Markov!

Signal Process

Observation Process

Page 30: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 30

Spectral Domain Approach

20 1

0

1( ,SNR) ( (0, ( )) || (0, ( ))

2y yK a D N S N S d

Theorem (Itakura-Saito, 1970’s)

0 0

0 1

1 1

( ) ( )1 1( (0, ( )) || (0, ( ))) log 1

2 2( ) ( )

y y

y y

y y

S SD N S N S

S S

F. Itakura S. Saito

Page 31: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 31

Innovations Process

2y

11 ey 11 ey

2e1|2y 1|2y

11 ey 2y2e

3e

}1,2{|3y

3y

jieeeeeyyy ji ,},,,{},,{ 321321

}1,,1{|ˆ iiii yye }{E 2

, iie eR ),0( ,iei RNe ~

Page 32: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Innovations Approach to Asymptotic KL ratefor the Hidden Gauss-Markov Model

32

WhiteningFilter

Page 33: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Innovations Approach to Asymptotic KL ratefor Hidden Gauss-Markov Model

33

=-

Page 34: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 34

Error Exponent: Innovations Approach

Theorem (Sung et al. 2004)

Mn

Pn

aK log1

limSNR),(

21 1 1log

2 2 2

e

e e

R

R R

}|E{lim~

}|E{lim

0

2

1

2

HeR

HeR

in

e

in

e

Page 35: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 35

Extreme Correlations

),0(),,0(

)||(

~,

2

01

2

0

10

22

0

NpNp

ppDK

RR ee

Corollary

I.i.d. case

Perfectly correlated case

Stein’s lemma

)1

(

0

~ 2

nP

K

RR

M

ee

~

)0( a

)1( a

perfectly correlatedcase

i.i.d. case

Number of samples

PM

(lo

g s

cale

)P

M (lo

g s

cale

)

Number of samples

Page 36: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 36

K vs. Correlation Strength

For SNR 1, K decreases monotonically as

For SNR < 1, there exists a non-zero optimal correlation

1a

A

a** log

Aea

Optimal Sampling

Maximum spacing

Optimal finite spacing*a

Correlation coefficient, a Correlation coefficient, a

Err

or

exponent,

K

Err

or

exponent,

K

Theorem (Sung et al.)

Page 37: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 37

Optimal Correlation vs. SNR

Transition is very sharp!

SNR=1

Signal-to-noise ratio [dB]

*a

Page 38: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 38

Intuition: Coherency vs. Diversity

Signal notch

Correlation coefficient, a Correlation coefficient, a

Err

or

exponent,

K

Err

or

exponent,

K

SNR=-3 dB

SNR=-3 dB

SNR=10 dB

SNR=10 dB

Page 39: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 39

K vs. Signal-to-Noise Ratio

K is monotone increasing as SNR increases

K is proportional to (1/2)log(1+ SNR) at high SNR

)1exp(a

Theorem 5:

Signal-to-noise ratio [dB]

Err

or

exponent,

K

a=exp(-1)

Page 40: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Simulation Results

40

SNR=10 dB SNR= -3 dB

Number of samples Number of samples

Pe

Pe

Page 41: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

How Many Samples?

41

K

M

nK

M

eP

P

Kn

ePP

1

)1(

1

log1

ˆ

MP

FP

Required n

um

ber

of

senso

rs

Sensor spacing

Target : 10-4

Target : 10-3

SNR= - 3 dB

SNR= 0 dB

SNR= 3 dB

1ADiffusion rate

Optimal spacing

Reasonable spacing

Page 42: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Vector State Space Model

42

Y. Sung, X. Zhang, L. Tong and H. V. Poor, “Sensor configuration and activation for field detection in large sensor arrays,” IEEE Trans. Signal Processing, 2008

Page 43: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Vector State Space Model

43

Theorem (Sung et al.)

(Riccati)

(Lyapunov)

Y. Sung, X. Zhang, L. Tong and H. V. Poor, “Sensor configuration and activation for field detection in large sensor arrays,” IEEE Trans. Signal Processing, 2008

Known in Kalman filterin gtheory

Newly defined quantities

Page 44: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010 44

Numerical Results

Figures from Y. Sung, X. Zhang, L. Tong and H. V. Poor, “Sensor configuration and activation for field detection in large sensor arrays,” IEEE Trans. Signal Processing, 2008

Page 45: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Extension to d-Dimensional Gauss-Markov Random Fields

45

Y. Sung, H. V. Poor and H. Yu, “How much information can one get from a wireless ad hoc sensor network over a correlated random field?” IEEE Trans. Infor.Theory, 2009

Page 46: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Extension to d-Dimensional Gauss-Markov Random Fields

46

Itakura-Saito (1970’s)Hannon (1973)

Sung et al. (2009)

Y. Sung, H. V. Poor and H. Yu, “How much information can one get from a wireless ad hoc sensor network over a correlated random field?” IEEE Trans. Infor.Theory, 2009

Page 47: Innovations, Ricatti and Kullback- Leibler Divergence · 2020. 10. 29. · F. C. Schweppe, “Evaluation of likelihood functions for Gaussian signals,” IEEE Trans. Infor. Theory,

© Youngchul Sung. Oct. 22, 2010

Conclusion

The performance of Neyman-Pearson detection of hidden Gauss-Markov signals was analyzed using error exponent

Innovations approach to asymptotic Kullback-Leibler rate

Sharp transition behavior of error exponent as a function of correlation depending on SNR was proved

Connection of Kalman filtering quantities with asymptotic KL rate

Extension to vector state-space model

Extension to multi-dimensional case: Sufficient condition for strong convergence established

47