Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011...

34
Initialisation and Load Flow with EMTP RV for Multiterminal DC grids P. RAULT (PhD Student) Supervisors: F. Colas (L2EP) X. Guillaud (L2EP) S. Nguefeu (RTE)

Transcript of Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011...

Page 1: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

Initialisation and Load Flow with EMTP RV for Multiterminal DC grids P. RAULT (PhD Student) Supervisors: F. Colas (L2EP) X. Guillaud (L2EP) S. Nguefeu (RTE)

Page 2: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

2 Pierre RAULT / EMTP-rv user group / June 20th 2011

Outline

1) Context

2) Find DC steady state solution

3) Initialize the DC network

4) Converter initialization

5) Initialize the overall system

6) Conclusion & Improvement

Page 3: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

3 Pierre RAULT / EMTP-rv user group / June 20th 2011

Context

EWEA’s 20 year offshore network development plan

Source: EWEA 2009

Currently operating offshore cable Under construction or planned offshore cable Under study by TSO Under study by TSO/EWEA recommendation Proposed by EWEA in the 2020 timeframe Proposed by EWEA in the 2030 timeframe Proposed offshore node Concession and development zones

Page 4: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

4 Pierre RAULT / EMTP-rv user group / June 20th 2011

The TWENTIES wind energy project Secure large-scale integration of wind power into the European electricity grid β€’ Demonstration project β€’ Lunched by EU β€’ 62 M€ (32M€ Directly provided by EU) β€’ 26 Electrical companies & Research institutions β€’ 10 Member states are represented β€’ Coordinated by Red ElΓ©ctrica de EspaΓ±a

RTE task: Improving safety and security for offshore wind generation β€’ Control & protection to roll out HVDC grid

Further information β€’ http://www.twenties-project.eu

Page 5: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

5 Pierre RAULT / EMTP-rv user group / June 20th 2011

Context: My work

Multiterminal HVDC network

How can we control this mesh HVDC grid?

Page 6: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

6 Pierre RAULT / EMTP-rv user group / June 20th 2011

Outline

1) Context

2) Find DC steady state solution

3) Initialize the DC network

4) Converter initialization

5) Initialize the overall system

6) Conclusion & Improvements

Page 7: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

7 Pierre RAULT / EMTP-rv user group / June 20th 2011

Example of 4 terminals

𝐼𝐷𝐢2 𝐼𝐷𝐢1

𝐼𝐷𝐢4

𝑉𝐷𝐢1 𝑉𝐷𝐢2

𝑉𝐷𝐢4

𝑅12

𝑅2

4

𝐼𝐷𝐢3

𝑉𝐷𝐢3

𝑅2

3

𝑅34

𝑅 =

𝑅11 𝑅12 𝑅13 𝑅14

𝑅21 𝑅22 𝑅23 𝑅24

𝑅31 𝑅32 𝑅33 𝑅34

𝑅41 𝑅42 𝑅43 𝑅44

Resistor matrix

Page 8: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

8 Pierre RAULT / EMTP-rv user group / June 20th 2011

Steady state equations

Voltage controlled

Current controlled

𝐼12 = (𝑉𝐷𝐢1βˆ’π‘‰π·πΆ2

)/ 𝑅12

𝐼13 = (𝑉𝐷𝐢1βˆ’π‘‰DC3

)/ 𝑅13

𝐼14 = (𝑉DC1βˆ’π‘‰π·πΆ4

)/ 𝑅14

𝐼23 = (𝑉DC2βˆ’π‘‰DC3

)/ 𝑅23

𝐼24 = (𝑉𝐷𝐢2βˆ’π‘‰DC4

)/ 𝑅24

𝐼34 = (𝑉DC3βˆ’π‘‰π·πΆ4

)/ 𝑅34

𝐼𝐷𝐢1= 𝐼12 + 𝐼13 + 𝐼14 + 𝑉DC1

/𝑅11

𝑉DC2= 𝐼12 βˆ’ 𝐼23 βˆ’ 𝐼24 + 𝐼DC2

. 𝑅22

𝑉DC3= 𝐼13 + 𝐼23 βˆ’ 𝐼34 + 𝐼𝐷𝐢3

. 𝑅33

𝑉DC4= 𝐼14 + 𝐼24 + 𝐼34 + 𝐼DC4

. 𝑅44

&

Page 9: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

9 Pierre RAULT / EMTP-rv user group / June 20th 2011

Find steady state solution = solve matrix equation

Voltage controlled

Current controlled

𝐼𝐷𝐢1

𝑉𝐷𝐢2

𝑉𝐷𝐢3

𝑉𝐷𝐢4

𝐼12

𝐼13

𝐼14

𝐼23

𝐼24

𝐼34

=

0 0 0 0 1 1 1 0 0 00 0 0 0 𝑅22 0 0 βˆ’π‘…22 βˆ’π‘…22 00 0 0 0 0 𝑅33 0 𝑅33 0 βˆ’π‘…33

0 0 0 0 0 0 𝑅44 0 𝑅44 𝑅44

0 βˆ’1/𝑅12 0 0 0 0 0 0 0 00 0 βˆ’1/𝑅13 0 0 0 0 0 0 00 0 0 βˆ’1/𝑅14 0 0 0 0 0 00 1/𝑅23 βˆ’1/𝑅23 0 0 0 0 0 0 00 1/𝑅24 0 βˆ’1/𝑅24 0 0 0 0 0 00 0 1/𝑅34 βˆ’1/𝑅34 0 0 0 0 0 0

𝐼𝐷𝐢1

𝑉𝐷𝐢2

𝑉𝐷𝐢3

𝑉𝐷𝐢4

𝐼12

𝐼13

𝐼14

𝐼23

𝐼24

𝐼34

+

1/𝑅11 0 0 00 𝑅22 0 00 0 𝑅33 00 0 0 𝑅44

1/𝑅12 0 0 01/𝑅13 0 0 01/𝑅14 0 0 0

0 0 0 00 0 0 00 0 0 0

𝑉𝐷𝐢1

𝐼𝐷𝐢2

𝐼𝐷𝐢3

𝐼𝐷𝐢4

Input vector

Page 10: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

10 Pierre RAULT / EMTP-rv user group / June 20th 2011

Outline

1) Context

2) Find DC steady state solution

3) Initialize the DC network

4) Converter initialization

5) Initializing the overall system

6) Conclusion & Improvements

Page 11: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

11 Pierre RAULT / EMTP-rv user group / June 20th 2011

Strategy to start DC simulation from steady state

1

β€’ Input vector

β€’ Resistor matrix

2

β€’ Build the steady state matrix

β€’ Run DC steady state solution

2 β€’ Transmit SS solution to DC initializing bloc

3

β€’ Find Steady-state solution and start from steady-state

4 β€’ Display results

Page 12: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

12 Pierre RAULT / EMTP-rv user group / June 20th 2011

Build a Marix / LF DC

1) Develop method in JavaScript for matrix

operation

2) Program a java script application for DC load flow

1) Usable with any input data

1 & 2

Page 13: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

13 Pierre RAULT / EMTP-rv user group / June 20th 2011

Changing global data 2 3

1) Create new structure named β€œStation” AC voltage Active power Reactive power DC voltage

2) Get global data object var cct = currentCircuit();

var attr=cct.getAttribute('GlobalDataTag');

oGlobalData=getGlobalValue(attr);

3) Save globale data oGlobalData.station=station;//save new global data object

oGlobalData.confirm_device_updates=true;

cct.setAttribute('GlobalDataTag',attr);

4) update global data in all the circuit parseScriptFile('update_variables_in_black_boxes.dwj’)

Page 14: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

14 Pierre RAULT / EMTP-rv user group / June 20th 2011

Using a table of global data in Β« Black box device Β»

Data for station nΒ°1

Initialization For each converter

2 3

Page 15: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

15 Pierre RAULT / EMTP-rv user group / June 20th 2011

Initialization establishing DC voltage (Β« Ξ  Β»)

Page 16: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

16 Pierre RAULT / EMTP-rv user group / June 20th 2011

1) Currents are well initialized 2) There is no transient

Current Voltage

1249,7 𝐴 (𝐿𝐹 = 1250)

βˆ’625,32 𝐴 (𝐿𝐹 = βˆ’625)

βˆ’937,8 𝐴 (𝐿𝐹 = βˆ’937,5)

313,46 𝐴 (𝐿𝐹 = 313.77)

Initialization establishing DC voltage (Β« Ξ  Β»)

Page 17: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

17 Pierre RAULT / EMTP-rv user group / June 20th 2011

1278 𝐴 (𝐿𝐹 = 1250)

βˆ’596 𝐴 (𝐿𝐹 = βˆ’625)

βˆ’908 𝐴 (𝐿𝐹 = βˆ’937,5)

342.6 𝐴 (𝐿𝐹 = 313.77)

Initialization establishing DC voltage (Β« FDQ Β»)

1) There is no transient 2) Small current error (<1,24%)

Current Voltage

Page 18: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

18 Pierre RAULT / EMTP-rv user group / June 20th 2011

Outline

1) Context

2) Find DC steady state solution

3) Initialize the DC network

4) Converter initialization

5) Initialize the overall system

6) Conclusion & Improvements

Page 19: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

19 Pierre RAULT / EMTP-rv user group / June 20th 2011

How start a time-domain solution using converter AC/DC?

1

β€’ Put AC load flow bus

β€’ Fill it with DC results

2 β€’ Start the EMTP-rv’s AC load flow

3

β€’ Start Steady-state solution from Load-Flow solution

4

β€’ Step between steady-state solution and time simulation

Page 20: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

20 Pierre RAULT / EMTP-rv user group / June 20th 2011

AC Load Flow for initializing the AC part of each converter

Converter disconnected

PQ π‘ƒπ‘š, π‘„π‘š

SB 𝑉𝑔, 𝛿𝑔

No participation to the load flow calculation

Using short circuit

impedance

Data from DC steady state calculations

?

Page 21: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

21 Pierre RAULT / EMTP-rv user group / June 20th 2011

Starting simulation (Power part)

+

Initialization DC voltage

Converter unplugged

PQ π‘ƒπ‘š, π‘„π‘š

SB 𝑉𝑔, 𝛿𝑔

Generator & impedance initialized

by the SB node Generator initialized

by the PQ node

Voltage capacitor no initialized

Page 22: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

22 Pierre RAULT / EMTP-rv user group / June 20th 2011

Initialization of the control part

Current Controller

V

Voltage Controller

+ -

𝑖𝑠 π‘Ÿπ‘’π‘“

𝑒𝑠 π‘Ÿπ‘’π‘“ Power

Controller +

- 𝑃𝑔 π‘Ÿπ‘’π‘“

𝑖𝑠 π‘Ÿπ‘’π‘“

π‘‘π‘Ÿ5% = 100π‘šπ‘  π‘‘π‘Ÿ5% = 100π‘šπ‘ 

π‘‘π‘Ÿ5% = 10π‘šπ‘ 

Control choice

1 2

PWM

Controllers have to be initialized

Page 23: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

23 Pierre RAULT / EMTP-rv user group / June 20th 2011

How initialize a controller from EMTP steady state solution?

Park

π‘–π‘ π‘Ž(0) 𝑖𝑠𝑏(0) 𝑖𝑠𝑐(0)

𝛿𝑔(0)

𝑖𝑠𝑑(0) π‘–π‘ π‘ž(0)

Park

π‘£π‘šπ‘Ž(0) π‘£π‘šπ‘(0) π‘£π‘šπ‘(0)

𝛿𝑔(0)

π‘£π‘šπ‘‘(0) π‘£π‘šπ‘ž(0)

PI + -

+ +

init

πΏπœ”

𝑖𝑠𝑑 π‘Ÿπ‘’π‘“ = 𝑖𝑠𝑑(0)

𝑖𝑠𝑑(0)

π‘–π‘ π‘ž(0)

π‘£π‘šπ‘‘(0) 0 +

+

𝑣𝑔𝑑(0)

𝑖𝑛𝑖𝑑 = π‘£π‘šπ‘‘ 0 βˆ’ 𝑣𝑔𝑑 0 βˆ’ πΏπœ”π‘–π‘ π‘ž(0)

Example : Cuurent controller

Measures & transformations

Page 24: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

24 Pierre RAULT / EMTP-rv user group / June 20th 2011

Initializing example: Current controller

PI + -

+ +

init

πΏπœ”

𝑖𝑠𝑑 π‘Ÿπ‘’π‘“

𝑖𝑠𝑑

π‘–π‘ π‘ž

π‘£π‘šπ‘‘ +

+

𝑣𝑔𝑑

𝑖𝑛𝑖𝑑 = π‘£π‘šπ‘‘ 0 βˆ’ 𝑣𝑔𝑑 0 βˆ’ πΏπœ”π‘–π‘ π‘ž(0)

Current controller

Initialization block diagram

init

π‘£π‘šπ‘‘ Hold t0

Hold t0 𝑣𝑔𝑑

π‘–π‘ π‘ž Hold t0

- +

πΏπœ”

- +

Page 25: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

25 Pierre RAULT / EMTP-rv user group / June 20th 2011

Transition initialization/simulation

Converter unplugged

t=0 (steady state solution)

+

t>0

β€’ Ideal switches are used between 2 configurations

β€’ Change before the first calculation step

Converter plugged

Page 26: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

26 Pierre RAULT / EMTP-rv user group / June 20th 2011

Outline

1) Context

2) Find DC steady state solution

3) Initialize the DC network

4) Converter initializing

5) Initialize the overall system

6) Conclusion & Improvements

Page 27: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

27 Pierre RAULT / EMTP-rv user group / June 20th 2011

Time-domain simulation with MTDC and AC grids

1

β€’ Start DC steady state solution

β€’ Put results in global data

2

β€’ Fill PQ node with corresponding global data

β€’ Start AC load flow

3 β€’ Start Steady-state solution from Load-Flow

solution

Procedure to follow

Page 28: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

28 Pierre RAULT / EMTP-rv user group / June 20th 2011

Outline

1) Context

2) Find DC steady state solution

3) Initialize the DC network

4) Converter initializing

5) Initializing the overall system

6) Conclusion & Improvements

Page 29: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

29 Pierre RAULT / EMTP-rv user group / June 20th 2011

Conclusion

1) Calculation of a DC steady state in JavaScript (Matrix operations)

2) Creation of global data in a JavaScript file

3) Use of these data to initialize a AC load flow

4) Initialization of controllers from AC load flow results

5) Startup of time-domain simulation AC/DC from steady state

Page 30: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

30 Pierre RAULT / EMTP-rv user group / June 20th 2011

Improvement & further work

1) Initialize measure filters

2) Initialize a detailed converter

3) Use a file to initialize simulation data

4) Use EMTP-rv features to initialize DC

Page 31: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

Thank you for your attention!

Page 32: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

32 Pierre RAULT / EMTP-rv user group / June 20th 2011

APPENDIXES

Page 33: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

33 Pierre RAULT / EMTP-rv user group / June 20th 2011

Structure Β« Station Β»

Page 34: Initialisation et Load Flow sous EMTPΒ Β· 8 Pierre RAULT / EMTP-rv user group / June 20th 2011 Steady state equations Voltage controlled Current controlled 𝐼12=(𝑉 1 βˆ’π‘‰ 2)

34 Pierre RAULT / EMTP-rv user group / June 20th 2011

Put LF results in table of structure

Each station is represented by a structure of index i