Influence of ice supersaturation, temperature and dynamics on cirrus occurrence near the tropopause...

17
Influence of ice supersaturation, temperature and dynamics on cirrus occurrence near the tropopause N. Lamquin (1), C.J. Stubenrauch (1), P.-H. Wang (2) Vienna, European Geophysical Union 16 April 2007 (1) CNRS/IPSL Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France (2) Science and Technology Corporation, Hampton, VA 23666, USA

Transcript of Influence of ice supersaturation, temperature and dynamics on cirrus occurrence near the tropopause...

Influence of ice supersaturation, temperature and dynamics on cirrus occurrence near the

tropopause

N. Lamquin (1), C.J. Stubenrauch (1), P.-H. Wang (2)

Vienna, European Geophysical Union16 April 2007

(1) CNRS/IPSL Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France

(2) Science and Technology Corporation, Hampton, VA 23666, USA

• Cirrus clouds require high supersaturation to form, RHi > RHicritical

• RHicritical depends on the type of nucleation, temperature, dynamics

• Homogeneous nucleation: -freezing of aqueous solution droplets at T < -40°C

• Heterogeneous nucleation: -requires lower supersaturation and involves aerosol particles

-produces thinner cirrus

Is cirrus formation thermodynamically controlled ?

SAGE II, June 1987 – May 1991 (prior Pinatubo)

Source: http://oea.larc.nasa.gov

-Limb occultation at satellite sunrise / sunset

at 7 wavelengths between 0.4 & 1 μm

-pathlength: 200km x 2.5 km

-vertical resolution: 1 km-vertical profile ends at ‘opaque’ cloud with extinction(1.02μm) > 2.10-2 km-1

Wang et al., Atm. Res. 1994, JGR 1996,Atm. Res. 1998, JGR 2001

SAGE cloud data provided by Pi-Huan Wang

0 0.03 0.3 3.0 Optical Depth

Sub-Visible Cirrus

Thin Cirrus Cirrus Cirrostratus

SAGE II TOVS

Source: Lynch, D.K., K. Sassen, D.O’C. Starr and G. Stephens. Cirrus. Oxford University Press, 2002

TOVS Path-B climatology:1979, 1987- 1995, …Scott et al., BAMS 1999; Stubenrauch et al. J. Climate 2006

- atmospheric temperature (9 layers, 10hPa), water vapor (5 layers, (5 layers, 100hPa)100hPa)

- effective cloud amount (ECA), cloud top pressure (Stubenrauch et al. 1999)

MSU+HIRS MSU+HIRS Rm(i,) along H2O, CO2 absorption bands, good spectral resolution

3I Inversion3I Inversion (Chédin, Scott 1985)

- De, IWP of cirrus (CIRAMOSA, Rädel et al. 2003, Stubenrauch et al. 2004)

- upper tropospheric relative humidity (Stubenrauch & Schumann 2005)

-determined for clear sky and cloud scenes with ECA < 0.6

- RHi in two 200 hPa-thick layers: 100-300 hPa, 300-500 hPa

TropopauseSAGE

300-500 hPaTOVS layer

for RHi

100-300 hPaTOVS layer

for RHi

Tropics

MidlatSouth

MidlatNorth

Tropopause and region of study

RHi taken in the layers situated under the tropopause for each region

RHi distributions

-INCA measurements (Ovarlez et al. 2002): peak of cirrus RHi distribution at 100 %,we find 60 % because of layer thickness → we define supersaturation by RHi > 60 %.-Microwave Limb Sounder measurements (Spichtinger et al. 2003): 5.98 % supersaturated clear events in the Tropics at 215 hPa while we find 6.5 % in a 200 hPa-thick layer centered around 200 hPa.

Tropics, 100-300 hPaMidlat North, 300-500 hPa

60 %60 %

Clear:6.5 %super-saturatedevents

RHi clear < RHi SVC < RHi cirrus, 60 % works for all regions

SVC occurrence as function of ISS occurence

Positive correlation:-SVC formation is thermodynamically controlled -correlation is stronger in the tropics-extending results ofGierens, JGR 2000 (MOZAIC NH midlat)

SVC and Cirrus occurrence (4 years)

-Seasonal occurrences of SVC and Cirrus at (latitude,longitude) versus seasonal occurrence of ISS-« All seasons » = data taken at all seasons

-Cirrus occurrence follows SVC occurrence in the tropics-Cirrus occurrence is constant in midlatitudes

< T >: 215 K< T >: 230 K- 250 K

Midlatitudes, two T domains (8 years)

ECMWF ERA-40 wind fields, « Strong updraft » = strong ↑ and weak ↔

•different behaviours in NH and SH midlatitudes•strong large-scale updrafts increase strongly Ci occurrence in NH, not in SH•warm T (het. nucleation): Ci formation thermodynamically controlled •cold T: on average constant Ci occurrence

« Warm » = T > 240 K

« Cold » = T < 240 K

Tropics, influence of dynamics (8 years)

« Weak » = all winds are weak« Strong » = one is strong, the other is weak

Strong large-scale updraft increases already Ci occurrence at low ISS occurrence

In situations with strong horizontal winds (may diffuse moisture): less Ci

Midlatitudes North, two T domains, influence of dynamics (8 years)

• cold T: horizontal wind as important as updraft• front dynamics at meso-scale

Conclusions

● SVC: stronger thermodynamic control in the tropics● Tropics: cold T, Ci formation thermodynamically controlled,

stronger updrafts increase Ci formation already at low ISS occurrence

● Midlatitudes: warm T: Ci formation thermodynamically controlled, heterogeneous nucleation cold T: probably meso-scale processes dominate

Outlook:● AIRS: RHi on thinner layers● Calipso: thin cirrus with more precise data● link to models

Coherence of datasets (1)

SAGEthin cirrusandcirrus

SAGEnohighclouds

SAGE SVC

SAGE\TOVS no hgh high

no hgh ci 30% 8%high ci 28% 34%

→ ~28% of SAGE cirrus too thinto be detected by TOVS

Coherence of datasets (2)

CloudySAGE

ClearSAGE

CloudyTOVS

ClearTOVS

Cloudy

Clear

Sum ( Clear/Clear + Cloudy/Cloudy ) = 63.5 %but…

« Cloudy » =

Cloudy of high clouds

Winds• Horizontal (√u2+v2), vertical (w) winds averaged on the 200 hPa-thick

pressure levels

• « Weak » and « strong » winds defined by regional and seasonal distributions using edges at 20 %

Strongupdraft

Weakvertical

Stronghorizontal

Weakhorizontal

Supersaturation occurrence is calculated seasonally,regionally and for each « wind case »

Determination of RHi

• Precipitable water column: 300-100 / 500-300 hPa, W =

→ RHi(Δp) = gρ W / qs_ice(p)dp

• 3I retrieved atmospheric T profile (30 levels)

→ ps calculated by Sonntag’s formulae (Sonntag, 1990):

• qs determined by integration, steps of 1 hPa:

gdp

qs

p

p0