Induction and Inductance - USNA 30... · [SHIVOK SP212] February 20, 2016 Page 1 CH 30 Induction...

22
[SHIVOK SP212] February 20, 2016 Page 1 CH 30 Induction and Inductance I. Faraday’s Experiments A. Let’s examine two simple experiments to prepare for our discussion about Faraday’s Law: B. First Experiment: 1. Move a magnet through a loop inducing an EMF into that loop. 2. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears when the relative motion between them ceases. 3. Faster motion produces a greater current. 4. If moving the magnet’s north pole toward the loop causes, say, clockwise current, then moving the north pole away causes counterclockwise current. Moving the south pole toward or away from the loop also causes currents, but in the reversed directions. 5. The current thus produced in the loop is called induced current.

Transcript of Induction and Inductance - USNA 30... · [SHIVOK SP212] February 20, 2016 Page 1 CH 30 Induction...

 [SHIVOK SP212] February 20, 2016 

 

 Page1

CH 30 

InductionandInductance

I. Faraday’sExperiments

A. Let’sexaminetwosimpleexperimentstoprepareforourdiscussionaboutFaraday’sLaw:

B. FirstExperiment:

1. MoveamagnetthroughaloopinducinganEMFintothatloop.

 

2. Acurrentappearsonlyifthereisrelativemotionbetweentheloopandthemagnet(onemustmoverelativetotheother);thecurrentdisappearswhentherelativemotionbetweenthemceases.

3. Fastermotionproducesagreatercurrent.

4. Ifmovingthemagnet’snorthpoletowardtheloopcauses,say,clockwisecurrent,thenmovingthenorthpoleawaycausescounterclockwisecurrent.Movingthesouthpoletowardorawayfromtheloopalsocausescurrents,butinthereverseddirections.

5. Thecurrentthusproducedintheloopiscalledinducedcurrent. 

 [SHIVOK SP212] February 20, 2016 

 

 Page2

C. SecondExperiment:

1. ForthisexperimentweusetheapparatusofFig.30‐2,withthetwoconductingloopsclosetoeachotherbutnottouching.

 

2. IfwecloseswitchS,toturnonacurrentintheright‐handloop,themetersuddenlyandbrieflyregistersacurrent—aninducedcurrent—intheleft‐handloop.

3. Ifwethenopentheswitch,anothersuddenandbriefinducedcurrentappearsinthelefthandloop,butintheoppositedirection.

4. Wegetaninducedcurrent(andthusaninducedemf)onlywhenthecurrentintheright‐handloopischanging(eitherturningonorturningoff)andnotwhenitisconstant(evenifitislarge).

II. Faraday’sLawofInduction:

A. AnEMFisinducedintheloopattheleftinFigures30‐1and30‐2whenthenumberofmagneticfieldlinesthatpassthroughtheloopischanging.

B. ThemagnitudeoftheEMF(ScriptE)inducedinaconductingloopisequaltotherateatwhichthemagneticfluxBthroughthatloopchangeswithtime.

C. SupposealoopenclosinganareaAisplacedinamagneticfieldB.Thenthemagneticfluxthroughtheloopis

 

 [SHIVOK SP212] February 20, 2016 

 

 Page3

D. Iftheloopliesinaplaneandthemagneticfieldisperpendiculartotheplaneoftheloop,andIfthemagneticfieldisconstant,then

 

E. TheSIunitformagneticfluxisthetesla–squaremeter,whichiscalledtheweber(abbreviatedWb):

 

F. Finally,Faraday’sLawofInduction: 

 

 

1. IfwechangethemagneticfluxthroughacoilofNturns,aninducedemfappearsineveryturnandthetotalemfinducedinthecoilisthesumoftheseindividualinducedemfs.Ifthecoilistightlywound(closelypacked),sothatthesamemagneticfluxBpassesthroughalltheturns,thetotalemfinducedinthecoilis

 

 

2. Herearethegeneralmeansbywhichwecanchangethemagneticfluxthroughacoil:

a) ChangethemagnitudeBofthemagneticfieldwithinthecoil.

b) Changeeitherthetotalareaofthecoilortheportionofthatareathatlieswithinthemagneticfield(forexample,byexpandingthecoilorslidingitintooroutofthefield).

c) ChangetheanglebetweenthedirectionofthemagneticfieldBandtheplaneofthecoil(forexample,byrotatingthecoilsothatthefieldBisfirstperpendiculartotheplaneofthecoil,andthenalongthatplane).

 

 [SHIVOK SP212] February 20, 2016 

 

 Page4

G. SampleProblem:

1. InFig.below,a120‐turncoilofradius1.8cmandresistance5.3Ωiscoaxialwithasolenoidof220turns/cmanddiameter3.2cm.Thesolenoidcurrentdropsfrom1.5AtozerointimeintervalΔt=25ms.WhatcurrentisinducedinthecoilduringΔt?

 

 

 

a) Solution: 

 

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

 Page5

III. Lenz’sLaw:

A. Aninducedcurrenthasadirectionsuchthatthemagneticfielddudetothecurrentopposesthechangeinthemagneticfluxthatinducesthecurrent.

 

B. OppositiontoPoleMovement.Theapproachofthemagnet’snorthpoleinFig.30‐4increasesthemagneticfluxthroughtheloop,inducingacurrentintheloop.Toopposethemagneticfluxincreasebeingcausedbytheapproachingmagnet,theloop’snorthpole(andthemagneticmoment)mustfacetowardtheapproachingnorthpolesoastorepelit.ThecurrentinducedintheloopmustbecounterclockwiseinFig.30‐4.Ifwenextpullthemagnetawayfromtheloop,acurrentwillagainbeinducedintheloop.Now,theloopwillhaveasouthpolefacingtheretreatingnorthpoleofthemagnet,soastoopposetheretreat.Thus,theinducedcurrentwillbeclockwise.

 

 [SHIVOK SP212] February 20, 2016 

 

 Page6

C. Fig.30‐5Thedirectionofthecurrentiinducedinaloopissuchthatthecurrent’smagneticfieldBindopposesthechangeinthe

magneticfieldinducingi.Thefieldisalwaysdirectedoppositeanincreasingfield(a)andinthesamedirection(b)asadecreasingfieldB.Thecurled–straightright‐handrulegivesthedirectionoftheinducedcurrentbasedonthedirectionoftheinducedfield.

 

D. Ifthenorthpoleofamagnetnearsaclosedconductingloopwithitsmagneticfielddirecteddownward,thefluxthroughtheloopincreases.Toopposethisincreaseinflux,theinducedcurrentimustsetupitsownfieldBinddirectedupwardinsidetheloop,asshownin

Fig.30‐5a;thentheupwardfluxofthefieldBindopposestheincreasing

downwardfluxoffield.Thecurled–straightright‐handrulethentellsusthatimustbecounterclockwiseinFig.30‐5a.

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

 Page7

E. SampleProblem(Lenz’sLaw):

1. Thefollowingtwosituationsareseparate.Ontheleft,asquareloopofwireispenetratedbyamagneticfieldoutofthepagethatisincreasinginstrength.Ontheright,thenorthpoleofamagnetismovingawayfromacoilofwire.Therowthatcorrectlygivesthedirectionoftheinducedcurrentthrougheachresistoris

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

 Page8

IV. InductionandEnergyTransfers:

A. Considerthepullingaconductingloopoutofamagneticfieldasshownbelow:

 

B. Iftheloopispulledataconstantvelocityv,onemustapplyaconstantforceFtotheloopsinceanequalandoppositemagneticforceactsonthelooptoopposeit.ThepowerisP=Fv.

C. Astheloopispulled,theportionofitsareawithinthemagneticfield,andthereforethemagneticflux,decrease.AccordingtoFaraday’slaw,acurrentisproducedintheloop.Themagnitudeofthe

fluxthroughtheloopisB=BA=BLx.

D. Therefore,

E. Theinducedcurrentistherefore

F. Thenetdeflectingforceis:

G. Thepoweristherefore 

 [SHIVOK SP212] February 20, 2016 

 

 Page9

H. SampleProblems:

1. InFig.belowametalrodisforcedtomovewithconstantvelocityalongtwoparallelmetalrails,connectedwithastripofmetalatoneend.AmagneticfieldofmagnitudeB=0.350Tpointsoutofthepage.(a)IftherailsareseparatedbyL=25.0cmandthespeedoftherodis55.0cm/s,whatemfisgenerated?(b)Iftherodhasaresistanceof18.0Ωandtherailsandconnectorhavenegligibleresistance,whatisthecurrentintherod?(c)Atwhatrateisenergybeingtransferredtothermalenergy?

 

 

 

a) Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

  Page10

2. InFig.below,alongrectangularconductingloop,ofwidthL,resistance

R,andmassm,ishunginahorizontal,uniformmagneticfield thatisdirectedintothepageandthatexistsonlyabovelineaa.Theloopisthendropped;duringitsfall,itacceleratesuntilitreachesacertainterminalspeedvt.Ignoringairdrag,findanexpressionforvt.

 

 

  

a) Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

  Page11

I. EddyCurrents

 

 

V. InducedElectricField:

A. Achangingmagneticfieldproducesanelectricfield. 

 

 

 [SHIVOK SP212] February 20, 2016 

 

  Page12

B. InducedElectricFields,ReformulationofFaraday’sLaw:

1. Consideraparticleofchargeq0movingaroundthecircularpath.The

workWdoneonitinonerevolutionbytheinducedelectricfieldisW=Eq0,

whereEistheinducedemf.

2. Fromanotherpointofview,theworkis

 

3. Herewhereq0Eisthemagnitudeoftheforceactingonthetestcharge

and2risthedistanceoverwhichthatforceacts.

 

4. Ingeneral,

 

 

 

 

C. InducedElectricFields,ANewLookatElectricPotential:

1. ElectricPotentialhasmeaningonlyforelectricfieldsthatareproducedbystaticcharges;ithasnomeaningforelectricfieldsthatareproducedbyinduction.

2. Whenachangingmagneticfluxispresent,theintegralisnotzerobutisd

B/dt.

3. Thus,assigningelectricpotentialtoaninducedelectricfieldleadsustoconcludethatelectricpotentialhasnomeaningforelectricfieldsassociatedwithinduction.

 

 [SHIVOK SP212] February 20, 2016 

 

  Page13

D. SampleProblem:

1. Alongsolenoidhasadiameterof12.0cm.Whenacurrentiexistsinitswindings,auniformmagneticfieldofmagnitudeB=30.0mTisproducedinitsinterior.Bydecreasingi,thefieldiscausedtodecreaseattherateof6.50mT/s.Calculatethemagnitudeoftheinducedelectricfield(a)2.20cmand(b)8.20cmfromtheaxisofthesolenoid.

a) Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

  Page14

VI. InductorsandInductance:

A. Aninductor(symbol)canbeusedtoproduceadesiredmagneticfield.

B. Ifweestablishacurrentiinthewindings(turns)ofthesolenoidwhichcanbetreatedasourinductor,thecurrentproducesamagneticflux

Bthroughthecentralregionoftheinductor.

C. Theinductanceoftheinductoristhen     

D. TheSIunitofinductanceisthetesla–squaremeterperampere(T

m2/A).

Wecallthisthehenry(H),afterAmericanphysicistJosephHenry.  

 [SHIVOK SP212] February 20, 2016 

 

  Page15

E. InductanceofaSolenoid:

1. Consideralongsolenoidofcross‐sectionalareaA,withnumberofturnsN,andoflengthl.Thefluxis

  

Herenisthenumberofturnsperunitlength.

2. ThemagnitudeofBisgivenby:

3. Therefore, 

 

 

4. Theinductanceperunitlengthnearthecenteristherefore: 

 

 

Here,

F. Self‐Induction:

1. Aninducedemfappearsinanycoilinwhichcurrentischanging.

2. Thisprocess(seefigurebelow)iscalledself‐induction,andtheemfthatappearsiscalledself‐inducedemf.ItobeysFaraday’slawofinductionjustasotheremfsdo.

 

 

 [SHIVOK SP212] February 20, 2016 

 

  Page16

3. ,butremember

4.  

 

 

G. Sampleproblems:

1. Theinductanceofacloselypackedcoilof400turnsis8.0mH.Calculatethemagneticfluxthroughthecoilwhenthecurrentis5.0mA.

a) Solution: 

 

 

 

 

2. Atagiveninstantthecurrentandself‐inducedemfinaninductoraredirectedasindicatedinFig.below.(a)Isthecurrentincreasingordecreasing?(b)Theinducedemfis17V,andtherateofchangeofthecurrentis25kA/s;findtheinductance.

 

 

 

 

a) Solution: 

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

  Page17

VII. RLCircuits:

A. Initially,aninductoractstoopposechangesinthecurrentthroughit.Alongtimelater,itactslikeanordinaryconnectingwire.

B. Thecircuit:

 

1. Currenteqn: 

2. Riseofcurrent: 

 

3. Thusthetimeconstant: 

 

 

4. Ifwesuddenlyremovetheemffromthissamecircuit,thechargedoesnotimmediatelyfalltozerobutapproacheszeroinanexponentialfashion:

 

 [SHIVOK SP212] February 20, 2016 

 

  Page18

5. Graphs:

 

C. Sampleproblem:

1. Asolenoidhavinganinductanceof6.30μHisconnectedinserieswitha1.20kΩresistor.(a)Ifa14.0Vbatteryisconnectedacrossthepair,howlongwillittakeforthecurrentthroughtheresistortoreach80.0%ofitsfinalvalue?(b)Whatisthecurrentthroughtheresistorattimet=1.0τL?

a) Solution: 

 [SHIVOK SP212] February 20, 2016 

 

  Page19

VIII. EnergyStoredinaMagneticField:

A. Thecircuit:

 

B. KVL: 

 

C. Power: 

D. ThisistherateatwhichmagneticpotentialenergyU

Bisstoredinthe

magneticfield. 

E. Thus 

 

F. Finally,thetotalenergystoredbyaninductorLcarryingacurrentiis:

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

  Page20

G. Sampleproblem:

1. ForthecircuitofFig.below,assumethat =10.0V,R=6.70Ω,andL=5.50H.Theidealbatteryisconnectedattimet=0.(a)Howmuchenergyisdeliveredbythebatteryduringthefirst2.00s?(b)Howmuchofthisenergyisstoredinthemagneticfieldoftheinductor?(c)Howmuchofthisenergyisdissipatedintheresistor?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

  Page21

H. EnergyDensityofaMagneticField:

1. Consideralengthlnearthemiddleofalongsolenoidofcross‐sectionalareaAcarryingcurrenti;thevolumeassociatedwiththislengthisAl.

2. TheenergyUBstoredbythelengthlofthesolenoidmustlieentirely

withinthisvolumebecausethemagneticfieldoutsidesuchasolenoidisapproximatelyzero.Also,thestoredenergymustbeuniformlydistributedwithinthesolenoidbecausethemagneticfieldis(approximately)uniformeverywhereinside.

3. Thus,theenergystoredperunitvolumeofthefieldis

 

 

4.  

I. Sampleproblem:

1. Asolenoidthatis85.0cmlonghasacross‐sectionalareaof17.0cm2.Thereare950turnsofwirecarryingacurrentof6.60A.(a)Calculatetheenergydensityofthemagneticfieldinsidethesolenoid.(b)Findthetotalenergystoredinthemagneticfieldthere(neglectendeffects).

 

 

 

 

 

 

 [SHIVOK SP212] February 20, 2016 

 

  Page22

IX. MutualInduction:

A. Diagram

B. ThemutualinductanceM21ofcoil2withrespecttocoil1is

definedas

1.

2. Therightsideofthisequationis,accordingtoFaraday’slaw,justthemagnitudeoftheemfE

2appearingincoil2duetothechangingcurrentincoil

1.

3. Similarly,

C. Sampleproblem:Twocoilsareatfixedlocations.Whencoil1hasnocurrentandthecurrentincoil2increasesattherate15.0A/s,theemfincoil1is25.0mV.(a)Whatistheirmutualinductance?(b)Whencoil2hasnocurrentandcoil1hasacurrentof3.60A,whatisthefluxlinkageincoil2?