Index [application.wiley-vch.de] · Micro- and Nanophotonic Technologies, First Edition. Edited by...

26
Index a Abbe condenser, 434 absorption, 15, 220 amplication coefcient, 149 coefcient, 147 gratings, 145 loss, 35, 41 phenomenon, 431 spectrum, 387 TC nanober, uorescence spectra of, 67 type polarizer, 251 acoustic sensors, 445 additive manufacturing, 384, 397, 528 adiabatic switching, 44 ADSL. see asymmetric digital subscriber line advanced optical communication techniques, 314318 aeronautics, 384 aerospace applications, ber optic liquid-level sensor system liquid-vapor (L-V) interface sensing devices, 471 optical ber-based systems, 471 Ag-Au alloy NPs, 239 Ag NPs, 239 Ag/SiOsub2/sub/Pd MIM structure, 459 Al color lters, 83 with nanoslits, 85 Plan-view SEM image and optical microscope image, 90 Polarization dependence of transmission spectra, 85 transmission spectra of, 84 Al lms, 82 Al lters polarization dependence of transmission spectra, 92 AlGaAs thin lm, 39 1-allyl-3-butylimidazolium bromide (ABImBr), 501 Alsub2/subOsub3/sub lm, 284 aluminum (Al), 81, 126 aluminum color lters plan-view SEM image, 88 transmission spectra of, 84 aluminum electrode, 337 aluminum lters optical microscope images of, 91 amplication modes, 15, 220 amplication noise addition, 322 amplied spontaneous emission, 313 amplitude, 38 coefcients, 335 growth, 155 modulations, 145 amplitude-to-phase coupling, 310 AMZI as a channel drop lter, 71 analytic expressions, 148 analytic solution for rst three Bragg orders for a balanced PT-symmetric grating, 174 angle of diffraction, 176 angle of incidence (AOI), 144, 158 angle of linear polarization, 110 angle of refraction, 158 angular bandwidth, 143, 152 angular Bragg conditions, 153 angular difference, 116 angular frequency, 31, 35 angular momentum conservation law, 103 angular spectrum, 143 anisotropic adatom diffusion, 108 dots, 108 annealing, 361 anticrossed exciton-polariton dispersion curves, 69 531 Micro- and Nanophotonic Technologies, First Edition. Edited by Patrick Meyrueis, Kazuaki Sakoda, and Marcel Van de Voorde. 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.

Transcript of Index [application.wiley-vch.de] · Micro- and Nanophotonic Technologies, First Edition. Edited by...

  • Index

    aAbbe condenser, 434absorption, 15, 220– amplification coefficient, 149– coefficient, 147– gratings, 145– loss, 35, 41– phenomenon, 431– spectrum, 387– TC nanofiber, fluorescence spectra

    of, 67– type polarizer, 251acoustic sensors, 445additive manufacturing, 384, 397, 528adiabatic switching, 44ADSL. see asymmetric digital subscriber lineadvanced optical communication

    techniques, 314–318aeronautics, 384aerospace applications, fiber optic liquid-level

    sensor system– liquid-vapor (L-V) interface sensing

    devices, 471– optical fiber-based systems, 471Ag-Au alloy NPs, 239Ag NPs, 239Ag/SiOsub2/sub/Pd MIM structure, 459Al color filters, 83– with nanoslits, 85– Plan-view SEM image and optical

    microscope image, 90– Polarization dependence of transmission

    spectra, 85– transmission spectra of, 84Al films, 82Al filters– polarization dependence of transmission

    spectra, 92AlGaAs thin film, 39

    1-allyl-3-butylimidazolium bromide(ABImBr), 501

    Alsub2/subOsub3/sub film, 284aluminum (Al), 81, 126aluminum color filters– plan-view SEM image, 88– transmission spectra of, 84aluminum electrode, 337aluminum filters– optical microscope images of, 91amplification modes, 15, 220amplification noise addition, 322amplified spontaneous emission, 313amplitude, 38– coefficients, 335– growth, 155– modulations, 145amplitude-to-phase coupling, 310AMZI as a channel drop filter, 71analytic expressions, 148analytic solution– for first three Bragg orders for a balanced

    PT-symmetric grating, 174angle of diffraction, 176angle of incidence (AOI), 144, 158angle of linear polarization, 110angle of refraction, 158angular bandwidth, 143, 152angular Bragg conditions, 153angular difference, 116angular frequency, 31, 35angular momentum conservation law, 103angular spectrum, 143anisotropic– adatom diffusion, 108– dots, 108annealing, 361anticrossed exciton-polariton dispersion

    curves, 69

    531

    Micro- and Nanophotonic Technologies, First Edition. Edited by Patrick Meyrueis, Kazuaki Sakoda, andMarcel Van de Voorde. 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.

  • antiparallel configuration, 116antipodal signals, 317antireflection coatings, 311, 337antireflection techniques, 334antisticking layer, 271anti-Stokes intensity, 356areal density, 128arsenic (As), 126artificially controlled plasmonic

    nanostructures, 269ASE. see amplified spontaneous emissionassociated efficiency model, 143asymmetric configurations, 168asymmetric digital subscriber line, 320asymmetric Mach-Zehnder interferometer

    (AMZI), 70asymmetric slab configurations, 168– light incident from–– air, 14, 170–– substrate side, 14, 168– reflective setup, 170asymmetry coefficient, 161asymmetry, of PT-symmetric grating, 172atmospheric turbulence, 294atomic cascade, 104atomic configurations, 130atomic force microscope (AFM), 66, 109– image of GaAs QDs, 39atomic layer deposition (ALD), 284Au-Ag NPs, 239Auger generation, 346Au nanorod, 235– surface via a polymer spacer, 236Au nanoshell, 241Au NP-doped nanofibers, 240Au NP-Si QDs nanocomposite, 234Au shell-protected Si QDs, 236Au/SOI/BOX multilayer structure without any

    hole– calculated R spectrum, 279Au/SOI/buried oxide (BOX) multilayer

    structure– without any holes, 279average absorption, 148average index, 148average refractive index– in grating area, 194axicons, 393azimuth-angle dependence, 118

    bBabinet’s principle, 279balanced phase, 14, 148

    balanced PT-symmetric grating, 162, 176, 189– in paraxial approximation, 172band gaps, 33, 341, 343band index, 34, 42bandpass filter, 431band wavelengths, 31bandwidth resource, 298bare homogeneous slab, 338basic ultrafine-grain emulsion, fabrication

    of, 409– coating, 412– concentration and removal of reaction

    by-products, 411– gelatin concentration, 410– jetting methods and jetting time, 410– silver and halide concentrations, 410– silver to halide ratio, 410– solution temperatures, 411Bay Tree Egg, 420beam shaping, 385– approaches, 387beam-steering element, 99Bell’s inequality– violation of, 115bending loss, 65BER. see bit error rateBessel beams, 388– generation–– axicon component, using by, 388Bessel functions, 150, 297, 363, 365– theory, 364Bessel-type differential equation, 363biexciton, 105– binding energy, 105– state, 104bimetallic (Au-Ag) composite NPs, 239binary phase-shift keying, 317biophotonics, 233, 243biotech, 3841,2-bis[2-methylbenzo[b]thiophen-3-yl]-

    3,3,4,4,5,5-hexafluoro-1-cyclopentene(BMTH), 498

    bit error rate, 314bit-rate limitations, 301blackbody thermal emission, 31,

    282blood-brain barrier, 373body-centered cubic (bcc), 507Boeing airplane platform, 472Boltzmann constant, 314Boltzmann’s constant, 31Born approximation, 434Born model, 434

    532 Index

  • Bosch process with SFsub6/sub and Csub4/subFsub8/sub gases, 280

    Bose-Einstein distribution function, 51boundary conditions, 150, 160, 163, 164, 165,

    177, 362, 363, 364– generation, 366, 367BPSK. see binary phase-shift keyingBPSK modulation– signal constellation, 318Bragg angles, 152, 159, 162, 166, 171Bragg condition, 144, 149, 151, 159, 508, 512Bragg diffraction, 146, 148, 512, 522– angle, 189Bragg diffraction peak, 516, 520, 522, 524– shift, 524Bragg diffraction regimes, 151, 156– intermediate and, 151Bragg functionality, 193Bragg grating, 193, 196, 210, 212, 216, 217, 219,

    226, 227– concatenation of, 14, 195– distributed mirror, 307– FP structure, 216– length, 212– manufacturing method, 215– mirror, 205, 214, 215, 307– reflection and transmission spectra, 199– temporal–– characteristics, 202–– response, 202, 203, 204, 205– transfer matrix equation, 210Bragg-reflected light changes, 520Bragg-reflecting crystalline lattice planes, 511Bragg reflection, 193– band, 501– in visible wavelength range, 491– wavelengths, 513Bragg reflector, 219, 222, 226, 227, 343– gratings, 215– structures, 15, 204Bragg regime, 147Bragg selectivity, 144Bragg wavelength, 456– shift, 464brain-cell microenvironment, 373brain disorders, 372bright-field microscopy, 425Brillouin optical time domain analysis

    (BOTDA), 356– effect of, 357Brillouin scattering, 356– in optical fiber, effect of, 357brittle failure, 443

    Brownian motion, 517bulk physics, 114butterfly packaging, 314

    ccalcium, electronic ground state, 104calculated module of temperature gradients

    profile, in fiber, 372calculated temperature distribution in

    fiber, 372capacitive coupled plasma (CCP), 272capex reduction, 315capillary basal plane, 514carrier heating, 308carrier population temperature, 344carrier transport, 348cascaded amplifications– noise in, 313cavity– mode frequency, 49– transfer matrix, 217CCD camera, 281, 427CC gel film, 500, 503– conceptual representation of tunable laser

    action, 502– light-emitting, 501– reflection–– features of, 21, 493–– spectra, 494– refractive index, 491CC hydrogel film, 500, 501CC laser cavity– by optical excitation, 497– structure, 498cellular imaging, 243CH. see carrier heatingchannel capacity, 292charge-coupled device (CCD), 275– detector, 111charge transfer induced formation– of Si QD�Au core-shell composite NP

    system, 237chemical vapor deposition (CVD), 87, 495chemisorption sensors, 447CHFsub3/sub-based RIE, 275chirping, 309chromatic dispersion, 431– input to output pulse broadening, 300CIE 1931 test target, 416circular dichroism, 266circular dielectric rods, 35citrate acids, 237citrate-stabilized Au NPs, 234

    Index 533

  • cladding, 448classical etching, 389Clauser-Horne-Shimony-Holt (CHSH), 117close-packed colloidal photonic crystal, 508coal consumption, 444coarse wavelength division multiplexing, 316coated opal films, 508COsub2/sub concentrations, 286coencapsulating Si QDs, 239coherent– detection, 316– optical communication, 316– optical receiver, 316– optical systems, 310– perfect absorber, 227– receiver, 294, 317– technology, 320– WDM, 319coincidence histograms– between, XX and X photons, 113cold cavity, 221cold optical cavity loss, 308colloidal crystal film, 515, 518colloidal crystal gel, 510, 520colloidal crystallization, 508, 516– schematic diagram, 509colloidal crystals (CC), 491, 492, 493– reflection spectra, 521colloidal microparticles, 493– synthesis of, 21, 493colloidal nanocomposites, 233colloidal particles– evaporative self-assembly of, 515– schematic diagram of concentrated

    crystallization, 517colloidal photonic crystal, 507, 510– elastomer, 519, 521–– close-packed particles, 515–– rubber sheet, 518–– uniaxially oriented opal film by crystal

    growth, 21, 515– film, coating apparatus, 518– nonclose-packed, 508colloidal photonic crystal gel, 511, 520– nonclose-packed particles, 508– by shear-flow effect, 508– structural characterization of, 21,

    510colloidal photonic crystals, 507, 521– nanoparticles, 507– structural characterizations, 514colloidal solution, 234colloidal stability, 236

    color and wavelength division multiplexing– management, 315color hologram of CIE 1931 test– target on a SilverCross plate, 416color holography, 404– recording museum artifacts with, 417– tests, 414colorless lasers, 321commercial optical component, 29comparative diffraction on index grating, 154complex amplitude, 148complex parity-time symmetric optics, 144computational domain, 371computational time costs, 361computer-controlled robotic methods, 528computer-generated hologram (CGH), 144concentration profile– calculated by using a PDE solver based on

    FEM, 375– comparison of, 379concentrator photovoltaic, 341condenser aperture diaphragm, 427conditional probability, one spin angles, 116conductive heat transport equation, 362conductive transfer, 360confocal laser scanning microscopy

    (CLSM), 436, 501constructive interference, 389contact angles, 397continuous wave, 316– diode-pumped solid-state laser, 281contour map, 136– of μ-PL intensity, 136contrast intensity, 431conventional dielectric waveguides, 65conventional light microscopy, 436conventional transmission microscopy, 425,

    426– transmission microscopy, 19, 426conventional waveguides, 65cooling rate, 348core-shell cylinders, 389core-shell nanocomposite– formation, mechanism of, 237core-shell type nanocomposites, 234, 235COsub2/sub sensors, 283, 286Coulomb field, 126Coulomb interaction, 347– short-range part–– long-range part, 106– term, 126coupled equation set, 159coupled wave equation, 149, 163

    534 Index

  • coupling coefficients, 149, 195coupling constants, 158, 175cross-phase modulation, 304crystalline-silicon, 335crystalline suspensions, 509crystallization process, by optical

    microscope, 516cubic zincblende crystals, 108– structures, 108curing process, 461curved TC nanofiber– on a glass substrate, 79CW. see continuous waveCWDM. see coarse wavelength division

    multiplexingcylindrical geometry, 360cylindrical waves– for thermal infrared frequencies, 81

    ddark fibers, 320dark-field microscopy, 428, 4293D-arrayed PS colloidal particles with a face-

    centered cubic, fcc, structure, 519DBG FP resonator– lasing spectra, 225– with PT-SBG, 228–– grating, 222, 229DBHD. see double-balanced heterodyne

    detectionDBR. see distributed Bragg reflectorDBR/DFB Fabry-Perot structure, 195DBR FP resonator, 221DBR lasers, 15, 208, 209, 309– threshold condition, 208– for tuning purposes, 209DBR resonator, 214DBR structures, 193, 201– with PT-symmetric coupling, 212– reflection of, 2233D cell structures– used in computations, schematic, 376DCF. see dispersion compensation fiberdecay rate, 35, 37, 38, 133decay times, 133defect mode– frequency, 38, 39, 40– in a PC slab, 37defect structures, 37degree of coherence, 120degree of nonlocal correlation, 103degree-of-polarization, 112degree of state mixedness, 120

    deionized (DI), 236delta function, 35, 36demultiplexer, 315DEMUX. see demultiplexerdense wavelength division multiplexing, 316density matrix, 118– mathematical reconstruction of, 119density of states (DOS), 51– uniform material, 45dephases light rays, 431deposition thickness, 392DFB. see distributed feedbackDFB/DBR structures, 200, 216DFB lasers, 193, 194, 215DFB-like structures, 201DFB structures, 193diameter drillings, 393diamond, 125– lattice, 32, 33dielectric– cladding, 295– guiding mechanism, 296– layer, 30, 335– microbead, 389– permittivity, 174, 386– rod, 35– spheres, 32– structure, 35– unit cells, 32, 33– waveguides, 68dielectric constant, 42, 76, 126– modulation, 148diffracted rays, 431diffraction asymmetry, 154diffraction coefficients, 165diffraction efficiencies, 153– in zero and higher diffraction orders by index

    grating, 151diffraction efficiency, 144, 150, 152, 156, 166,

    167– expressions, 151diffraction order amplitudes, 154diffraction problem, 147diffraction spreading effect, 294diffractive and holographic microoptics– general classification of, 191diffractive optical element, 343diffusion, 372, 374– coefficient, 374– process, parameters evaluated by, 375diffusive mass transport– in brain tissues with applications to optical

    sensors, numerical analysis of, 372

    Index 535

  • digital communication techniques, 17, 291,318

    digital communication theory, 291digital holographic microscopy systems, 433digital imaging technology, 404digital reconstruction, 426digital signal processing, 310digital signal values, 292digital subscriber line access multiplexer, 320dimensionless coordinate, 159dipole moment, 35, 38, 39dipole radiation, 35, 38– enhancement factor of, 38Dirac delta function, 34, 35, 43direct detection receivers, 294direct laser etching, 383direct laser writing, 398– optical lithography, 398Dirichlet-type boundary conditions, 362, 371dispersion compensation fiber, 302dispersion curves, of exciton-polaritons in TC

    film, 77dispersion effect, 295dispersion limitations, 302dispersion management, 318dispersion penalty, 309dispersion relation, 33dispersions as bit-rate limitations, 299–302dispersion-shifted fiber, 302dispersion time delay, 301disruptive technological devices, 291distributed Bragg reflector (DBR), 193, 307,

    489distributed feedback (DFB), 148, 193, 307, 489distribution– of coincidence counts, 130– of electric field of defect mode, 36, 373D metallic woodpile photonic crystals, 553D Muse platform, 387donor-acceptor pair transitions, 126δ-doped GaAs:N– growth conditions and macro-PL, 134– growth conditions and “macro-PL, 13– μ- PL of NNA and single-photon

    emission, 135doping, 33δ-doping technique, 125double-balanced heterodyne detection, 317double heterostructure, 306downconversion, 339– principles, 339downconverters, 340downshifting principles, 339

    1D photonic crystals, 602D photonic crystals, 573D photonic crystals, 52, 4923D printing systems, 397dry etching, 273DSF. see dispersion-shifted fiberDSLAM. see digital subscriber line access

    multiplexerDSP. see digital signal processingDVD technology, 527DWDM. see dense wavelength division

    multiplexingdynamic gratings, 13, 144dynamic holograms, 144

    eEB deposition, 273EBL and RIE techniques, 271ECL. see external cavity laseredge emitting, 306EE. see edge emittingE-field distribution, 260E-field vectors, 261eigenfrequency, 34, 35, 36, 77eigenfunction, 38, 42, 43eigenvalues, 146Einstein laws, 309Einstein-Podolsky-Rosen (EPR) paradox, 116Ekert protocol, 118elastic photonic crystals, 521electrical domain, 302electrical polarization, 302electrical spectral density, 314electrical thermal noise, 314electrical time domain multiplexing, 315electric dipole (ED), 32– moment, 36– operator, 32– radiation, 33, 46– transition, 41electric(E)-field vector– polarization, 249electric field, 34, 160– inside grating region, 148– normalized, 158electric/magnetic fields of resonance mode, 48electric polarization, 33electroabsorption modulation, 310electromagnetic (EM), 269– coupling, 235– eigenmodes, 31, 34– energy, 34, 36– environment, 29

    536 Index

  • – field, 42– spectrum, 297– susceptibility, 386– theory, 38– waves, 32, 37, 173, 355–– interference, 65electron beam (EB), 39– deposition, 273electron beam lithography (EBL), 37, 252, 269electron hole– exchange interaction, 136– pairs, 340, 344– recombination, 105electronic, 287– band gap, 33, 346– circuits, 65– domains, 314– transition frequency, of the nanofiber, 76electron-phonon interaction, 135electro-optic modulation, 310electrospinning process, 239electrostatic attraction, 234emission– intensity, 34– lines, 127– peak, 40– rate, 37– spectra, 281–– for s polarization, 286– spectra of GaAsQDs embedded in L3 cavities

    with, 40– spectrum stems, 496– wavelength, 314emission-enhanced plasmonic metasurfaces,

    fabricated by NIL, 278– fabrication and optical characterization–– of SC-PlC, 16, 279emitted energy, 35– in a unit time, 45, 47emitters, embedded in cavity were GaAs

    QDs, 39energy efficiency, 60energy scheme for, atomic cascade, 104energy specification, 447energy to gain medium, 385energy transfer, 356enhanced ED radiation, 46enhancement factor, 39, 46, 48, 281– MD radiation, 48– of PL of composites, 234entanglement of formation, 120entropy, 292equiwavelength heteroresonances, 279

    erbium-doped fiber amplifier (EDFA), 155,298, 311

    etching profile quality, 388ETDM. see electrical time domainmultiplexingEuropean SilverCross emulsion project, 404evanescent waves, 297EW sensor, 456excellent lateral resolution, 437exciton (X), 105exciton bound, 126exciton peak energy, 132exciton-polariton waveguiding, in TC

    nanofibers, 66– mechanism of active waveguiding in, 67– synthesis and characterization of, 66excitons, 347exciton state, 104external cavity laser, 307external energy, 167external modulation, 310–311extinction ratio, 71extinction spectrum– Au nanorods, 236– Au NPs, 234extracellular space (ECS), 373extraordinary optical transmission (EOT), 81,

    269extrinsic fiber optic sensor– used in reflection, 359– used in transmission, 359extrinsic fiber sensors, 450eyepiece diaphragm, 427

    fFabergé Eggs, 419fabricated “fabricated structure, 96– interferometric images, 98fabrication methods, 143fabrication procedure– Au SC-PlC using UV-NIL technique, 280– SP-RGB-CF using UV-NIL, 276fabrication process, 383, 510Fabry-Perot cavity, 210, 212– transfer matrix for, 15, 216Fabry-Perot cavity-based signal, 210Fabry-Perot interference, 78Fabry-Perot interferometer, 356– sensor, 455Fabry-Perot modes, for nanofibers, 69Fabry-Perot resonator– with imbedded parity-time-symmetrical

    grating, 215– optical characteristics of, 15, 215

    Index 537

  • Fabry-Perot structure– with PT-symmetric coupling, 212, 213Fabry-Perrot interferometer, 358Fabry-Pérot cavity, 306face-centered cubic (fcc), 507factor, 48Fano-type interference, 82, 87Faraday effect, 307faster and slower spectral components– exchanging of, 300fast Fourier transform, 318FDTD calculations, 37FDTD method, 35, 37, 83, 88FEC. see forward error codingfemtosecond laser, 387, 393, 396, 399Fesub3/subOsub4/sub NPs, 242Fermat principle, 295Fermi level, 454FFT. see fast Fourier transformfiber attenuation, 311fiber Bragg grating (FBG), 356, 456, 464fiber micromirror sensors, 459fiber nonlinearity, 302–304fiber optic hydrogen sensors, 455– cross-sensitivity, 460– fast response, 460– fiber evanescent wave sensors, 463– fiber grating sensors, 464– fiber surface plasmon resonance sensor, 457– hydrogen monitoring, 460– hydrogen quantification, 460– metal hydrides, 20, 461– Pd alloys, 460– rare-earth materials, 461– reproducibility, 460– sensitive material, 460– tungsten oxide (WOsub3/sub), 462fiber optic liquid-level sensor– for aerospace applications, commercial

    airplanes, and cryogenic environment, 473fiber optic sensors (FOS), 355, 448– extrinsic fiber sensors, 450– intrinsic fiber sensors, 450fiberoptic spectroscopy, 522fiber-optic systems, 31940-fiber ribbon cable formation, 485fiber structure and configurations, 360fidelity, 114field-induced motion, 302filled space configuration, 166, 183, 184filled space grating, 166filled space problem, 162filled space PT-symmetric grating, 166, 180

    film microstructure, 454fingerprints, 428finite-difference frequency-domain

    method, 79finite-difference time-domain (FDTD), 33, 82finite element method (FEM), 370first-order Bragg diffraction angle, 176first-order coupled wave equations, 161, 166first-order diffracted light, 167first-order diffraction, 170, 172– amplitude, 152– modes, 159first-order reflection– coefficients, 161first-order transmission amplitude, 172flat capillary cell, 512flexible CC laser cavity structure, 495fluorescence emission spectrum, 32fluorescence microscopy, 68, 433– image, 67–– bent nanofiber, 68–– channel drop filter, 75–– rings, 72–– TC nanofiber, 66, 67fluorescence spectrum, 30fluorodeoxyglucose (FDG), 373focused ion beam (FIB), 269forward error coding, 318Fourier images, 97– cut-line plots of, 98Fourier transform, 43, 435– limited condition, 131– limited optical spectrum, 301four wave mixing, 304FP resonator, 223, 227– transfer matrix of, 217Franz-Keldysh effect, 310free space, 147, 174– communications, 322– diffraction, 174–– on active gratings, 14, 148– value, 31frequency mode spacing, 306frequency shift, 40Fresnel coefficients, 168, 386Fresnel lenses, 340fringe pattern, 455fuel injectors, 384, 393full width half-maximum (FWHM), 213, 310,

    473fully constructive cavity interaction, 220fully destructive cavity interaction, 230fully-mixed state, 119

    538 Index

  • function– decay rate, 134– polarization angle, 116– x polarization angle, 117functional devices– basics of, 305–314functional devices, optical sources, 305–310functional-tuning elements, 144futorology, 528FVMQ rubber sheet, 519– black color, 519– by inflation and shrink process, 521FWHM. see full width at half maximumFWM. see four wave mixing

    gGaAs:N case, 131– centers and single-photon emission, 132– centers in δ-doped, 13, 132– growth conditions and macro-PL, 132– overview of, isoelectronic traps, 13, 131GaAs quantum dots, 38– AFM image of, 110– comparison, statistics of anisotropy-induced

    FSS, 110– in PC microcavity, 39– in vacuo scanning tunneling microscopy

    images, 109gain/loss distribution, 174gain/loss grating, 151gain/loss modulations, 146, 148, 150, 156, 157,

    162, 172– depth, 147gain/loss periodic distribution, 148, 157gain/loss reflective volume grating, 148gain modulation, 150gain profile, 145gain saturation process, 308galvanometer scanner, 385GaP:N case– macro-PL from bulk GaPN, 127– μPL of NN pairs in δ-doped GaPN,

    127– single-photon emission from δ-doped, 13,

    130gas-liquid interface, 476Gaussian beam, 386Gaussian profile, 156Gaussian pulse, 213Gauss’s theorem, 34, 44gelation– by photoinduced polymerization, 510gelled colloidal crystal, 510

    gel sensitive, to temperature changes, 520geometry– of asymmetrical diffraction, 149– for calculating the dispersion relation, 76– of a plasmonic cavity, 48germanium, 295glass-gel-glass plates, 520glass high-melting point, 360glass to glass welding, 395glia (glial cells), 373gradient index (GRIN), 296, 472– layers, 336grain size, 403grating, 146, 149, 153– area, 148– equation, 176– length, 147– period, 149– profile combines index, 145– quality factor, 150– response, 156– slab, 148, 158– strength, 155– theoretical analysis, 194– thickness, 155– visibility, 188, 189grating-assisted codirectional coupler, 205,

    206grating-assisted coupler, 207grating “Green’s function, 34, 42,

    43, 46– retarded, 43GRIN lens, 477group index, 306group velocity, 299– dispersion, 299guiding mechanism, 293

    hHanbury-Brown and Twiss (HBT), 130head-mounted display (HMD), 144head-up display (HUD), 144heat-and-pull technique, 437heat conductivity, 371heat transfer– equations, numerical and analytical

    solutions of, 360– in solids, 360– in transparent materials at high

    temperatures, 361heat transport, 362– equation, 361, 363, 371Heidelberg instruments, 398

    Index 539

  • Heisenberg indetermination, 17, 312– principle, 312– relationships, 312Heisenberg’s uncertainty principle, 39, 126Hellenic Institute of Holography (HiH), 417Helmoltz propagation equation, 303He-Ne (helium-neon) laser, 29, 30Henry parameter, 309Hermitian operator, 42Hermiticity condition, 146heterodimer, 238heterostructure, 459heuristic and intuitive approach, 291hexagonal close-packed structures, 507high accurate laser micromachining, 384higher diffractive orders, 178– first diffraction orders, 178– second diffraction orders, 179high-incidence illumination rays, 429highly interactive optical visual information

    system, 319high-power lasers, 396high-Q resonators, 32high-resolution TEM image, 238– of composite, 236high-temperature superconductors, 389Hi-Ovis. see highly interactive optical visual

    information systemH-mode polarization, 177hole arrays, 83hollow-core fibers, 305HoLoFoS model (λ) LED spotlight, 418hologram, 144– grating, 157– of museum artifacts, recording, 418– of Princess of the Iris decorative plate, 417holographic emulsion, demands on, 404holographic method, 491holographic optics, 145holographic-polymer dispersed liquid

    crystal, 144holographic recordings, with mobile

    equipment, 418holography, 404, 433homogeneous equation, 164, 165homogeneous wave equation, 34Horse Jaw hologram, 418humidity, 464– dependence of the sensor response, 464hybrid index, 156hydrogenation, 451– of thin film, 453hydrogen consumption, 444

    hydrogen detection, 450– fiber systems, 456hydrogen economy, 444hydrogen embrittlement, 443hydrogen explosions, 443hydrogen micromirror fiber sensor, 461hydrogen pressure composition isotherm, 460hydrogen sensor, 443, 444, 445, 446, 463– types of, 445hydrogen tetrachloroaurate(III) tetrahydrate

    (HAuClsub4/sub�4span cssStyle="font-family:monospace"Y/spanHsub2/subO), 237

    hydrometeors, 294hydrophilic surface, 518hydrophobic surface ligands, 242hydroxypropyl cellulose (HPC), 240hyperspectral imagery, 425hypotenuse face, 478

    iignition sources, 447IL. see injection lockingillumination beam, 429illumination light, 425illumination rotation, 437image forming mechanism, 429image quality, 404imaginary grating, 147IMIMI structure– for an outer SPP, 94implementation of parity-time symmetry, in

    optics, 145impurity ions, screening effect, 509impurity levels, 33incidence angle, 167, 295incident spectrum, 340incident wave, 158incoherent light tomography, 438incompatibility, 273index grating, 154index modulation gratings, 151inductive coupled plasma (ICP), 272industrial laser micromachining platform, 388Industry 4.0, requirement for, 355inelastic interaction, 356inelastic scattering, 356infinitesimal polarization mode

    dispersion, 301infrared femtosecond laser, 394inhomogeneous wave equation, 44, 46injected current, 309injection locking, 307

    540 Index

  • inorganic solid matrices, 233insulator-metal-insulator-metal-insulator

    (IMIMI), 93integrative optical imaging (IOI)

    technique, 372interaction strength, 32interband– dynamics, 308– electronics time constant, 315interference lithography, 339interferometric microscopy, 82– built in-house, 96intermodal dispersion, 296internal molecular arrangement, 66internal quantum efficiency, 345internet service providers, 320intersymbol interference, 299intrabandgap level, 345intracellular space (ICS), 373intramodal dispersion, 299intrinsic/extrinsic fiber, 450intrinsic fiber optic sensors, 358– used in transmission, 358intrinsic fiber sensors, 450inverse propagation techniques, 318invisibility, phenomenon of, 147I/O bus channel nanofiber, 74ionic liquid (IL), 501IREPA laser, 387isoelectronic centers, 131isoelectronic doping, 131isoelectronic impurities, 126isoelectronic trap, 13, 126, 128isomorphism, 146isotropic-resolution images, 436ISP. see internet service providersItalian Renaissance, 295ITO-coated glass, 262

    jJohnson noise, 314Jones matrix, 252Jones vector, 250Joule heating, 57

    kkey laser tools, 392K öhler, 426Köhler illumination, 428– principle, 430– system, 428– in transmission microscopy, 427kinetic energy, 39

    Kirchhoff’s law, 55Kogelnik model, 144Kogelnik’s coupled wave theory, 146Kogelnik theory, 143Kossel pattern, 512, 514Kramers-Kronig relationship, 308Kronecker symbol, 149

    llamp filament, 426Langmuir-Blodgett technique, 495lanthanum hydrides, 461large-area SP-RGB color filter, using UV-

    NIL, 273– device design, 274– device fabrication and transmission

    characteristics, 275laser ablation, 392laser action– on-demand photoswitching of, 498laser beam, 29laser cavity, 385– structures, 490laser diodes, 397laser emission, 385laser fabrication, 387laser filamentation, 395laser fluence, 393laser-induced damage threshold, 393laser-induced forward transfer, 384, 389, 391laser machining process, 384, 392laser mean power, 385laser methods, scale based, 396laser micromachining, 383laser microwelding, 395laser nanofabrication, 383, 384laser nanomachining– applications, 384laser physics, 305laser power, 395laser scan paths, 393laser sources, 293laser spectra, from CC gel film, 502laser spot, 386– interaction, 392laser threshold current, 306laser welding, 384lasing frequency, 307lattice constant, 40lattice temperature, 344laws of diffusion, 372layer-by-layer assembly, 495layer-by-layer dry etching, 95

    Index 541

  • LED. see light emitting diodeleft-handed circular (LHC), 250LHC polarization, 266Li-Fi. see light fidelityLIFT. see laser-induced forward transferliftoff process, 271, 273light-emitting diode (LED), 271, 319– lights, 403light-emitting materials, 489, 496light-emitting 1,3,5,7,8-pentamethyl-2,6,-

    diethylpyrromethene-difluoroboratecomplex (PM), 498

    light-exciton coupling, 74light fidelity, 322light incident– from air, 170– from substrate, 169light line, 77light-matter interaction, 425light propagation, 448light transmission, through hole/slit arrays, 83light trapping, 337light traveling, 476linear entropy, 120linear polarization, 263linear polarized (LPlm)– step-index multimode fiber, 449linear system of N equations, 365linear variable differential transducer

    (LVDT), 480lineic attenuation coefficient, 298linewidth, 309liquid crystal (LC), 143– displays, 273liquid crystals on silicon (LCOS), 144liquid environment, 477liquid-level detection system, 485liquid-level sensor performance, 485liquid-level sensor probe, 480liquid nitrogen, 485– from gas, 484liquid nitrogen test, 483liquid to vapor (L-V) response time, 480lithium niobate, 384– traveling waveguide, 310lithographic techniques, 39, 270,

    491lithography-based metal patterning, 273LO. see local oscillatorload resistor, 314local deposition, 392localized surface plasmon resonance

    (LSPR), 235

    local oscillator, 316long-distance fully secured communication

    quantum key distribution, 103long-haul– communication systems, 311– and high bit-rate systems, 314long homogeneous cylinder, radial variation, in

    temperature for, 362longitudinal LSPR of the Au nanorods, 235long-period grating (LPG), 456,

    472lop-sided diffraction, 146Lorentz-Drude model, 94Lorentzian function, 35, 45loss/gain modulations, 148lowest eigenvalue of energy, 293LPG-based liquid sensor, 475, 477LPG-based sensor, 485LPG-based system, 485LPG diffraction band, 476LPG operating principles, 476LPG sensor liquid-level system, 475LSPR resonance, 235LSPR wavelength, 235– of metal NPs, 235luminescence, 233– band, 39– emission, 32, 40– spectrum, 30

    mMach-Zendher interferometer, 310, 311,

    455, 456Mach-Zendher optical modulator,

    311macro-PL from bulk GaP:N, 127macro-PL spectrum, 127, 131, 132– of δ-doped GaAs:N, 135magnetic dipole (MD), 42– transition, 41magnetic field intensity, 177magnetic materials, 34, 42magnetofluorescent nanoprobes, 242magnitudes, 149Makimoto’s model, 136Manakov equation, 303mask deposition, 384mass diffusion transport, in heterogeneous

    media, 374mass production, 383mass spectrometer sensors, 444mass spectrometry techniques, 445mass transport, 375

    542 Index

  • material, 384– deposition, 18, 384, 392– response, 386– welding, 395MathCad program, 361mathematical models, 360matrix multiplication, 217Maupertuis’ principle of mechanics, 295Maxwell equation, 34, 43, 46, 160, 177, 296,

    335, 448mean-squared phase fluctuations, 304mechanical energy, 383Med-tech, 384metal-dielectric films, 82metal-dielectric interface, 81metal film, 273metal hydride system, 451metal insulator metal (MIM), 282, 459metallic filters, 82metal nanodomains, 235metal NPs, 237metal organic chemical vapor deposition

    (MOCVD), 125metal-oxide (Mox), 445metal-oxide multilayers, 30, 32metal pattern, 273metal reflection of radiofrequency, 296metals, 233metamaterial (MM), 249, 269metasurface insulator layer, 284metasurface thermal emitters, 282– fabrication process of, 284metasurface thermal emitters for infrared

    COsub2/sub detection, by UV-NIL, 282– device fabrication and optical properties, 16,

    283– metasurface design, 282method of undetermined coefficients, 164Mg alloys, dehydrogenation/hydrogenation

    of, 461micelle-coencapsulated Si QDs, 242micelle-encapsulated nanocomposites, 234micelle encapsulation, 241microcavities, 39, 47microcutting, 384, 393microcylinder, 389microdisk, 489microdrilling, 384, 393– nondivergent beams, 388microfluidic, 399microholography, 432micromachining, 387micrometer scale, 65, 70

    microparticle diameter, 493microphotonics, 343, 529micro-PL spectrum of GaAs QDs without PC

    structure, 40micropolarizer arrays, 32microscope PL image, of Au-doped

    nanofibers, 240microscopic scale, 431microscopy images, 431microspectroscopy, 516– system, 281microsphere, 389Miller indices, 512millimeter-scale propagation, 69millisecond pulsed lasers, 395MIMO. see multi-input multioutputminiature fiber optic spectrometer, 521miniaturization, of photonic circuits, 66miniaturized AMZI from waveguides, 70miniaturized photonic circuit components,

    constructed from TC nanofibers, 69– asymmetric Mach-Zehnder

    interferometers, 69– microring resonators, 71–– channel drop filters, 74miniaturized photonic circuits, 65mismatch factor, 149, 152missing cone, 437MMI. see multimode interferencesmode coupling in PT-symmetric grating, 165mode partition noise, 306modern industrial lasers, 383modified Bessel functions, 150modulation of gain and loss, 157module packaging, 314molar ratio, 132molds, 271molecular beam epitaxy (MBE), 39, 131momentum conservation law, 103monochromatic light– in phase-contrast microscopy, 431monochrome holography, 404monodispersed colloidal microparticles, 493Moore’s law, 319MQW. see multiquantum wellmulti-input multioutput, 302multijunction cells, 341multilateral shearing interferometry, 433multilayer deposition, 95multimode cavity, 47multimode fibers, 16, 295, 296– indoor application, 297multimode fiber vs. single mode fiber, 296, 297

    Index 543

  • multimode interferences, 315multiphoton absorption, 387, 394multiphoton-induced polymerization, 495multiphoton polymerization, 491multiple exciton generation, 345, 347multiple interference, 29multiplexer, 315multiplexing techniques, 293multiplicative factor, 309multiquantum well, 306Muse 3D platform– IREPA laser, development by, 388MUX. see multiplexer

    nnanoantenna metasurfaces, 143nanocomposite, 234, 235, 239, 243nanocone arrays, 337nanocrystals, 233nanodrilling, by nondivergent beam, 393nanofabrication technique, 270nanofibers, 65, 66– doped with Si QDs, 240– of organic dye, 66nanohole, 273nanoimprint, 270– technique, 271nanoimprint acrylic (NIAC), 271nanoimprint cationic (NICT), 271nanoimprint lithography (NIL), 269nanomachining process, 392nanometric scale, 333nanoparticle (NP), 233nanoparticle fabrication, 392nanophotonics, 291, 333, 527– applications, 529– devices, 271– fundamental–– and applications-oriented research, 528–– developments, 527– futorology, 528– represent, 529– structures/materials, 269– summing up, 529– technologies, 291nanopillar arrays, 337nanoplasmonic guided optic hydrogen

    sensor, 443– acoustic sensors, 445– hydrogen sensors, 447– “mass spectrometer sensors, 444– solar, and nuclear power plants, 444– spectroscopic sensors, 444

    nanoporous Au films, 233nanoprobes, 233, 242nanoscale, 239nanoscopy, 383nanoslit arrays, 85nanostructures, 3332-naphthalenethiol, 239– conjugated Ag-Au alloy NPs, 239narrowband– reflection, 223– thermal emission, 52Nath factor, 150, 152, 153natural extension, 437near-infrared, 385– region, 297near to eye display (NED), 144negative dielectric constants, 42negative refractive index, 249neodymium yttrium aluminum garnet

    (NdYAG) laser beam, 496neurons, 373neutral density (ND), 281– filters, 428new fiber materials, and structures, 304Newton rings, 395NF. see noise factorNielsen law, 320NIL fabrication process, 286NIR. see near-infraredNIR nanosecond laser, 391nitrogen, 125– atoms, 129nitrogen triplet (NNN) state, 128NLSE. see nonlinear Schrödinger equationN-methyl-2-pyrrolidone (NMP), 273NNsub4/sub– atomic arrangements, 130noise accumulation, 312, 314noise factor, 313noise power, 293noise tolerance, 306nonclassical single-photon emission, 125nonconstant coefficient differential

    equations, 159, 175nonconventional diffraction efficiency

    modulations, 145nondivergent subwavelength beams, 388nonexcited mode, 77non-Hermitian complex refractive index, 145non-Hermitian Hamiltonians, 146nonhomogeneous equation, 165nonhomogeneous second-order differential

    equation, 164

    544 Index

  • nonlinear infinitesimal effects, 303nonlinear materials gain/loss modulations,

    145nonlinear noise power, 304nonlinear refractive index, 303nonlinear Schrödinger equation, 303nonnormal light incidence, 154nonparaxial light propagation, 147nonradiative energy relaxation, 133nonreciprocal behavior, 145nonstandard efficiency modulations, 145nonsymmetrical configurations– of PT-symmetric grating on a substrate, 187nonvacuum conditions, 271notch filter, 29, 30numerical aperture (NA), 296, 428– of condenser, 428numerical computations– physical parameters of the problem in, 371numerical results, for conductive

    transport, 366numerical simulations, 360numerical solution, 79

    oOAM. see orbital angular momentumOFDM. see orthogonal frequency division

    multiplexingOFS for Hsub2/sub detection, 455OLT. see optical line terminationonly single-mode lasing, 200ONU. see optical network unitoptical amplification, 311–314– needs of, 311optical amplifiers, 293, 294– noise figure, 313– technologies, 311optical angular frequency, 299optical axis, 388optical bands, 298optical carrier frequency, 301optical cavity resonator, 309optical channel capacity, 292, 293– theoretical value, 294optical circuits, 312, 315– input, 293optical cloaking, 398optical coherent– detection, 302– receiver, 317optical communication, 291, 355– channel, 291– systems of today, 319–322

    optical connection– to end users, 320optical devices controlling polarization, 264optical domains, 17, 302, 314optical effects, used in opticalfiber sensors, 355optical fiber, 16, 17, 291, 294, 320, 355, 356,

    359, 360, 399, 449– advantages of, 447– attenuation–– limiting factor, 297– based liquid-level sensor detection

    system, 471– based sensors–– for liquid-level detection, 472– communication, 291–– and sensor technology, 355– core, 449– EMI-free nature, 485– hydrogen sensors, 447– long-period grating, 472, 473– numerical aperture of, 449– propagation, 293– sensing technology, 360– sensor, 360, 373, 379, 445, 450, 463–– system, 471– tip, 389optical filter, 12, 82, 317optical frequency– chirping, 308– decay, 303– range, 293– tuning, 309optical gratings, 147optical impedance, 386optical isolator, 146, 307, 314optical-level sensor designs, 476optical line termination, 320optical link, 294optically active luminescent centers, 126optical materials, 384optical micrograph– AMZI, 70– channel drop filter, 75optical microscopic system, 503optical network unit, 320optical performance of Si QDs, 233optical phase information, 302optical photons, 314optical power spectral density, 293optical properties, 29, 134, 285– alteration of, 29– matter by design of its electromagnetic

    environment, 31

    Index 545

  • – matter, influenced by, 32optical properties of matter– LDOS changes, 32optical pumps, 311, 312optical ray, 295optical resonant cavity, 306optical sensors, 240, 355, 360optical signal, 293optical signal-to-noise ratio, 304optical strain sensor, tensile testing, 521optical system capacity, 323optical time domain multiplexing, 315optical time domain reflectometer

    (ODTR), 472, 474, 478– demonstration of probe array, 479– interrogation of multiple sensors, 478optical-to-electrical conversion, 314optical transition, 103optical transmission properties, 273optical transmittance spectra, 88optical transport, 294optical tweezer, 389optical wireless, 17, 322OptoClonesTM, 417, 418, 419, 420, 421optoelectronic devices, 282, 294optoelectronic nanomaterial, 233optoelectronics, 233, 243, 291, 507orbital angular momentum, 322organic dye, 239– crystals, 65organic surface ligands, 236orientation angle, 38original photonic crystal, 33orthogonal correlation degrees, 118orthogonal frequency division

    multiplexing, 318oscillating dipole, 34– moment, 36, 38oscillating electric dipole moment, 35, 38oscillating electric polarization, 46oscillating magnetic dipole, 44– moment, 42oscillation frequency, 34, 36oscillator strength, 65OSNR. see optical signal-to-noise ratioOTDM. see optical time domain multiplexingout-of-band noise, 317Owl Jug and the Ring color hologram, 419oxygen deficiencies, 30

    ppackaging, 297palladium forms metal hydride (M-H), 451

    parametric down conversion (PDC), 104parity-time (PT), 193– symmetric cavities, 193– symmetry–– in diffractive optics, 143–– in gratings, 145partial gap, 33partially constructive cavity interaction, 223partially destructive cavity, 220– interaction, 228passive optical network, 322pattern transfer process, by UV imprint

    lithography, 271PC cavity, 38, 40PC microcavities, 29PC-slab microcavities, 38, 39Pd alloys– advantages of, 460Pdsub0.6/subAusub0.4/sub films, 461Pd-diffused hydrogen (Hsub2/sub) carrier, 127Pd hydrogenation, 453Pd hydrogen sensing systems– bulk palladium film, 451– metal properties upon hydrogenation, 454– thin film, 20, 453Pd pressure composition isotherm– for H in Pd, 452Pd/WOsub3/sub dispersed silicone resin, 463peak frequency, 38perfectly asymmetrical grating, 150, 151perfectly matched layer (PML), 37permeability, 34, 158, 174– of free space, 44α phase, 451β phase, 452phase amplitude coupling factor, 308phase amplitude microscopy, 431– differential interference-contrast microscopy

    (DIC), 431– digital holography, 432– phase-contrast microscopy, 431– wavefront analyzer, 433phase and gain/loss modulation, 145phase-contrast microscopy, 429, 430– for phase transforming, 430phase/gain/loss modulations, 145phase grating, 194phase memory, 310phase microscopy, 426, 434– studies, 434phase modulation, 166phase opposition, 430phase plate, 431

    546 Index

  • phase transition, 453phase velocity, 299phonon occupancy factor, 312phosphine (PHsub3/sub), 127phospholipid micelles, 241phosphorus (P), 126phosphorus codoped colloidal Si QDs, 236photochromic diarylethene derivative

    (BMTH), 499photochromic light-emitting materials– chemical structures, 499photochromic reaction, 498photoconversion, 529photocuring, 273photocurrent, 316photodetectors, 355photodiodes, 355– detectors, 113photoelasticity, 356– effect, visualization of, 356photoexcited carriers, 333photographic emulsion making process,

    general description of, 407photoinduced polymerization, 510photolithography, 383photoluminescence (PL), 39, 66, 127, 233, 269– spectra, 106photon, 296– antibunching, 130– correlation–– measurements, 113, 133–– setup, 112– density, 31– emission, 40–– suppressed, 41– energy, 299photonic applications, 233photonic band– calculations, 33photonic band gap, 51, 52– in 3D photonic crystals, 52photonic band gap (PBG), 29, 490photonic band structure, 32, 33photonic circuits, 65photonic counterpart, 65photonic crystal, 32, 507– with blackbody, 57photonic crystal (PC), 29, 51, 52, 269, 398, 492,

    493, 507– band-gap structures, 399– for infrared emissivity, 51– microcavity, 32– slabs, 33

    – unconventional thermal emission, 51– waveguides, 65photonic devices, 291photonic jet generation, 390photonic MMs, 252photonic nanojet, 384, 387, 389, 392photonic rubber sheet, 519, 521, 522, 523photonics, 287, 333, 384photonics band gap, 305photon management, 334– techniques, 348photon-photon nonlocal correlations, 103photon source, 104photopolymerization, 397photoreceiver electronic bandwidth, 317photoresist templates, 495photosensitive materials, 404photovolaics, 343physical vapor deposition technique, 392picosecond lasers, 393planar backside mirror, 338planar purely reflective grating of the index and

    gain/loss, 173Planar slanted grating of index, 157Planck constant, 293Planck’s law, 31PL and PLE spectra, of Si QDs, 234, 236plane-wave expansion, 33– method, 32, 33plasma-enhanced chemical vapor deposition

    (PECVD), 275plasma plume, 392plasmon-enhanced sensors, 269plasmonic cavities, 31, 42, 46plasmonic effects of metal nanostructures,

    233plasmonic enhancement of PL from Si

    QDs, 240plasmonic microcavities, 29, 41plasmonic/phononic materials, 61plasmonic resonance, 269, 281, 282, 392plasmonic resonator, 42plasmonics, 333plasmon resonance, in subwavelength-sized

    structure, 283plastic optical fibers, 305PL decay rate, 235PL excitation spectra, 235μ-PL images of NNsub4/sub pairs, 129PL intensity, of nanocomposites, 235μ-PL measurements, 128Plot of finesses, 73Plot of Q-factors, 73

    Index 547

  • μ-PL spectra at several positions of δ-dopedGaP:N, 129

    PL stability in prostate cancer tumormicroenvironment, tests of, 243

    P2MP. see point-to-multipointp-n homojunction, 305p-n junction, 340, 344Pockels electro-optic coefficient, 310Pockels electro-optic effect, 310POF. see plastic optical fibersPoincaré sphere, 116, 118point-to-multipoint, 321point-to-point, 321polarimetric imaging, 425polariton theory, 69polariton waveguides, 66polarization, 76polarization beam splitter (PBS), 112polarization-controlling optical devices, 249– using Jones matrices, 250polarization-dependent filters, 82polarization direction, 95polarization diversity management, 319polarization gratings, 143polarization mode dispersion, 299polarization modulation, 456polarization patterns, 136polarization selectivity, 143, 144polarization vector, 45polarized microscopy, 430polarizer, 112, 398poly(acrylamide) hydrogel matrix, 499poly(dimethyl siloxane) (PDMS), 494poly(ethylene glycol) diacrylate (PEG-

    DA), 496polyethylene jacket, 295poly(ethylene terephthalate) (PET), 496polymer assemblies, 234polymer encapsulation, 239polymer hydrogels, 498polymer nanofibers, 239polymers, 233polymethyl methacrylate, 507poly-methyl-methacrylate (PMMA), 270poly(N-methylolacrylamide-co-N,N´-

    methylenebisacrylamide), thermo-insensitive polymer hydrogel of, 500

    polynomial gradients, 336polystyrene (PS), 493, 507– colloidal crystal, 519– SEM images of discrete single

    microparticles, 494PON. see passive optical network

    population inversion factor, 305pore space, 376, 378porosity, 374, 377– value, 378positive-charged polymer (poly(allylamine

    hydrochloride) (PAH)), 234positive dispersion effect, 303positive group velocity dispersion mitigation– by self self-phase modulation, 304positively charged polymer-coated Au

    nanorods, 235postdetection signal processing, 302power density, 386power detection receiver, 292power spectral density, 293Poynting’s vector, 34, 44, 47, 257P2P. see point-to-pointprebacking time, 272pressure composition isotherms, 451principle of averaging method, 374probe response time– measurement of, 481projection amplitude, 114prominent modes of PT-symmetric grating– for incidence at different angles and from

    different sides, 171, 184propagating ray– through optical fiber via total internal

    reflection, 450propagation constant, 79, 148propagation equation, 388propagation impairments, 294PS microparticles– nonclose-packed uniform CC polymer

    hydrogel film, 500PT-symmetric– coupler, 214– GACC output, 209– optics, 145– passive structure, 147– reflection gratings, 176– reflective gratings, 216– structure, 146, 166– transmission grating, 170– volume grating, 172, 174– volume holograms, in transmission

    mode, 156PT-symmetrical Bragg grating (PT-SBG), 194,

    216– bandwidth, 222– design, 222– grating, 224– strength, 223, 225

    548 Index

  • PT-symmetric coupling– with lowest possible lasing threshold, 204PT-symmetric grating, 161, 167, 172, 174, 176,

    197, 204– metamaterials, 147– for zeroth-order transmission, 167PT-symmetry breaking point, 196Pucell factor, 42pulsed laser, 389– deposition, 392pulse duration, 387– and repetition rate, 385pulse overlap, 393pumping electrons, 305Purcell effect, 38, 40, 41, 137, 235Purcell factor, 38, 45– for MD radiation, 46– for multimode plasmonic cavities, 47– for resonant emission, 47pure reflection dielectric gratings, 176pure reflection gratings, 176PV cells, 340

    qQCL. see quantum cascade laserQ factor, 37, 42– PC-slab cavity modes, 37– plasmonic cavities, 37– resonance, 41QKD. see quantum key distributionQoS. see quality of serviceQPSK. see quadrature phase shift keyingquadratic detection, 316quadrature amplitude modulations,

    317quadrature phase shift keying, 311quality factor, 29, 35quality of service, 320quantum aspects, 291quantum cascade laser, 306quantum cryptography, 125, 322quantum dash, 306quantum dot (QD), 37, 306, 333, 349– application of, 108– artificial atoms–– band-gap energy size of use of wave

    functions of, 105– droplet epitaxy of GaAs, 13, 109– entangled photon pair emission, 115– photon sources, 120– polarization characteristics of, 110– resonant coupling of, 125– statistics of, 111

    quantum efficiency, 126– of Si QDs, 233, 235quantum entangled pairs, 104quantum-entangled photon-pair

    generation, 105quantum entanglement– characterization of, 112– criterion for, 114– degree of, 114– Peres criterion of, 120quantum information technologies, 125quantum key distribution, 103, 118, 322quantum mechanical treatment, 38quantum metrology, 103quantum nanostructure fabrication, 109quantum noise, 312– impairment, 293quantum optic, 399quantum phase diffusion, 17, 309quantum-state tomography, 13, 118quantum supercorrelation, 322quantum teleportation, 125quantum theory, 115quantum well, 57, 306, 345– absorption wavelength range, 58quarter wavelength, 430quarter-wave plate, 112quartz, 255– substrate surface, 84quasi-Fermi level, 305, 343quasi-two-dimensional structures, 33QW. see quantum well

    rRA. see Raman amplifierradar, light pulse sending, 474radial temperature distribution– in cylinder at different time moments, 368radiation energy, 35, 44radiation field, 51radiation power, 38radiation rate, 38radiation source, 36radiative heat, 371radio over fiber, 322radiotracers technique, 372, 373Raman amplifiers, 312Raman anti-Stokes transition, 312Raman effect, 312Raman-Nath diffraction, 151– equations, 146– regime, 147, 150, 152, 155Raman-Nath form, 149

    Index 549

  • Raman scattering, 29, 356– in optical fiber, effect of, 356Raman signals, 29, 239Raman-Stokes transitions, 312rare-earth elements, 345ray injection, 295Rayleigh diffusion, 16, 297Rayleigh scattering, 355– in optical fiber, effect of, 356ray theory, 296reactive ion etching (RIE), 270real-space calculations, 33real-time iontophoretic (RTI) method, 372receiver, 292– optical subassembly, 314reciprocal lattice vector, 43reconfigurable elements, 144red, green, and blue (RGB), 81reducing agents, 237reflected wave (R), 158, 176reflection efficiencies, 281reflection hologram, 405reflection, of zeroth order, 168reflection probe, 522reflection spectra, 222– of fabricated Au SC-PlCs at normal

    incidence, 281– left-side, 226reflective index, 474reflective PT-symmetric gratings, with Fresnel

    reflections, 185– asymmetric slab configuration, 186– grating attached–– to left of substrate, 186–– to right of substrate, 188– symmetric geometry, 14, 185reflective setup, 171reflectometrical properties, 373refraction distribution, 438refractive index, 32, 38, 45, 50, 65, 68, 80, 145,

    146, 147, 149, 157, 173, 174, 193, 275, 283,356, 399

    regular PC structures, emitted field, 34relative dielectric permittivity, 157relative intensity noise (RIN), 215remote-object ultraprecision

    metrologyquantum metrology, 103repetition rate, 387representative elementary volume (REV), 374residual resist layer (RRL), 272residue theorem, 49resins, 384resonance curve, 41

    resonance dip frequency, 48resonance frequency, 40, 48– microcavities, 39resonance mode, of cavity, 48resonance wavelength, 285resonant cavities– based on two PT-symmetric diffractive

    gratings, 194resonant field distribution, 48RGB color filters, 89– polarization dependence of the transmission

    spectra, 91– transmission spectra of, 90RHC polarization, 252, 265rhodamine 640 (Rh), 495rhodamine 6G (R6G) dye, 280right-handed circular (RHC), 250right-side diffraction, 177rigorous coupled-wave analysis (RCWA), 256ripples, 396ripples’ orientation on stainless steel– color effect, 397rippling effect, 169RoF. see Radio over fiber

    sSC. see supercontinuumscalar diffraction, 149scalar wave equation, 148scanning electron microscopy (SEM), 87, 240,

    254, 271, 493, 519– image of electrospun HPC nanofibers doped

    with Si QDs and Au NPs, 240– image of PC slab with L3 defect cavity, 39– images of various quartz molds for UV

    imprint lithography, 272scattering process of excitons, 131Schawlow-Townes relationship, 310schematic illustrations of an SC-PlC, 279Schmidt’s method, 43Schrödinger equation, 146scintigraphy, 373second harmonic generation (SHG), 496second-order– correlation function, of emitted

    photons, 137– coupled mode equations, 157– derivatives, 173– equations, 165, 172– Maxwell equations, 172, 174self-assembly techniques, 507self-focusing effect, 387self-phase modulation, 303

    550 Index

  • semiconductor, 33– DFB lasers, 193– impurities/defects in, 125– laser, 305–– single-mode operation, 306–308– light emission, 305– optical amplifier, 311– processing, 491– quantum dots, 107, 233, 239– surface, 335sensing, 384sensitometric tests, 413sensor, 356, 379– fabricated “response time, 481Shack-Hartmann analyzer, 433Shannon capacity theorem, 292SHA transmission spectra, 97shear-aligned colloidal crystal, 511– angle-dependent transmission spectra, 513shear flow, 510Shockey-Queisser limit, 349shorter face, 478Si-Au hybrid nanostructure, 241signal and noise energies– addition of, 292signal bandwidth, 292signal engineering, 291signal processing, 291– techniques, 318signal-to-noise (SN) ratio, 30silica fiber, 297– flexibility and robustness, 448silica optical fiber, 299, 391– attenuation, 298– dispersion, 298– optical transmission bands, 298silica particles, 507silicon– cells, 338– etching, 390– liquid, 515silicon-on-insulator (SOI), 279SilverCross emulsion– sensitometric response of, 414SilverCross Ultrafine-grain emulsion,

    specification for, 408silver films, 82silver halide, 404– based materials, 404– emulsion, 404–– light scattering, 405–– preperation, principle, 407simulations, 360

    sinc function, 156single-beam color reflection holograms– on SilverCross plates, 416single-exponential function, 137single-junction solar cells, 333single-mode fiber (SMF), 295, 296, 448, 458single-mode optical fiber communication, 316single-photon counting technique, 130single-photon emissions, 125– tomography, 373single-photon generation, 133single-photon polarization state, 112sinusoidal oscillations, 117sinusoidal variation, 49SiOsub2/sub film, 87Si QD-based nanocomposites, 234Si QD core�Au shell nanocomposites, 235Si QD-Fesub3/subOsub4/sub NP

    composites, 242Si QD micelle core-Au shell

    nanocomposites, 241Si QDs nanocomposites, 235Si quantum dot-based nanocomposites, 233Si/SiOsub2/sub photonic crystal, 60Si-SiOsub2/sub quantum dot

    superlattices, 342size-tunable plasmonic resonance of Au

    NPs, 237slab attached– to left of the substrate, 187– to right of the substrate, 188slab boundaries, 147, 167slab in air, 185, 186slab surfaces, 167slanted grating, 157SLM. see spatial light modulatorsmartphone, 384SMDM-layer skew stacked structure, 266SMDM waveplate, 261Snell-Descartes law, 295sodium dodecyl sulfate (SDS), 493solar cells, 349– conceptual approaches, 344– hot carrier, 348– intermediate band, 345– multiple energy level, 344– single-junction, 343solar concentration, 341solar spectrum, 334, 343solid-state devices, 127soliton propagation, 303solution-dispersible Si QDs, 233space application, 341

    Index 551

  • SP1 approximation model, 370spatial concentration, 18, 385spatial light modulator, 388, 393specific heat capacity, 361spectral, angular, and polarization

    selectivity, 143spectral bandwidth, 143spectral broadening, 306spectral channel repartition, 316spectral efficiency, 293, 323spectral hole burning, 308spectral optimization, 339spectroscopic sensors, 444spectrum of nondoped GaAs epitaxial

    layer, 133spherical cavity, 376spikes, 396spin angular momentum, 106spin orbit-coupled angular momentum, 106spin-spin correlations, 115splicing, 361– process, 371split-step algorithms, 303SPM. see self-phase modulationSP1 model, numerical results for, 370spontaneous emission– factor, 305, 310– lifetime, 107– noise description, 313– of photon, 32SPR-based fiber optic sensor, 457SP resonance (SPR), 269SPR fiber sensors, 458SP-RGB color filter fabrication procedure,

    275SPR peak shifts, 457square transmission distance, 295stability, 69stabilizing agents, 238stacked complementary (SC), 254stacked metal hole array (SHA), 82stainless steel– wettability control, 397STEM-EDS mapping of– Si QD-Au-Ag bimetallic composite NP,

    238– Si QD-Au composite NPs, 238step index optical fiber, 295stimulated emission– depletion-inspired optical lithography, 398– rate, 308stochastic effects, 319Stranski-Krastanov mode, 108

    submarine and terrestrial communicationinfrastructures

    – conquest of, 319submicrometer scales, 527subwavelength deposition– by LIFT technique, 389subwavelength drilling, 389Subwavelength etchings, 389subwavelength focusing of light– with photonic nanojet, 389subwavelength optical devices, 249–254– circular dichroic devices, 265– EM fields in the II-type SC polarizer, 258– functional subwavelength devices

    constructions, 264– II-type SC polarizer, 255, 256– mapping of photonic MMs, 251– metasurfaces, 263– nanoimprint lithography(NIL), 252– optical devices, using Jones matrices,

    250– physical quantities of EM waves, 250– polarization-controlling optical devices,

    249– stratified metal-dielectric MMs

    (SMDMs), 259–– polarization conversion through, 262– transmission-type subwavelength waveplates

    made of MMs, 259– ultrathin polarizers, 254– ultrathin waveplates, 15, 258, 262–– in SMDM, 260– ultraviolet(UV), 252– UV-nanoimprinted resist patterns, 254– UV NIL procedure, 253subwavelength polarizer– to Jones matrix, 251subwavelength quarter waveplate– to Jones matrix, 250subwavelength thickness, 249supercontinuum, 321– analysis, 303superlattice, 306surface antireflection coating, 343surface density, 128surface plasmon (SP), 83, 269, 456– resonance, 82, 456– sensors, 447surface plasmon polariton (SPP), 81surface texturing, 384, 396suspension, 510switching, 159symmetric function, 49

    552 Index

  • symmetric quantum dots– natural growth, 108symmetric slab configuration, 167symmetric vs. filled space configuration, 167

    ttandem cell, 340– all-silicon, 342– efficiencies, 341– as functions of subcells, 341– micromorph, 342tangential component, 160tangential electric field, 177tangential magnetic fields, 177tangle value, 120tapered fibers, 458Taylor expansion, 299TC nanofiber, 66, 80telecom applications, 144telecommunications, 65– fibers, 295tellurium, 125TE mode, electric field profiles, 86temperature gradients, 371temperature gradients, important values in

    splicing region and, 371temperature measurements, 356temporal decay of cavity mode,

    45temporal delta-function-like initial

    condition, 36temporal Fourier spectrum, 36temporal variation, for QD, 40temporal variation, in emission intensity of

    GaAs QDs, 41TE polarization, 148, 175terrestrial optical links, 320testing, of emulsion, 413tetraethyl orthosilicate (TEOS)– sol-gel chemistry of, 493theoretical analysis, 76– bending loss, 78– dispersion relation, 76theoretical and experimental result, of group

    index nsubg/sub, 78theoretical number of electrons per photon,

    comparison of, 346thermal annealing, 109thermal conductivity, 348, 445– coefficient, 361thermal diffusivity, 361thermal distribution, 371thermal durability, 56

    thermal emission, 51, 52, 57, 282– from 3D self-assembled photonic crystal, 56– from photonic crystals, 51, 52, 53– spectrum, 51thermal emitters, 51thermal insulation, 361thermal loss, 286thermal mass minimization, 283thermal nanoimprint, 270thermal stress, 360, 371thermoelectric cooler, 314thermo-optic effect, 356thermophotovoltaics, 339thiacyanine, 66thick grating, 147thin grating, 147thin-layer control, 392thin-layer deposition, 392thin Mgsuby/subTisub1�y/sub film– pressure vs. optical transmission

    isotherms, 462thin Pd– in metal and hydride state, 454thin residual film, 253third-order reflection, 165three-axis micromotion, 387three-dimensional finite difference time

    domain (3D-FDTD) method, 274three-dimensional photonic crystal

    intermediate reflector, 343threshold effect, 386threshold excitation energy, 496threshold photon energy, 346time multiplexing, 13, 144time-resolved reflectometry, 356TIR-based liquid-level detection system, 476TIR-based probes, 486TIR point liquid sensor, 477Titanium sapphire laser, 387TM mode transmission spectra, 87TO-can. see transistor outline cantomographic diffractive microscopy

    (TDM), 426, 434, 435, 438– dual imaging mode, 435– by illumination variation, 434– image of diatoms, 435– longitudinal resolution, 436– optical transfer function, 436– phase microscopy, limits of, 433– principle, 435– by specimen rotation, 436– tapered optical fiber, 438– technique, 439

    Index 553

  • tomographic representation of, measured two-photon state, 119

    tomography– by illumination rotation, 437– with illumination rotation, 437– with specimen rotation, 437top-down microfabrication techniques, 107Torr beam equivalent pressure, 109tortuosity, 374, 377tortuosity vs. diffusion coefficient

    variation, 376TOSA. see transmitter optical subassemblytotal electric field in the hologram region,

    175total internal reflection, 474total internal reflection (TIR), 399, 458, 474– critical angle, 475– principle, 475total reflection, 295– dielectric guiding mechanism, 297transfer matrix– approach, 193– equation, 211transistor outline can, 314transition cascade, 105transition SHA, 95transmission characteristics, 89– hole arrays, 89– nanoslit arrays, 91transmission coefficients, 161, 165transmission diffraction gratings, 176transmission electronmicroscopy (TEM), 235,

    414– image and schematic of a Au nanorod

    decorated with Si QDs, 236– image of a Au NP-Si QDs

    nanocomposite, 234– image of Au-doped nanofibers, 240– image of composite NPs, 239– image of nanocomposite, 235– image of Si QD-Au core-shell composite

    NP, 237– image of Si QD-Au NP composite, 237– image of Si QD micelle core-Au shell

    nanocomposite, 241– images, and size distributions of Au NP cores

    of Si QD-Au composite NPs, 238– images F127-COOH-encapsulated Si

    QDs, 241– images of emulsion, 415– images, of ethyl-undecylenate-terminated Si

    QDs, 241– images Si-Au hybrid nanostructure, 241

    transmission microscope, 426transmission phase, 82, 95– control, 82–– by stacked metal-dielectric hole array, 92–– experimental confirmation of

    transition, 13, 97–– experimental confirmation of

    uniform, 12, 95–– verification of, 12, 93–– wavefront formation, 95

    – control element, 92transmission properties– diagrammatic representation, 83transmission silica fiber, 312transmission spectra, 94– of triangle lattice of circle shape, 277– triangle lattice of triangle shape, 277transmission spectrum, 29– of notch filter, 30transmittance– of notch filter, 30– peak, 276– spectra, 91transmitted linear polarization, 266transmitted phase, 96transmitted signal, 292transmitted wave (T), 158, 176transmitter optical subassembly, 314transparent dielectric materials, 29transport equation, 360– in porous media, 373transverse electric (TE), 85transverse magnetic (TM), 85transverse size-to-wavelength ratio, 296traveling wave amplifier, 312triangular lattice, of circular air cylinders in the

    thin film, 37triethylgallium (TEGa), 127tunable elements, 144tunable micropatterned colloid crystal

    lasers, 489– CC gel films stabilized by ionic liquid,

    498– laser action from CCs with light-emitting

    planar defects, 495– light-matter interactions, 489– micropatterned laser action from CCs by

    photochromic reaction, 498– photonic crystals(PC), 490tungsten halogen lamp, 281TWA. see traveling wave amplifiertwo-dimensional hole array (2DHA), 81two-dimensional scanning, 385

    554 Index

  • two-dimensional spatial distribution, 128two-mode solution, 14, 160– for incidence at the Bragg angle, 162, 163

    uultrafine-grain materials, 404ultrafine-grain silver halide emulsions, history

    of, 406ultrarealistic 3D images, 403ultrarealistic holographic images, 403ultrarealistic image, 403ultrashort pulsed laser, 385, 393– advantages, 387ultrasmall angle x-ray scattering (USAXS), 514ultrasonic cleaning, 273ultrathin Mg film, 462ultrathin polarizers, 254ultrathin waveplates, 262– from SMDM, 261– of stratified metal-dielectric MMs, 15, 259ultraviolet (UV), 270, 385, 472– irradiation, 236– light, 271undetermined coefficients, 165uniaxially oriented opal film, 517unidirectional invisibility, 146, 147unidirectional nonparaxial invisibility of purely

    reflective PT-symmetric volume gratings,analysis of, 173

    unslanted grating, 159upconversion, 17, 339– principles, 339US Department of Energy specification, 447UV. see ultravioletUV-NIL technology, 282– for fabricating plasmonic devices using the

    nanoperiodic structure of, 285UV-VIS-NIR spectrometer, 512

    vvacuum fluctuation, 293vapor to liquid (V-L) response time, 480VCSEL. see vertical cavity surface emitting laservertical cavity surface emitting laser, 307viscosities, 270visualization of photoelasticity, using cross

    polarization, 357volatility, of NIAC monomer, 272volume holograms, 143

    wwater surface tension, 482water test, signal output, 482

    wave attenuation, 147wave equation, 42, 146, 175– system of coupled, 159wavefront sensor, 433wave function, 33, 115, 345waveguide, 146, 173, 399– based photonic circuits, 65– technologies, 65– writing, 384, 399–– process, 399wavelength, 149, 385– division multiplexing, 302,

    315–– access networks, 321– in free space, 39– multiplexing, 294– roles, 385– selectivity, 152– threshold, 334wavelength-independent reflection

    vs. wavelength-selective reflection,307

    wave number, 335wave plate, 112wave propagation, 211wave vector, 33, 77, 174, 335welding, 361Werner line, 120Werner state, 119wettability control, 397white noise, 293wire-grid array, 81, 86wireless communication system, 322wiring technique, 321WOsub3/sub refractive index, 463

    xXPM. see cross-phase modulationXX®X transitions, 105

    yYablonovitch limit, 338Ytterbium-doped laser, 387yttrium, 461

    zZBLAN glasses, 304zero average loss/gain factor, 156zero eigenfrequency, 43zero-order Bessel functions,

    363zero-order diffraction, 155zero-point field spectral density, 293

    Index 555

  • zeroth diffractive orders in transmission, andreflection, 177

    zeroth-order diffraction, 162zeroth-order reflection– coefficients, 161

    zeroth-order transmission, 167– amplitude, 162zero time delay, 137zincblende lattice, 130ZZZyclopsTM equipment, 418

    556 Index

    Index