In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

26
In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen

Transcript of In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Page 1: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

In vivo dosimetry

Eirik MalinenEva Stabell Bergstrand

Dag Rune Olsen

Page 2: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

In vivo dosimetry

• In vivo: In the living• Dosimetry: Estimates of radiation dose by theory and

measurement• Verification of delivered

dose to individual patients• Radiotherapy requires

accurate dose delivery

error

Prescribed dose

Pro

bali

lity

Page 3: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Errors in patient dose

• Patient contour / planning basis (CT images)• Patient motion • Organ motion• Dose calculations (inhomogeneities, scatter)• Patient positioning• Transfer of treatment data from simulator to linac• Linac settings (energy, monitor units, field size) and

calibration• Beam modifiers (blocks, wedges)

Page 4: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Dose characteristics

Page 5: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Dose measurements

Patient curvature

beam

wedgeOutput, SSD

Wedge, curvature

Thickness, density

Entrance dose:

Exit dose:

Point detector

2D detector array

Page 6: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Desired in vivo dosimeter characteristics

• Accurate and precise

• Multiple readouts• Reusability

• No cables

• Non-destructive readout

High accuracyLow precision

Low accuracyHigh precision

Page 7: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

In vivo dosimetry principles

• Point detector:– Semiconductors (diodes)– Thermoluminescent crystals– EPR (electron paramagnetic resonance) sensitive

materials– ….

• 2D detector, (electronic) portal imaging device; EPID:– Film– Arrays (ion chambers, semiconductors)

Page 8: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Dosimeter reading → absorbed dose

• Absorbed dose, D:

R: dosimeter reading

ND: calibration factor

Ci: correction factor

ii

D CRND

Page 9: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Calibration

Rcal

Dcal

beam

dmax

water phantom

ion chamber

dosimeter

cal

calD R

DN

• Under reference conditions:

Page 10: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Example – diodes

spherical

droplet

Page 11: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Buildup cap

Page 12: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Correction factors

• Dosimeter reading may depend on:– Temperature– (Accumulated) Dose– Dose rate– Beam energy– Field size– ...

• Accuracy may be reduced if dependence is not corrected

Page 13: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Temperature and sensitivity, diodes

Detector temperature after placing on patient

Sensitivity dependence

Page 14: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

• Regular calibration must be performed

Accumulated dose and sensitivity, diodes

Page 15: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Field size and sensitivity, diodes

8 or 18 MV photonsEntrance (in) or exit (out)

Page 16: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Supralinearity, TLD

Page 17: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Energy dependence, TLD

Page 18: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Correction factor forEPR/

alanineTLD Diode

Dose rate 1 1 <1

Linearity 1 <1 1

Beam inclination 1 1> 1

Temperature ≈1 1 <1

Energy ≈1 ≈1 ≈1

Stability ≈1 ≈1 Immediate readout

Total uncertainty(following corrections)

3-4 %(~1 Gy)

2-3 % 2 %

Comparison

Page 19: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Action level

• Relative dose difference:

• At what dose difference level should the treatment be revised? 1% ? 2.5 % ? 5 %?

• Depends on:– dosimetric accuracy and precision– non-systematic errors– …

prescribed

measured

D

Dr 1

Page 20: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Clinical example

Page 21: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Methods

Portal image profile

Page 22: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Measured dose / prescribed dose

Action level: 2.5%

measured dose

dose after correction

%2.1

008.1r

Page 23: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Frequency distribution of relative dose

Page 24: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

2D dose maps

Treatment planning algorithm Portal image

Collapsed cone algorithm Location of normalization point

Page 25: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Novel methods – ”dose guided radiotherapy”

dose image

Backprojection of filtered dose image into patient image

→OK

→correction

target

prescribed isodose

Page 26: In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.

Novel methods – ”dose guided radiotherapy”

Corrections

bladder

prosta

te

rectum