Improved Photocatalytic Hydrogen Evolution Amino ... · Fig. S7 (a) 13C NMR spectrum of F3N-2BO and...

12
Amino-functionalized Conjugated Porous Polymers for Improved Photocatalytic Hydrogen Evolution Kaiwen Lin‡, Zhenfeng Wang‡, Zhicheng Hu*, Peng Luo, Xiye Yang, Xi Zhang, Muhammad Rafiq, Fei Huang* and Yong Cao ‡These authors contributed equally. Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China E-mail: * [email protected]; * [email protected] Support Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Transcript of Improved Photocatalytic Hydrogen Evolution Amino ... · Fig. S7 (a) 13C NMR spectrum of F3N-2BO and...

Page 1: Improved Photocatalytic Hydrogen Evolution Amino ... · Fig. S7 (a) 13C NMR spectrum of F3N-2BO and (b) the solid-state 13C NMR spectra of Tr-F3N. 2 0 0 4 0 0 6 0 0 8 0 0 6 0 7 0

Amino-functionalized Conjugated Porous Polymers for

Improved Photocatalytic Hydrogen Evolution

Kaiwen Lin‡, Zhenfeng Wang‡, Zhicheng Hu*, Peng Luo, Xiye Yang, Xi Zhang, Muhammad Rafiq, Fei Huang* and Yong Cao

‡These authors contributed equally.

Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China

E-mail: * [email protected]; * [email protected]

Support Information

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2019

Page 2: Improved Photocatalytic Hydrogen Evolution Amino ... · Fig. S7 (a) 13C NMR spectrum of F3N-2BO and (b) the solid-state 13C NMR spectra of Tr-F3N. 2 0 0 4 0 0 6 0 0 8 0 0 6 0 7 0

Fig. S1 1H NMR spectrum of Tr-3Br.

Fig. S2 13C NMR spectrum of Tr-3Br.

Page 3: Improved Photocatalytic Hydrogen Evolution Amino ... · Fig. S7 (a) 13C NMR spectrum of F3N-2BO and (b) the solid-state 13C NMR spectra of Tr-F3N. 2 0 0 4 0 0 6 0 0 8 0 0 6 0 7 0

Fig. S3 1H NMR spectrum of F8-2BO.

Fig. S4 13C NMR spectrum of F8-2BO.

Page 4: Improved Photocatalytic Hydrogen Evolution Amino ... · Fig. S7 (a) 13C NMR spectrum of F3N-2BO and (b) the solid-state 13C NMR spectra of Tr-F3N. 2 0 0 4 0 0 6 0 0 8 0 0 6 0 7 0

Fig. S5 1H NMR spectrum of F3N-2BO.

Fig. S6 13C NMR spectrum of F3N-2BO.

Page 5: Improved Photocatalytic Hydrogen Evolution Amino ... · Fig. S7 (a) 13C NMR spectrum of F3N-2BO and (b) the solid-state 13C NMR spectra of Tr-F3N. 2 0 0 4 0 0 6 0 0 8 0 0 6 0 7 0

Fig. S7 (a) 13C NMR spectrum of F3N-2BO and (b) the solid-state 13C NMR spectra of Tr-F3N.

200 400 600 800

60

70

80

90

100

Wei

ght (

%)

Temperature (oC)

Tr-F8 Tr-F3N

Fig. S8 TGA of the Tr-F8 and Tr-F3N.

Page 6: Improved Photocatalytic Hydrogen Evolution Amino ... · Fig. S7 (a) 13C NMR spectrum of F3N-2BO and (b) the solid-state 13C NMR spectra of Tr-F3N. 2 0 0 4 0 0 6 0 0 8 0 0 6 0 7 0

-2 -1 0 1 2Potential vs. SCE (V)

Cur

rent

Tr-F8 Tr-F3N

Fig. S9 Cyclic voltammetry measurement of the Tr-F8 and Tr-F3N.

0 2 4 6

0

100

200

300

400

H2 (

mol

/g)

Time (h)

Tr-F8 (TEOA/H2O) Tr-F3N (TEOA/H2O)

Fig. S10 Hydrogen evolution for Tr-F8 and Tr-F3N as a function of time (50mL of TEOA/H2O,

1:9 (v:v)).

Page 7: Improved Photocatalytic Hydrogen Evolution Amino ... · Fig. S7 (a) 13C NMR spectrum of F3N-2BO and (b) the solid-state 13C NMR spectra of Tr-F3N. 2 0 0 4 0 0 6 0 0 8 0 0 6 0 7 0

0 5 10 15 20 250

2

4

6

H2 (m

mol

/g)

Time (h)

Tr-F3N

Fig. S11 Hydrogen evolution as a function of time of Tr-F3N (50mL of TEOA/ethylene glycol

(EG)/H2O, 1:3:6 (v:v)).

3000 2500 2000 1500 1000 500

Tran

smitt

ance

%

Wavenumber (cm-1)

Tr-F3N(before reaction) Tr-F3N (after reaction)

Fig. S12 FTIR spectra of Tr-F3N before and after reaction.

Page 8: Improved Photocatalytic Hydrogen Evolution Amino ... · Fig. S7 (a) 13C NMR spectrum of F3N-2BO and (b) the solid-state 13C NMR spectra of Tr-F3N. 2 0 0 4 0 0 6 0 0 8 0 0 6 0 7 0

250 300 350 400 450

0.0

0.5

1.0A

bsor

banc

e (a

.u.)

Wavelengh (nm)

Tr-F3N(before) Tr-F3N(after)

Fig. S13 The UV-vis diffuse reflectance spectra of Tr-F3N as synthesized and after 24-h

photocatalysis.

Fig. S14 DFT calculated molecular geometries of M-F8 and M-F3N.

Page 9: Improved Photocatalytic Hydrogen Evolution Amino ... · Fig. S7 (a) 13C NMR spectrum of F3N-2BO and (b) the solid-state 13C NMR spectra of Tr-F3N. 2 0 0 4 0 0 6 0 0 8 0 0 6 0 7 0

3000 2500 2000 1500 1000 500

1004 nm

Wavenumber (cm-1)

Tran

smitt

ance

%

Tr-F8 Tr-F8-F3N-40% Tr-F8-F3N-70% 1004 nm

Fig. S15 FTIR spectra of Tr-F8, Tr- F8-F3N-40%, and Tr- F8-F3N-70%.

1 2 3 4 5 6 7

0

400

800

1200

Time (h)

H2 (

mol

/g)

Tr-F8 Tr-F8-F3N-40% Tr-F8-F3N-70%

Fig. S16 Hydrogen evolution as a function of time of Tr- F8, Tr- F8-F3N-40% and Tr- F8-F3N-70%

(with ascorbic acid as sacrificing electron donor).

Page 10: Improved Photocatalytic Hydrogen Evolution Amino ... · Fig. S7 (a) 13C NMR spectrum of F3N-2BO and (b) the solid-state 13C NMR spectra of Tr-F3N. 2 0 0 4 0 0 6 0 0 8 0 0 6 0 7 0

91.6˚ 78.2˚ 66.1˚

Tr- F8 Tr- F8-F3N-40% Tr- F8-F3N-70%

Fig. S17. Water contact angle measurements of Tr- F8, Tr- F8-F3N-40% and Tr- F8-F3N-70%.

Scheme S1 Synthetic routes to the CPPs of Tr-F8, Tr-F8-F3N-40% and Tr-F8-F3N-70%.

BrBrC6H13

C6H13 C6H13C6H13

C6H13C6H13

Br

Br

Br

NN

Tr-3Br F3N-2Br

Pd(PPh3)4K3PO4

DMF, 105oCBO

O

F8-2BO

n (mmol)

2 3 Tr-F8

Polymers

1.2 3 Tr-F8-F3N-40%1.2

0.6 3 Tr-F8-F3N-70%2.1

0

C8H17 C8H17

BO

O

Table S1 Element analysis and Pd residue results for Tr-F8 and Tr-F3N.

Tr-F8 Tr-F3N

CMPs Calcd. (%)

Found (%, before reaction)

Found (%, after reaction)

Calcd. (%)

Found (%, before reaction)

Found (%, after reaction)

C 89.49 90.48 88.15 86.86 85 85.5H 10.21 9.52 11.85 10.02 11.2 11.54N -- -- -- 3.12 2.8 2.96

Pda -- 8.9 ppm -- -- 6.9 ppm --a (ppm), Pd residue in the polymers was obtained by ICP-MS measurements.

Page 11: Improved Photocatalytic Hydrogen Evolution Amino ... · Fig. S7 (a) 13C NMR spectrum of F3N-2BO and (b) the solid-state 13C NMR spectra of Tr-F3N. 2 0 0 4 0 0 6 0 0 8 0 0 6 0 7 0

Table S2 Summary of the HER without Pt as a co-catalyst for the reported CPPs.

CPPs HER (μmol h-1 g-1) Ref.

CP-CMP10 174 1

NP-2 194 2

PCP2-100%PDI 2057 3

PrCMP-3 25 4

PCP4e 9428 5

CTF-2 0 6

PE-CMP 716 7

PCTF-8

NP-5

PyBT-0~7

PhBT-0~10

DBTD-CMP1

DBTD-CMP2

DBTD-CMP3

L-PyBT

136

200

54~525

9.5~471

2460

188

116

556

8

9

10

10

11

11

11

12

S-CMP3 6076 13

Table S3 Element analysis and Pd residue results for Tr-F8, Tr-F8-F3N-40%, and Tr-F8-F3N-

70%.

Tr-F8 Tr-F8-F3N-40% Tr-F8-F3N-70% CMPs

Calcd. (%) Found (%) Calcd. (%) Found

(%) Calcd. (%) Found (%)

C 89.49 90.48 88.30 88.58 87.23 87.61H 10.21 9.52 10.40 10.05 10.30 10.11N -- -- 1.30 1.37 2.47 2.28

Pda 10.4 8.9 7.3a (ppm), residue in the polymers was obtained by ICP-MS measurements.

Page 12: Improved Photocatalytic Hydrogen Evolution Amino ... · Fig. S7 (a) 13C NMR spectrum of F3N-2BO and (b) the solid-state 13C NMR spectra of Tr-F3N. 2 0 0 4 0 0 6 0 0 8 0 0 6 0 7 0

REFERENCES

(1) R. S. Sprick, J.-X. Jiang, B. Bonillo, S. Ren, T. Ratvijitvech, P. Guiglion, M. A. Zwijnenburg,

D. J. Adams, A. I. Cooper, J. Am. Chem. Soc., 2015, 137, 3265.

(2) D. Schwarz, Y. S. Kochergin, A. Acharjya, A. Ichangi, M. V. Opanasenko, U. Lappan, P. Arki,

J. He, J. Schmidt, P. Nachtigall, A. Thomas, M. J. Bojdys, Chem. Eur. J., 2017, 23, 13023.

(3) L. Li, Z. Cai, Polym. Chem., 2016, 7, 4937.

(4) Y. Xu, N. Mao, S. Feng, C. Zhang, F. Wang, Y. Chen, J. Zeng, J. Jiang, Macromol. Chem.

Phys., 2017, 218, 1700049.

(5) L. Li, Z. Cai, Q. Wu, W.-Y. Lo, N. Zhang, L. X. Chen, L. Yu, J. Am. Chem. Soc., 2016, 138,

7681.

(6) C. Meier, R. Sprick, A. Monti, P. Guiglion, J.-S. M. Lee, M. A. Zwijnenburg, A. I. Cooper,

Polymer, 2017, 126, 283.

(7) R. S. Sprick, B. Bonillo, M. Sachs, R. Clowes, J. R. Durrant, D. J. Adamsa, A. I. Cooper, Chem.

Commun., 2016, 52, 10008.

(8) A. Bhunia, D. Esquivel, S. Dey, R. Fernάndez-Terάn, Y. Goto, S. Inagaki, P. V. D. Voorta, C. A. Janiak, J. Mater. Chem. A, 2016, 4, 13450.

(9) S. Dana, A. Amitava, I. Arun, L. Pengbo, V. O. Maksym, R. G. Fabian, A. F. K. Tobias, and

J. B. Michael, Chem. Eur. J., 2018, 24, 11916.

(10) Y. Xu, N. Mao, C. Zhang, X. Wang, J. Zeng, Y. Chen, F. Wang, J. Jiang, Appl. Catal. B-

Environ., 2018, 228, 1.

(11) Z. J. Wang, X. Y. Yang, T. J. Yang, Y. B. Zhao, F. Wang, Y. Chen, J. H. Zeng, C. Yan, F.

Huang, J. X. Jiang, ACS Catal., 2018, 8, 8590.

(12) C. Cheng, X. C. Wang, Y. Y. Lin, L. Y. He, J. X. Jiang, Y. F. Xu, F. Wang, Polym. Chem.,

2018, 9, 4468.

(13) R. S. Sprick, Y. Bai, A. A. Y. Guilbert, M. Zbiri, C. M. Aitchison, L. Wilbraham, Y. Yan, D.

J. Woods, M. A. Zwijnenburg, A. I. Cooper, Chem. Mater., 2019, 31, 305.