Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen...

86
Implementation of Hull-White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski

Transcript of Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen...

Page 1: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Implementation of Hull-White´s No-Arbitrage Term

Structure Model

Copyright, 1998 © Eugen Puschkarski

Diploma Thesis of Eugen Puschkarski

Page 2: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Introduction

Some preliminary definitions Overview of term structure models Tree building procedure Applications, Convergence behavior Volatility parameter estimation, Calibration Hedge parameters

That’s it

Page 3: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Some preliminary definitions

Risk-neutral pricing

No-Arbitrage requirement

utPutP ),(),,1(

dtPdtP ),(),,1(

rB(t,),B(t )1

dru

dppur )1(

Page 4: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

p<1 risk neutral probability

du

drp

r

dtPp

r

utPptP

),,1()1(

),,1(),(

),1(

),1(

),(

),(

tB

tPE

tB

tP

P(t,)/B(t,) follows a martingale = its expected future value equals its current value

Page 5: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

market is frictionless• no taxes or transaction costs

securities are perfectly divisible bond market is complete

• there exists a discount bond for each maturity

Assumptions of risk neutral pricing

Page 6: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Relation to Arrow-Debreu prices

state price Ps(t,)

Ps(t+1,,u)=1

Ps(t+1,,d)=0

r

ptPs ),(

Page 7: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Overview of Interest Rate Models

Three ways to model the term structure

Assuming (modeling) a stochastic process for

• discount bond prices

• instantaneous forward rates

• short rate

• internal rate of return of a discount bond with infinitesimally short period of time to maturity

),(lim)(0

tRtr

dztrsdttrmdr ),(),(

Page 8: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Equilibrium Term Structure Models

term structure of interest rates as an output given some assumptions about how an overall economic equilibrium is achieved

Page 9: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Rendleman and Bartter

builds on Cox, Ross and Rubinstein’s binomial representation of a stock price following geometric Brownian motion

srdzmrdtdr

does not allow negative interest rates easy to implement

Page 10: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Vasicek

assumes that the short rate follows a Markov process and that the bond price P at time t with maturity is determined by the short rate process in this time interval

)(),( treEtP

Page 11: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Since the price of the bond is only dependent on one stochastic variable r these kind of models are called one factor models.

By applying Itos Lemma, Vasicek derives the differential equation for any discount bond P as

rPr

Prssm

r

Pr

t

P

2

222

2

1

Page 12: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

is called the market price of risk of r and is equal to

r

with and as the expected return and volatility of P

Page 13: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

a, b and s are constants short rate reverts to its long-run mean b

at rate a this is called mean reversion

Vasicek assumes the process for the short rate to be

sdzdtrbadr )(

Page 14: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

By solving the differencial equation with regard to the short rate process and subject to the boundary condition P(,)=1 Vasicek presents the price of a discount bond as

trTtBeTtATtP ,,,

a

eTtB

tTa

1,

a

TtBs

a

sbatTTtBTtA

4

),()2/)(),((exp,

22

2

22

Page 15: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Term Structure is then given by

),(ln1

),(

tPt

tR

the short rate is normally distributed so negative interest rates can occur because of mean reversion the probability for negative rates should be small

Page 16: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Cox, Ingersoll and Ross

specify only one factor determining the interest rates namely the short rate which follows

dzrsdtrbadr )(

the volatility of r is proportional to which prevents r to become negative

r

Page 17: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Two Factor Models

more flexibility allows the term structure not only to shift

up and down but also twist

Page 18: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Brennan and Schwartz

define the second factor to be the long rate l, which is the yield of a perpetual discount bond

rdzdtrlbadr 111 ))((

ldwdtlcrbaldl 2222 )(

Page 19: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Longstaff and Schwartz

use the general equilibrium framework of Cox, Ingersoll and Ross

assume two independent unspecified state variables (factors)

xxxx dzxdtxbadx )(

yyyy dzydtybady )(

Page 20: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Using the fundamental partial differential equation for interest rate contingent claims dependent on two factors developed by Cox, Ingersoll and Ross it is possible to determine the short rate r and its instantaneous variance V as part of the equilibrium

yxr yxV yx

22

Page 21: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

No-Arbitage Term Structure Models

no-arbitrage term structure models take the initial term structure as an input by using time-varying parameters

procedure of adjusting parameters so that the initial term structure is exactly matched is generally called calibrating

Page 22: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Ho and Lee

model the discrete evolution of bond prices by specifying perturbation functions

continuous time version of the Ho and Lee model can be represented by a model of the short rate

Page 23: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

with time varying mean of dr

dzdttdr )(

ttFt t2),0()(

Ft(0,t) denotes the partial derivative of the initial instantaneous forward rate with respect to t

Page 24: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Properties

r(t) is Markov which is equivalent to a constant volatility of forward rates

short rate r can be represented by a recombining binomial tree

model incorporates no mean reversion interest rates can become negative

Page 25: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Hull-White

an extension of Ho and Lee as it allows mean reversion

an extension of Vasicek as it is a no-arbitrage model

dzdtartdr

Page 26: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

At any time t the short rate r reverts to at rate a when a=0 the Hull and White model reduces to the Ho and Lee model bond prices can be calculated at any time t from

at

trTtBeTtATtP ,,,

a

eTtB

tTa

1,

1

4

1,0ln,

,0

,0ln,ln 222

3 atataT eee

at

tPTtB

tP

TPTtA

Page 27: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Heath, Jarrow, and Morton

built a term structure model of a general type by modeling the instantaneous forward rate

showed that there exists a link between the drift and standard deviation of this instantaneous forward rate

it is sufficient to know the standard deviations to construct a term structure model

Page 28: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

allowing for k factors to influence the instantaneous forward rate F(t,T)

The link between drift m(t,T) and standard deviations sk(t,T) is given by

k

kk dzTtsdtTtmTtdF ),(),(),(

T

t kk

k dTtsTtsTtm ),(),(),(

Page 29: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

One specific version with two factors has become known as the Heath, Jarrow, and Morton model

2211 ),(),(),(),(),(),( dzTtFTtdzTtFTtdtTtmTtdF

lognormal model (non-negative interest rates) allows for parallel shifts and twists in the term

structure

Page 30: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

does generally not allow to be represented in a recombining tree as the forward rate and therefore the short rate are non-Markov

Only by restricting the volatility of bond prices not to be stochastic Markov models for the short rate can be constructed.

Page 31: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Ho and Lee model assumes a bond price volatility of

)(),( tTTtv

and Hull and White of

)(1),( tTaea

Ttv

Page 32: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

these models can be constructed by a recombining tree

it is computationally easier and faster to implement a recombining tree than a path-dependent tree which requires in most cases the use of Monte Carlo simulation.

Page 33: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Matching the volatility term structure of interest rates other time-varying parameters have been

added to the short rate process in order to give it enough degrees of freedom to match also the term structure of volatilities exactly

has the drawback that the resulting future volatility term structure is often quite different from the initially observed one

Page 34: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Black, Derman, and Toy use a binomial tree with constant local

probabilities (pu=pd=0.5) and time steps to match the twofold term structure by a trial and error procedure

forward induction or the analytic approximation tree building procedure of Bjerksund and Stensland (1996) are to be preferred

Page 35: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

continuous process of the short rate is

dztdtrt

trd tt

lnln

the speed of mean reversion and the short rate volatility are time-dependent

Short rates are lognormally distributed

Page 36: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Black and Karasinski

more general model by making the speed of mean reversion independent of the volatility of interest rates but preserving its time-dependent feature

use time steps of varying lengths three different time-varying parameters lognormal Hull-White model with a time dependent a and .

dztdtrttrd lnln

Page 37: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Tree building procedure

Hull-White choose to represent the evolution of r by a trinomial tree because it gives the model enough freedom to match the expected value and variance of r

B CA

0

1

-1

1

2

0

-1

-2

0

Page 38: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

First an auxiliary tree for the process

dzardtdr

is constructed To calculate the probabilities of each branch in the tree we consider to match the expected

change and variance in r over a time interval t.

Page 39: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

probabilities must also sum to unity gives us three equations in the three

probabilities pu, pm and pd Hull-White suggest to choose r to be

Vr 3

a

eVdrVar

ta

2

1 22

Page 40: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

expected change in r equals

reMrdrE ta 1

26

1

3

226

1

22

22

22

jMMjp

Mjp

jMMjp

d

m

u

•Type A

•Type B

2

3

6

7

23

126

1

22

22

22

jMMjp

jMMjp

jMMjp

d

m

u

Page 41: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Type C

26

1

23

12

3

6

7

22

22

22

jMMjp

jMMjp

jMMjp

d

m

u

j

i-j

-1

jmax

1

0

0

jmin

1 N=6

Q0,0

Q2,-1

QN,1

Q3,3

Page 42: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Now that the initial tree is built, it is necessary to displace the nodes at time it by i which is calculated to produce bond prices consistent with the initial term structure.

trtrt init

trd

trm

tru

epQ

epQ

epQ

)0(1,1

)0(0,1

)0(1,1

0

0

0

Page 43: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

trtrttr eeQeQeQP

2)2()(1,1

)(0,1

)(1,1

111)2,0(

t

eeQQeQ trtrtr )ln()ln( 2)2(1,10,11,1

1

0,1)(

1,1)(

1,211 QepQepQ t

utr

m

•Applying forward induction

Page 44: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

More generally

The summation is taken over all values of k for which the probability is nonzero.

t

PeQm

m

n

njm

trjjm

m

1, lnln

k

trkkmjm

mejkpQQ )(,,1 ),(

Page 45: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Applications

Discount bond options• analytical solution

phNTXPhNsPc ,0,0

2,0

,0ln

1 p

p XTP

sLPh

a

ee

a

aTTsa

p 2

11

2

Page 46: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

• Numerical solution

O ( 1 , - 1 )

O ( 1 , 0 )

O ( 1 , 1 )P u

P m

P d

OO p O p O p

eu m d

r d t( , )( , ) ( , ) ( , )

0 01 1 1 0 1 1

max),(

max),(

),(),()0,0(jiMin

jiMinj

jiOjiQO

Page 47: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Example

European put bond option on a 9 year zero coupon bond face value 100 time to maturity of 3 years a=0.1 and =0.01

Page 48: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Term Structure

strike price is set to the three year forward price of the bond

Maturity Zero Rate

days

360

continuouslycompounded zero rates

0,008219178 0,05017720,083333333 0,04982840,166666667 0,0497234

0,25 0,04961570,5 0,04990581 0,05093892 0,05797333 0,06305954 0,06734645 0,06948166 0,07088077 0,07275278 0,07308529 0,07397910 0,0749015

63362,0870657100 3)3(9)9( rr eeX

Page 49: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Results

analytical dt Steps numerical difference1,809283 0,3 10 1,84983763183 0,04055

0,1 30 1,81791386600 0,008630,06 50 1,80606152739 -0,003220,03 100 1,81297580628 0,003690,015 200 1,80917049019 -0,00011

Page 50: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Convergence analysis

Stikedt Steps 50,00 60,00 70,00 80,00 90,00 100,00 110,00

0,3 10 -10,02% 4,31% 0,01% -0,01% -0,01% -0,01% -0,01%0,15 20 -9,23% -1,61% -0,04% -0,01% -0,01% -0,01% 0,00%0,1 30 13,80% 0,91% -0,04% -0,01% 0,00% 0,00% 0,00%

0,075 40 -1,00% 1,31% 0,01% -0,01% 0,00% 0,00% 0,00%0,06 50 -0,62% 1,07% 0,02% 0,00% 0,00% 0,00% 0,00%0,04 75 5,43% -0,19% -0,01% 0,00% 0,00% 0,00% 0,00%0,03 100 3,41% 0,32% 0,00% 0,00% 0,00% 0,00% 0,00%

0,024 125 3,34% 0,45% 0,01% 0,00% 0,00% 0,00% 0,00%0,02 150 1,42% 0,24% 0,01% 0,00% 0,00% 0,00% 0,00%

0,015 200 0,98% 0,10% 0,00% 0,00% 0,00% 0,00% 0,00%

Page 51: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Convergence Analysis

-15,00%

-10,00%

-5,00%

0,00%

5,00%

10,00%

15,00%

0 20 40 60 80 100 120 140 160 180 200

time steps

accu

racy

50,00

60,00

70,00

80,00

90,00

100,00

110,00

Page 52: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Convergence Analysis

-0,05%

-0,04%

-0,03%

-0,02%

-0,01%

0,00%

0,01%

0,02%

0,03%

0 20 40 60 80 100 120 140 160 180 200

time steps

accu

racy

70,00

80,00

90,00

100,00

110,00

Page 53: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

more exact results for at-the-money and in-the-money options

Therefore we recommend using at least 150 time steps for out-of-the-money options and about 50 for all other options.

Page 54: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Computation time

Stepstime inseconds

10 1,720 4,730 9,340 15,850 18,960 33,570 45,475 52,280 58,990 74100 90,3125 139,3150 199,8200 349,8

Testing computation time

y = 0,0085x2 + 0,0469xR2 = 0,9998

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180 200

steps

se

co

nd

s

time in seconds

polynomial trendlinesecond order

Page 55: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

American options

will never be optimal to exercise an American call option on discount bonds!

will always be optimal to exercise an American put option on discount bonds! immediately

dtjirdmu ejiOpjiOpjiOpjiPbondXzjiO ),())1,1(),1()1,1((,),(max),(

Page 56: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Coupon bond options

portfolio of discount bond options

XrPLCrCPrCPrCPrCPrCP )ˆ,9,3()()ˆ,8,3()ˆ,7,3()ˆ,6,3()ˆ,5,3()ˆ,4,3(

maturity of discount bond 4 5 6 7 8 9 SumStrike 4,296769888 3,725083711 3,249428 2,832704 2,503096 46,39292 63Option value 0,263069995 0,449561394 0,578567 0,660218 0,714757 15,55837 18,2245

Page 57: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Floaters

non-standard floating rate bonds• interval between interest payments is not

equal to the term of the floating rate

Non-standard floaterterm of reference rate in years

1fixed cash flow calculation floating cash flow calculation Floater value at time 0

semi-anually compounded reference rate 0,025796568Cash flow at time 0,5 2,5797

cash flow at time 0 2,516083323 97,98783059 100,5039

standard floaterterm of reference rate in years

0,5fixed cash flow calculation floating cash flow calculation Floater value at time 0

semi-annually compounded 0,5 year rate 0,025266829Cash flow at time 0,5 2,5267

cash flow at time 0 2,464414979 97,53560303 100,0000

Page 58: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Caps, Floors, Collars

A cap provides a payment everytime a specified floating rate like the 6 month LIBOR exceeds the agreed cap rate.

individual payments are called caplets and as a sum make up a cap

reference rate is observed at the beginning of the period starting at t=1 and eventually a payment is made at the end of the period

Page 59: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

we have to calculate the cash flows at the time the reference rate is measured which is at the beginning of the period

),0)e-max(z(1 Rck)-(RcX

•Caplet as a put option with maturity at the beginning of the considered period and strike price L on a discount bond which matures at the end of the period and face value RcXLe

Page 60: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

term of the reference rate k does not match the payment period

),0)e-max(z(e )Rc-(RcX)Rc-(Rck

•A collar is simply a combination of a long position in a cap and a short position in a floor and is calculated accordingly.

Page 61: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Example

analytical numerical Steps 0,5 year put option on 1 year bond

principal 100*EXP(0.5*RcX) strike 100 0,018705496 0,68955233 50 1 year put option on 1,5 year bond

principal 100*EXP(0,5*RcX) strike 100 0,213626832 1,5 year put option on 2 year bond

principal 100*EXP(0,5*RcX) strike 100 0,4569151350,689247464

Page 62: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

SwaptionsReplicating approach

• option on a payer swap

• replicated by a put option on the fixed rate coupon bond with strike price equal to the principal

•Example:•3*6 swaption•semiannual payments•RcX=0.06•replicated by an option on a coupon bond with 12 coupon payments of and principal L 15.0*06.0 eLC

Page 63: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Numerical procedure• calculate all possible cash flows at option

expiration with

T) - (Tdata(f) j)* -RcD(N,RcX *j) Rck(N, * e * 0) ),e - e Max(z(* L = j) O(N,

LeLf

TfTdatafRcDRck

12

1

))()*((**

Page 64: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Results

Payer swaption Receiver swaptionanalytical analytical

7,869372368 0,086616308steps numerical accuracy numerical accuracy

6 7,977719764 1,377% 0,083285331 -3,846%30 7,871174392 0,023% 0,089692215 3,551%

100 7,870296469 0,012% 0,08766498 1,211%300 7,870076051 0,009% 0,086591542 -0,029%500 7,870945288 0,020%

Page 65: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Accrual Swaps

interest on one side accrues only if the floating rate is in a certain range or above or below a rate

can be replicated by an ordinary swap and a series of binary options

f))/248-(s(f)s(f)/248)**dt,RD(f-/248)*(RcX e*1e*248

*L=j)O(f,

Page 66: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Example fixed rate accrues only if the 3-month

LIBOR is below RcX=0.08 cont. Comp swap pays every three month for 9

months time

number of business days 248dt (one day in years) 0,004032258

days in payment period (tau) 62maturity of swap in years 0.75

RcX 0.08Value of binary options 0,334585449

Page 67: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Callable, Putable Bonds callable bond for example gives the issuer

the right to call the bonds at certain times or at any time at a prespecified price

putable bond gives the holder the right of early redemption

calculate terminal value of the bond work backward by

dtjirdmu ejiOpjiOpjiOpXjiO ),())1,1(),1()1,1((,min),(

•change min to max if putable

Page 68: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Example

Discount bond with 9 years to maturity

Steps X callable bond bond without call option

worth of theoption to theissuer

90 75 38,53921831 51,3856621 12,84644379

Steps X putable bond bond without put option

worth of theoption to theholder

90 50 51,56011996 51,3856621 0,174457864

Page 69: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Volatility parameter estimation

two volatility parameters a and : absolute volatility of the short rate a: gives the relative volatility of the

long and short rates volatility of the zero rate with maturity

T

tTae

tTa

1

Page 70: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

volatility parameters are not directly provided by the market

have to be inferred from market data of interest rate derivatives

i

ii VPMin 2

Page 71: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Example

infer the volatility parameters from Caps and Floors on the DEM 6 month LIBOR rate

different strike rates and time to maturity actively traded and their model prices

can be calculated analytically

Page 72: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Term Structure for DEM as of 4/8/1998

Maturity (in Years) Zero Rate0,008219178 3,430%

0,083333333 3,530%

0,166666667 3,560%

0,25 3,599%

0,5 3,716%1 3,918%2 4,243%3 4,472%4 4,615%5 4,755%6 4,855%7 4,958%8 5,037%9 5,117%

10 5,200%

Page 73: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Cap and Floor prices

DEM CAPS 6M DEM FLOOR 6M

5,50% 6,00% 6,50% 4,00% 4,50% 5,00%2YR 3,5 2YR 17 52,5 106,53YR 23,5 12,5 6 3YR 30,5 82,5 160,54YR 55 31,5 18 4YR 50 115 2125YR 92 56,5 34,5 5YR 65 144 2607YR 179 113 74 7YR 95,5 194,5 34110YR 326 226 155 10YR 137 258,5 439

Page 74: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Resultssigma 0,011282417

a 0,200527417RcX RcX RcX

CAPS cont cont cont

5,426% 5,912% 6,397%Cap/Floor Years (s) Marktpreis (Pi) Model price (Vi) (Pi-Vi)^2 Marktpreis (Pi) Model price (Vi) (Pi-Vi)^2 Marktpreis (Pi) Model price (Vi) (Pi-Vi)^2

p 2 3,5 12,98453683 89,956438953 23,5 41,26976804 315,7646563 12,5 21,16306068 75,0486204 6 10,01684556 16,135054 55 76,36963357 456,6612391 31,5 42,29200258 116,46732 18 21,83829282 14,732495 92 122,1489707 908,9604331 56,5 71,799343 234,069896 34,5 39,70862066 27,129737 179 222,2184576 1867,835076 113 138,9115134 671,406526 74 82,31760239 69,1825110 326 389,0650676 3977,202753 226 255,8765538 892,608467 155 160,4245053 29,42526

RcX RcX RcXFLOORS cont cont cont

3,961% 4,450% 4,939%Cap/Floor Years (s) Marktpreis (Pi) Model price (Vi) (Pi-Vi)^2 Marktpreis (Pi) Model price (Vi) (Pi-Vi)^2 Marktpreis (Pi) Model price (Vi) (Pi-Vi)^2

c 2 17 28,43573434 130,7760199 52,5 58,92812127 41,320743 106,5 103,4621577 9,2284863 30,5 44,18014537 187,1463772 82,5 87,64545758 26,4757337 160,5 151,2959651 84,714264 50 60,54771651 111,2543235 115 115,9541267 0,91035774 212 196,7394927 232,88315 65 73,54063378 72,94242542 144 138,4193738 31,1433889 260 233,0008217 728,95567 95,5 96,48119138 0,962736525 194,5 177,5600856 286,9607 341 295,6680192 2054,98810 137 120,0163966 288,4427833 258,5 218,2070776 1623,5196 439 361,7047205 5974,56

SSE 21650

Page 75: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

•Another procedure:•calculate a 10*10 matrix of SSE values for 10 different equally spaced values of a and

0,01 0,06 0,11 0,16 0,21 0,26 0,31 0,36 0,41 0,460,01

0,11

0,21

0,31

0,41

0,51

0,61

0,71

0,81

0,91

SSE

sigma

a

SSE capped at 50000

45000-50000

40000-45000

35000-40000

30000-35000

25000-30000

Min SSE=25942.95

Page 76: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

•Calculate a new 10*10 matrix within the new borders of a and .

0,00

2

0,00

4

0,00

6

0,00

8

0,01

0,01

2

0,01

4

0,01

6

0,01

8

0,02

0,03

0,06

0,09

0,12

0,15

0,18

0,21

0,24

0,27

0,3

SSE

sigma

a

SSE capped at 28000

27000-28000

26000-27000

25000-26000

24000-25000

23000-24000

22000-23000

21000-22000

B

C

A

Min SSE=21775.84

Page 77: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

0,002

0,008

0,014

0,02

0,030,06

0,090,12

0,150,18

0,210,24

0,270,3

21000

22000

23000

24000

25000

26000

27000

28000

SSE

sigmaa

SSE capped at 28000

27000-28000

26000-27000

25000-26000

24000-25000

23000-24000

22000-23000

21000-22000

Page 78: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

to drill down further area A, B and C are

investigated more closely

0,0

104

0,0

108

0,0

112

0,0

116

0,0

12

0,0

124

0,0

128

0,0

132

0,0

136

0,0

14

0,189

0,198

0,207

0,216

0,225

0,234

0,243

0,252

0,261

0,27

SSE

sigma

a

SSE capped at 22000

21900-22000

21800-21900

21700-21800

21600-21700

21500-21600

21400-21500

21300-21400

21200-21300

21100-21200

21000-21100

Min SSE=21663.92

A

Page 79: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

0,00

84

0,00

88

0,00

92

0,00

96

0,01

0,01

04

0,01

08

0,01

12

0,01

16

0,01

2

0,099

0,108

0,117

0,126

0,135

0,144

0,153

0,162

0,171

0,18

SSE

sigma

a

SSE capped at 22900

22700-22900

22500-22700

22300-22500

22100-22300

21900-22100

21700-21900

Min SSE=21799.14

B

Page 80: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

•the solution for the optimal a and which the solver provides seems to be the correct one since it lies in area A which shows the minimum SSE of all areas considered

0,0032

0,0056

0,008

0,0104

0,0128

0,006

0,012

0,018

0,024

0,03

0,036

0,042

0,048

0,054

0,06

SSE

sigma

a

SSE capped at 30000

29000-30000

28000-29000

27000-28000

26000-27000

MinSSE=26925.09

C

Page 81: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Hedge parameters

Delta

dr

ff

r

f

211

Gamma

2011

2

2 2

dr

fff

r

f

Page 82: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

new derivative values for the shifted yield curve can be approximated by a Taylor series expansion like

delta 170,9345gamma 8613,441

222

2

0

2

1

2

1drdrdr

r

fdr

r

fdf

dfff

Page 83: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Bucket shifts

we can approximate any shift as a series of bucket shifts

give an example of a three year discount bond option on a 9 year bond

delta of 3Y bucket -93,4613364delta of 9Y bucket 265,6289527

overall bucket delta 172,1676

parallel shift delta 171,3651

Page 84: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Shift of volatility parameters

hedge parameters of first order • a_vega

• sigma_vega

second order hedge parameters• a_vega2

• sigma_vega2

shift of a in 0.01 steps and of in 0.001 steps

Page 85: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

a_vega a_vega2-5,540909488 29,50893095

a shift option valuea_vega-a_vega2 approx. a_vega approx

-0,09 2,451118985 2,427476092 2,307964922-0,08 2,363249759 2,346984406 2,252555827-0,07 2,280102715 2,269443613 2,197146732-0,06 2,201403566 2,194853713 2,141737637-0,05 2,126895199 2,123214706 2,086328542-0,04 2,056336553 2,054526592 2,030919448-0,03 1,989501571 1,988789372 1,975510353-0,02 1,926178227 1,926003044 1,920101258-0,01 1,866167609 1,866167609 1,864692163

0 1,809283068 1,809283068 1,8092830680,01 1,75534942 1,75534942 1,7538739730,02 1,704202203 1,704366664 1,6984648780,03 1,655686985 1,656334802 1,6430557830,04 1,609658711 1,611253833 1,5876466890,05 1,5659811 1,569123757 1,5322375940,06 1,52452608 1,529944574 1,476828499

0,07 1,485173257 1,493716285 1,4214194040,08 1,447809427 1,460438888 1,366010309

0,09 1,412328109 1,430112384 1,3106012140,1 1,378629123 1,402736774 1,255192119

coefficient of determination 0,999812476 0,98170

sigma_vega sigma_vega2136,6206311 624,6067483

sigma shift option value

sigma_vega-sigma_vega2 approx.

sigma_vega approx

-0,009 0,757532061 0,604993962 0,579697388-0,008 0,805949857 0,736305435 0,716318019-0,007 0,901403611 0,868241516 0,85293865-0,006 1,016797396 1,000802203 0,989559282-0,005 1,141411565 1,133987497 1,126179913-0,004 1,270920026 1,267797398 1,262800544-0,003 1,403309466 1,402231905 1,399421175-0,002 1,537527865 1,537291019 1,536041806-0,001 1,67297474 1,67297474 1,672662437

0 1,809283068 1,809283068 1,8092830680,001 1,946216002 1,946216002 1,9459036990,002 2,083613804 2,083773544 2,082524330,003 2,221364711 2,221955692 2,2191449610,004 2,359388065 2,360762446 2,3557655920,005 2,497624073 2,500193808 2,4923862230,006 2,636027363 2,640249776 2,6290068550,007 2,774562782 2,780930351 2,7656274860,008 2,913202584 2,922235533 2,9022481170,009 3,051924494 3,064165321 3,0388687480,01 3,19071035 3,206719716 3,175489379

coefficient of determination 0,998690607 0,99799

Page 86: Implementation of Hull- White´s No-Arbitrage Term Structure Model Copyright, 1998 © Eugen Puschkarski Diploma Thesis of Eugen Puschkarski.

Conculding remarks Hull-White model is a very flexible model allowing the

user to either use an analytical or numerical solution

mean reverting feature no-arbitrage property is a one factor model whereas at least three factors

driving interest rates have been identified at the time of writing no dominant term structure

model has emerged