Immunoglobulin T genes in Neopterygii - bioRxiv.org · 2020. 5. 21. · Immunoglobulin T genes in...

25
Immunoglobulin T genes in Neopterygii Serafin Mirete-Bachiller 1 , David N. Olivieri 2 and Francisco Gamb ´ on-Deza 1 1 Unidad de Inmunolog´ ıa Hospital do Meixoeiro, Vigo, Spain, 2 Computer Science Department, School of Informatics (ESEI), Universidade de Vigo. As Lagoas s/n, Ourense, 32004 Spain [email protected] Abstract In teleost fishes there are three immunoglobulin isotypes named immunoglobulin M (IgM), D (IgD) and T (IgT). IgT has been the last to be described and is considered a teleosts-fish spe- cific isotype. From the recent availability of genome sequences of fishes, an in-depth analysis of Actinopterygii immunoglobulin heavy chain genes was undertaken. With the aid of a bioinformat- ics pipeline, a machine learning software, CHfinder, was developed that identifies the coding exons of the CH domains of fish immunoglobulins. Using this pipeline, a high number of such sequences were obtained from teleosts and holostean fishes. IgT was found in teleost and holostean fishes that had not been previously described. A phylogenetic analysis reveals that IgT CH1 exons are similar to the IgM CH1. This analysis also demonstrates that the other three domains (CH2, CH3 and CH4) were not generated by recent duplication processes of IgM in Actinopterygii, indicating it is an immunoglobulin with an earlier origin. Keywords: IgT, Neopterygii, Holostei 1. Introduction Some 550 million years ago the adaptive immune system arose coinciding with the appearance of the non-jawed vertebrates (Agnathans) (Cooper & Alder, 2006). The adaptive response began when antigens were recognized by specific receptors on lymphocytes. In Agnathans, such recep- tors are encoded by a family of genes first identified in the lamprey variable lymphocyte receptors (VLRs), while in jawed vertebrates (gnathostomes), these were the B and T lymphocyte receptors (BCR and TCR, respectively). Many features of the VLR system are analogous to BCR and TCR, although a notable dierence is that the VLR system is made up of highly diverse leucine-rich repeats (LRR), whereas in gnathostomes the antigenic receptors have immunoglobulin domains (Pancer et al., 2004). Immunoglobulin genes emerged with the gnathostomes (Flajnik & Kasahara, 2010). These genes are made up of multiple exons that code for domains of approximately 100 amino acids and with a sequence and structure that is called the immunoglobulin domain (Peterson et al., 1972; Edelman et al., 1969). These domains were already found in proteins of invertebrate species, Preprint submitted to Elsevier May 21, 2020 (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint this version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993 doi: bioRxiv preprint

Transcript of Immunoglobulin T genes in Neopterygii - bioRxiv.org · 2020. 5. 21. · Immunoglobulin T genes in...

  • Immunoglobulin T genes in Neopterygii

    Serafin Mirete-Bachiller1, David N. Olivieri2 and Francisco Gambón-Deza 1

    1Unidad de Inmunologı́a Hospital do Meixoeiro, Vigo, Spain,2Computer Science Department, School of Informatics (ESEI), Universidade de Vigo. As Lagoas s/n, Ourense, 32004

    [email protected]

    Abstract

    In teleost fishes there are three immunoglobulin isotypes named immunoglobulin M (IgM), D(IgD) and T (IgT). IgT has been the last to be described and is considered a teleosts-fish spe-cific isotype. From the recent availability of genome sequences of fishes, an in-depth analysis ofActinopterygii immunoglobulin heavy chain genes was undertaken. With the aid of a bioinformat-ics pipeline, a machine learning software, CHfinder, was developed that identifies the coding exonsof the CH domains of fish immunoglobulins. Using this pipeline, a high number of such sequenceswere obtained from teleosts and holostean fishes. IgT was found in teleost and holostean fishesthat had not been previously described. A phylogenetic analysis reveals that IgT CH1 exons aresimilar to the IgM CH1. This analysis also demonstrates that the other three domains (CH2, CH3and CH4) were not generated by recent duplication processes of IgM in Actinopterygii, indicatingit is an immunoglobulin with an earlier origin.

    Keywords: IgT, Neopterygii, Holostei

    1. Introduction

    Some 550 million years ago the adaptive immune system arose coinciding with the appearanceof the non-jawed vertebrates (Agnathans) (Cooper & Alder, 2006). The adaptive response beganwhen antigens were recognized by specific receptors on lymphocytes. In Agnathans, such recep-tors are encoded by a family of genes first identified in the lamprey variable lymphocyte receptors(VLRs), while in jawed vertebrates (gnathostomes), these were the B and T lymphocyte receptors(BCR and TCR, respectively). Many features of the VLR system are analogous to BCR and TCR,although a notable difference is that the VLR system is made up of highly diverse leucine-richrepeats (LRR), whereas in gnathostomes the antigenic receptors have immunoglobulin domains(Pancer et al., 2004).

    Immunoglobulin genes emerged with the gnathostomes (Flajnik & Kasahara, 2010). Thesegenes are made up of multiple exons that code for domains of approximately 100 amino acids andwith a sequence and structure that is called the immunoglobulin domain (Peterson et al., 1972;Edelman et al., 1969). These domains were already found in proteins of invertebrate species,Preprint submitted to Elsevier May 21, 2020

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • encoding for membrane proteins with cellular communication functions and some of them partici-pate in the innate immune response (Sun et al., 1990; Zhang et al., 2004). An organization of thesegenes occurred in jawed vertebrates, which gave rise simultaneously to the immunoglobulin genes(both for the heavy and light chain), the genes for T lymphocyte receptors (for both TCR α/β asfor the TCR γ/δ), and the genes for the major histocompatibility complex.

    Today’s cartilaginous fish have what is believed to be the oldest gene structure of all im-munoglobulins (IgLs). Genes in these animals that code for the variable (V) and constant (C)regions that appear in multiple repeated V-C tandem arrangements. Bony fishes have a differenti-ated structure with separate V and C gene groups. These structures evolved such that in order tohave a valid mRNA coding for an immunoglobulin chain, V and C genes must be joined together.Thereafter, this process was maintained throughout all posterior vertebrate lines.

    Different immunoglobulin isotypes have been described in gnathostomes. With only someexceptions, IgM and IgD are present in all jawed vertebrates, appearing approximately 500 millionyears ago. IgM has been stable throughout evolution, while IgD undergone great plasticity withrespect to the number of CH domains and the amount of splice variants found (Ohta & Flajnik,2006). Apart from these two Igs, other isotypes have been described in vertebrates. In amphibiansand reptiles, two new isotypes were found that are not present in fishes (IgY and IgA(X)) and inmammals are been found 5 isotypes (IgM, IgD, IgG, IgE and IgA) (Gambon-Deza et al., 2009;Zhao et al., 2009).

    In the 1990s, IgM was cloned and characterized in Ictalurus punctatus and Gadus morhua(Ghaffari & Lobb, 1989; Bengtén et al., 1991). Amongst all the immunoglobulins, IgM in bonyfishes has the highest concentration in serum. In these species, it has some peculiarities withrespect to its mammalian orthologs. First, it is tetrameric and does not possess a J chain, sopolymerization occurs by interchain disulfide bonds (Castro & Flajnik, 2014). Also, by meansof an alternative splicing mechanism, the membrane form of IgM consists of only three domains,however this does not prevent it from interacting with CD79 (Ross et al., 1998; Sahoo et al.,2008). IgM can be formed as monomers, dimers, and trimers; it was suggested that the degree ofpolymerization of IgM is related to maturation affinity (Ye et al., 2010).

    IgD in Teleostei was first described in Ictalurus punctatus (Wilson et al., 1997). BetweenTeleostei species, there is a high variability in the number of constant domains. The Cµ1 exonthat contains the region coding the cysteine residue which binds to the light chains, is splicedwith the first Cδ exon. This immunoglobulin has been described in several teleost fish species(Hordvik et al., 1999; Stenvik & Jørgensen, 2000). The secreted form of IgD has been identifiedin Ictalurus punctatus and Takifugu rubripes (Hikima et al., 2011). In Ictalurus punctatus, thesecreted form lacks the VH regions and can bind to basophils, mediated by an Fc receptor thatinduces pro-inflammatory cytokines production (Chen et al., 2009).

    In 2005, two independent groups described a new immunoglobulin isotype in teleosts, withfour constant domains in Danio rerio and Oncorhynchus mykiss, which they named IgZ and IgTrespectively. In the same year, an isotype with two domains was described in Takifugu rubripesthat they called IgH (Danilova et al., 2005; Hansen et al., 2005; Savan et al., 2005b). However,these immunoglobulins were shown to be orthologs to each other and whose consensus was latercalled IgT (Gambón-Deza et al., 2010). Later, IgT was described in more teleosts specie and foundto have a variable number of constant domains, ranging from 2 to 4. Also, fishes can have more

    2

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • than one gene for IgT (See Table S2). However, IgT is not found in all teleosts; for example, catfishand medaka lack IgT (Bengtén et al., 2002; Magadán-Mompó et al., 2011). This isotype occurs asmonomers in serum and as tetramers in mucous (Zhang et al., 2011). Studies of Cyprinus carpiosuggested an important role of IgT in mucosal immunity (Ryo et al., 2010).

    Because previous work has only found IgT in Teleostei, a widely accepted conclusion wasthat it was specific to species of this order. Here, we provide evidence that, in fact, IgT has itsorigins prior to the appearance of Teleostei. Specifically, we describe its presence in Holostei,indicating that the origin of this Ig isotype dates back to the late Permian with the appearance ofthe Neopterygii subclass.

    2. Methods

    2.1. Sequence DataWe studied the presence of immunoglobulin genes of bony fishes present from genome assem-

    blies available from the https://vgp.github.io/ and NCBI repositories. The gene finding programCHfinder, developed by our group, was used to search and annotate immunoglobulin exons fromchromosomal regions in these assemblies.

    2.2. Bioinformatics ToolsCHfinder is based on a multiclass neural network machine learning classifier that was trained

    to identify exons coding for the CH domains of fish immunoglobulins. For the training process,domain sequences of IgM (CH1, CH2, CH3 and CH4), IgD (CH1, CH1B, CH2, CH3, CH4, CH5and CH6) and IgT (CH1, CH2, CH3 and CH4), together with random background sequences con-stituted the training set. The resulting neural network has an accuracy of 99.99 % for identifyingIG domains.

    The gene identification workflow is as follows. First, a BLAST (tblastn) is used as a coarsegrained filter by using a query consisting of an artificially constructed sequence, concatenatingrepresentative IgT, IgD, and IgM into a single sequence. The Tblastn query was performed againstthe target genome, producing a hit table - those sequences in the genome, together with their lo-cations, having similarity to the query sequence. The coordinates of the hits are used to extracta nucleotide region, with extra padding of 1000 nucleotides at both ends. From these extractednucleotide regions, the CHfinder identifies candidate exon reading frames, defined by the AG andGT start/stop motifs and having a min/max nucleotide length of 240nt and 450nt, respectively. Ad-ditionally, the reading frames were restricted to those that were a multiple of 3 and do not containstop codons within the reading frame. Even with these restrictions, a large number of candidateexon sequences are obtained result that are then subjected to the machine learning prediction stepof CHfinder.

    Exon prediction and classification in CHfinder is done by first transforming the amino acid(AA) sequences into an integer feature vector that spatially preserves the AA ordering. Also, thetransformation acts to direct training on extreme ends of each exon. In this way, each AA sequenceis first converted into a sequence of 80 amino acids, by extracting and concatenating the 40 aminoacids from front/back ends of the sequence coding from a hypothetical exon. These sequences arethen converted to numerical “one-hot” based feature vectors. In this one-hot scheme, each amino

    3

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • acid in the 80aa-long exon is converted to 20 integers, all 0 except 1 for the AA in question; thus, asingle exon will have a feature vector of 80 x 20 = 1600 integers. For supervised machine learning,the training set consists of known sequences with their respective IG domain label, and a set ofrandom background sequences for null discrimination, in a ratio of 3:1 to labelled sequences.

    While genome assemblies exist for many fish species, there are still several species that do notyet have published genomes. One such example is Amia calva. To explore the presence or absenceof IgT in this species where a genome is not available, we used raw sequence records (SRA) ofbowfin gills (SRX661027) from the NCBI repository. To construct transcripts, Trinity (a de novoRNA-seq transcript assembler) was used (Grabherr et al., 2011). Once assembled, the nucleotidesequences were transformed into amino acids using TransDecoder that identifies candidate cod-ing regions within transcript sequences, such as those generated by de novo RNA-Seq transcriptassembly using Trinity (Haas et al., 2013). These bioinformatics steps were performed in Galaxy(Afgan et al., 2018).

    2.3. Phylogenetic studiesTo align the IgM and IgT sequences obtained with CHfinder, the SEAVIEW (Gouy et al., 2009)

    and Jalview (Waterhouse et al., 2009) programs were used together with the clustalω algorithm(Sievers & Higgins, 2014). Due to the heterogeneity of the genomic sources, we manually deletedthe V and stem regions, in order to only retain the immunoglobulin constant domains. From thiscuration process, a Fasta file with all the sequences was generated (included in the SupplementaryMaterial). Using Galaxy, sequences were aligned with MAFFT, a multiple alignment program foramino acid or nucleotide sequences (Galaxy Version 7.221.3) (Katoh & Standley, 2013). Align-ments were done using the BLOSUM62 matrix. Maximum likelihood phylogenetic trees wereconstructed from the amino acid sequences by FastTree (Galaxy Version 2.1.10 + galaxy1) (Priceet al., 2010) using the LG protein evolution model (Le & Gascuel, 2008) + CAT. Finally, thegraphical representations of the trees were made using the online program iTOL (Letunic & Bork,2019).

    3. Results

    IgT has been described in Teleostei. Indeed, this immunoglobulin is observed in several ofthese species, but in others it is absent. This lack of consistency throughout Teleostei raises ques-tions about the origins and functions of IgT. Given the availability of genomes and transcriptomesfrom a broad sampling of species from this order, we can finally obtain a more complete cataloguedthe IgT prevalent in this order.

    The three immunoglobulin classes found in fish are IgM, IgD, and IgT. The exons coding forthe CH domains and the deduced immunoglobulin genes identified by the CHfinder program aregiven in Table S1. With few exceptions, all fish have genes for IgM, IgD, and most for IgT. Rep-resentative sequences for the IgT were used to search the Fish-T1K (Sun et al., 2016) repositorythat contains transcriptome sequences for 124 fish species, shown in Table S3. Additionally, a bib-liographic search was carried out since 2005 to identify the different IgT that have been publishedin teleosts (see Table S2). These results indicate that the IG constant chain locus is quite unstable,having undergo duplications in some species and having large variability in the number of genes

    4

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • between species. For example, one species has up to 35 constant region genes (Labrus bergylta),while another (Guania wildenowi) has no genes at all.

    By studying the genomes of teleost fishes, we have confirmed previous observations - mostspecies in this order possess genes for IgT, while some do not. Nonetheless, a pattern that explainthe absence of this gene remains elusive. In addition, we found genes for IgT in the Holostei cladethat have not been described previously.

    3.1. IgT in HolosteiHolostei is one of the two infraclasses of the Neopterygii subclass (Teleostei, is the other), and

    it comprises two orders, the Amiiformes with a single representative and which is considered a liv-ing fossil Amia calva and the Lepisosteiformes with two genera Atractosteus and Lepisosteus, with7 extant species between both. The Lepisosteus oculatus (spotted gar) genome is available fromthe NCBI with a chromosomal assembly level (accession number GCA 000242695.1). A searchfor the immunoglobulin constant regions was performed using CHfinder. Three scaffolds contain-ing Ig exons coding for CH domains were identified: NC 023183.1 (LG5 chromosome) containsfour exons coding for CHs domains of IgM and 12 exons for the IgD domains, NW 006270078.1has a gene with four exons for the CH domains (first identified as CH1M (similar to CH1 ofIgM), while the rest of the domains were identified as CH2T, CH3T and CH4T). The scaffoldNW 006270215.1 has another gene with 3 exons coding for domains: the first exon, is identifiedas the CH1 of IgM (CH1M), while the others were identified as CH3 of IgT (CH3T) and CH4 ofIgT (CH4T) (See Figure 1).

    exon

    1_M

    -0.9

    85

    exon

    1_M

    -0.9

    85

    exon

    1_M

    -0.6

    24

    exon

    2_M

    -0.9

    88

    exon

    3_M

    -0.9

    81

    exon

    3_T-

    0.63

    7

    exon

    3_T-

    0.65

    4

    exon

    2_T-

    0.61

    6

    exon

    4_M

    -0.5

    6

    exon

    4_T-

    0.66

    exon

    4_T-

    0.68

    9

    exon

    4_D-0

    .991

    exon

    5_D-0

    .992

    exon

    3_D-0

    .991

    exon

    4_D-0

    .993

    exon

    5_D-0

    .986

    exon

    3_D-0

    .993

    exon

    4_D-0

    .995

    exon

    5_D-0

    .99

    exon

    3_D-0

    .983

    exon

    4_D-0

    .994

    exon

    5_D-0

    .998

    exon

    6_D-0

    .989

    IgT_4 IgT_3D IgDIgM

    NW_006270215.1 NW_006270078.1 NC_023183.1 Chromosome LG5

    D

    LOC102685290 LOC102687547 LOC107077209LOC102694914

    Lepisosteus oculatus

    Figure 1: A schematic representation of the immunoglobulin genes found in the Lepisosteus oculatusgenome. NC 023183.1 corresponds to chromosome LG5 containing the genes for IgM (red) and IgD (green).NW 006270215.1 and NW 006270078.1 are not yet assigned to chromosome and contain the exons for two differentIgTs, one for 4 domains and the other for 3 domains, respectively.

    Candidate IgT sequences in the spotted gar genome (IgT4D, an IgT consisting of four domains,and IgT3D, an IgT consisting of three domains) were used to search for orthologs in other Holosteispecies. Because the genome of Amia calva (bowfin) is not available, we searched for the presenceof these exons in the RNA-seq transcript (SRX661027). Sequences of four CH domain ortholo-gous to the spotted gar IgT4D were found. In the Fish-T1K repository, we identified anotherIgT4D (Atractosteus spatula) in the scaffold WHYR15010142 A C1141006. Additionally, thesegenes were searched in the genomes and transcripts of Polypteriformes and Acipenseriformes

    5

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • (firsts Actinopterygii) without finding IgT orthologues. In the amino acid sequences of theseIgT in Holostei found cysteine residues are important in the formation of intra-domain disulfidebridges. Additionally, the CH1 domain contains the necessary Cys residue to form the disulfidebridge between IgH chain and IgL chain (see Fig 2).

    19 29 39 49 59 69 79 89 99 109 119 129IgT4D_Amia_calvaIgT4D_Lepisosteus_oculatusIgT4D_Atractosteus_spatulaIgT3D_Lepisosteus_oculatusIgM_Lepisosteus_osseusIgM_Amia_calvaIgM_Lepisosteus_oculatus

    - - - - - - - - - - T V T HA P E V A P HV Y V L L - P C E E DL E T AG K V T I G C L A K E F S P S F A TMTWY K NV S E I T A D I VMY P S A E L - NS R Y NQV S T I T V S E S E RQ E - DT S Y T C K A S T S AQ SMA T - - S S PQ K F P KG I P PF E YWG KG TMV T V T S AQ I NP P L A S V L W - P CG VNL E T T S P V T L G C L V E E S Y SGQA T V YWS K DGQK L T T D I KMY P S V E D - SG K Y K K T S T L T V T K Y - - - - - - DS Y T C V A NDR S S NE NS T A S S P K P - Q A PQ A P- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - DGQ K L T T D I QMY P S V K D - SG K Y K K T S T L T V T K Y - - - - - - DS Y T C V A NDR S S NE NS S A S S P K P - Q A PQ A PF DYWG KG TQ V P V T SG S P T K P T L F P L V A S CG SG - T SGG V V S VG C L A TG F L P DS L T F KWT DS T NK E L T P F E K Y P S V L S - GG T Y S S T SMV S L S T S DWNS - G K S F Y C E A K HPQGDV K T DP I K K I D - P P K I Q VF DYWG KG TMV T V T S A S P T K P T L F P L V A S CG SG - T SG DV V A L G C L A TG F L P DS L T F KWT DS T DK E L T P F R K Y P S V L N - G E T Y S S T SQ L S L P T S DWNS - G K A F F C E A K HPQGDV K L HL L - T P P V P P - - - -- - - - - - - - - V T V T S A A A T A P T L F P L V - P CG SG - A S V DP V S VG C L A TG F S P DS L T F GWS EG - S K E L T NF Q K Y P S V L G SGG L Y SMT SQ L S I P K A DWE NK DKMF Y C K A T NP SG T A S A E L K P P T P T P P P I P VP S SGG RG R L EQG T A A S P T K P T L F P L V A S CG SG - T SG DV V A L G C L A TG F L P DS L T F KWT DS T E K E L T P F R K Y P S V L N - G E T Y S S T SQ L S L P T S DWNS - G K A F F C E A K HPQGDV K V T F AG T P P V P P - - - -

    147 157 167 177 187 197 207 217 227 237IgT4D_Amia_calvaIgT4D_Lepisosteus_oculatusIgT4D_Atractosteus_spatulaIgT3D_Lepisosteus_oculatusIgM_Lepisosteus_osseusIgM_Amia_calvaIgM_Lepisosteus_oculatus

    - - Q V S I L P L S K - - - QQ T DT L I L V C V V S E Y Y P K T V N I SWT RDDT S V T - - - TG F S TMA P VQNP S NS L FWTMS HL S V T T DSWNK N - NV F S C I V E HK A S T T R - KQ T S K AQ E E DP- - NV S I L - - T S - - - P NMS P P NL V CV V S DF Y PQ T V T I SWK KG K T S L DAQA AG I I E R S P V K K P S T E L F T AMS L L P V T A Y DWDK D - T I Y T C S V HHA K TG TQ - K E L S T S K S R - V- - NV S I L - - T S - - - A NMS P P NL V CV V S DF Y PQ T V T I SWK KG K T S L DAQA AG I I E K S P V K K P S T E L F T AMS L L P V T A Y DWDK D - T I Y T C S V HHA K TG TQ - K E L S T S K S R A V- - - - - - - - - - - - - - - - - - - - - - - - - - - G Y - - - - - - - - - YQ S T E - - - - - - - - - - - - - P - - T L T S P L Y S - - - - - - - - - - - - - - S F MV - - - - - - - - - - - - - - - - - - F E A - - - -- A S V L L NP P S L E E F AQNHT A T L V CV R SG F S P K T HE F KWWRGNT K L DEG V - - - - T N I P A T V DE K K L Y S A S S L L T V T E K DWK S S - A E F A C E F V HK TG S V L K N I T Y T S R E CQ -HP T V Y V V P P S A E DF K S DK T A K I I C L A I G F S P L DV S F KWWNNQG L V T EG V - - - - E S HG S V K DE K E K Y S A C S S L R V T E K EWRNP F NS F A C E V HHT EGWS K L K NT S F I G E CDP- A S V L L NP P S L E E L AQNHT A T L V CV A SG F S P K T HE F KWWRGNT K L DEG V - - - - T N I P A T E DE K K L Y S A S S L L T V T E K DWK S S - A E F A C E F V HK TG S V L K N I T Y T S P E CQ -

    257 267 277 287 297 307 317 327 337 347 357IgT4D_Amia_calvaIgT4D_Lepisosteus_oculatusIgT4D_Atractosteus_spatulaIgT3D_Lepisosteus_oculatusIgM_Lepisosteus_osseusIgM_Amia_calvaIgM_Lepisosteus_oculatus

    EMP C L E V V L R E PG I R E L F T Y NRAML DC E V V A A N - - - - S DV K I FWT I DG I NV T K DS K K TG P - - - HT T NNK V SMK S T L NA S HVDWF NNK R F E C T VQHNSG - - S V V K S - - T R V S DV VG S T S I F V T L HP P K V K E L F L NNL A V L V C E V NG K E A - - - A NV E I SWF VDSQ KQ SQNV K T SG D - - - N - - - - - NQ R T S T L T T PQ E NWF SG K K F E C K V S HS S I - - Q P I I K HAQ V L I DK NG S T S I F V T L HP P K V K E L F L NNL A V L V C E V NG K E A - - - A NV E I SWF VDSQ KQ SQHV K T SG D - - - N - - - - - NQ R T S T L T T PQ E NWF SG K K F E C K V S HS S I - - Q P I I K HAQ V L I DK N- - P C L Q V NL K DADQ K E L F I S NR A V L S C E V EG DNL - - - I G AQ V SWT - - EGG K P A TGQ L - - - - - - - - NL TQ T R A V S NL T I DA S KWY SG E V F E C I VQ L - K SQQDP I K RQ I Q V NNRG L- - E T V K V V I E P P T NE EQ F V K K T A T L T CR R I A L V S T S D - - V SMTWS - - SGG K P L A AG A P E F - - - G HEGG K I V A V S R V S V V L E KWRTG T E Y K C I V S HL DS F P T P I T K T Y K RQ I A T -L T T DV T V T I QG P E A K E V F L Q K RG T L T C I A RG L A DE NE K T I A I TWY K DNG K K P L A S V T P T P E L Q Y T DDG R I Q A T S R V I I S K E EWS S NS T Y K CV V A HP A S F P S P K E E T Y R RDNGHV- - E T V K V V I E P P T NE EQ F V K NT A T L T C R A I G L V S T S D - - V SMTWS - - SGG K P L A AG A P E F - - - G HEGG K I V A V S R V S V V L E KWRTG T E Y K C I V S HL DS F P T P I T K T Y K RQ I A T -

    371 381 391 401 411 421 431 441 451 461 471IgT4D_Amia_calvaIgT4D_Lepisosteus_oculatusIgT4D_Atractosteus_spatulaIgT3D_Lepisosteus_oculatusIgM_Lepisosteus_osseusIgM_Amia_calvaIgM_Lepisosteus_oculatus

    QQR P T V Y T L P P S E E E I - N I NK T A TMMCY V YG F K P RD I Y V FWK HH I L DG S DL P A - - - - I T G E P VM - - KG NS Y S V I S HL T V S K A DWE T NS - Y L C A V K HS SMGNN I H I P L T S HV K K NGL K K P V V N I Q K P NDNRV - G NS NT V NL T CV V SG F Y P DD I Y I MWK E S DKQG S T T S DR E DDL T S K P V KQ P NDE S Y T A F SQ L T V R K E EWNE K K - Y T C A V K HA S L G NNSQ S P E L DS I T K DDL K K P V V N I Q K P NDNRV - G NS NT V NL T CV V SG F Y P DD I Y I MWK E S DKQG S T T S DR E DDL T S K P V KQ P NDE S Y T A F SQ L T V R K E EWNE K K - Y T C A V K HV S L G NNSQ S P E L DS I T K DDKQ K P T L Y I L P P S E A E I - R E KG S A T L V C L V TG F F P E N I Y I MWG E NGNL K E EG I - - - - - - - - T S R P V K NNG L Y S AMS Y L T I A K DQWE K NE - Y L C A V K HP S L G DNK T A P RMK T I K K E DK I R P S V F L L A P S T E E NS S T RDE V T L T C F V K DF S P K D I Y I SWL AQDS I V DK T HY - - - - T V T DL I P S HD - G A Y S V Y S K Y T I S S S DWNSG TMY S CA V HHE T A P L P V S V I - T R T T DS S TE R T P S V F L L P P S S EQNSG I R E E L P L T C F I K DF Y P K DV Y V SWL ADDV P V A E S K F - - - - HT T S L I E E E AG K S Y S V Y S K L S V R T S DWNSG V F Y T CV V HHE S T P DS V PM I - T R T I DS S SK I R P S V F L L A P S T E E S S S T RDE V T L T C F V K DF S P K D I Y I SWL AQDS V VDK T HY - - - - T V T DL I P S HD - G T Y S V Y S K Y T I S S S DWNSG TMY S CA V HHE T A P L P V S V I - T R T T DS S T

    CH1

    CH2

    CH3

    CH4

    Figure 2: Alignment of the IgT and IgM immunoglobulin domains sequences of Holosteos. The graph was ob-tained with Jalview. The IgT sequences from Lepisosteus oculatus were deduced from the sequenced genome usingCHfinder, while those of Amia calva and Atractosteus spatula were obtained from RNA-seq transcriptomes. The IgMsequences of Lepisosteus oculatus was obtained from CHfinder, while the IgM of Amia calva and Lepisosteus osseuswere obtained from GenBANK with accession number AAC59687 and AAC59688, respectively.

    3.2. IgT in TeleosteiCHfinder allowed us to identify 136 candidate IgT genes from the 73 Actinopterygii (see Table

    S1). In the Fish-T1K repository, 57 IgT sequences from 57 fish species were identified. Addition-ally, a bibliographical search identified 24 articles that made reference to IgT sequences in 24teleost fishes. The obtained data set was processed manually in order to eliminate those sequencesthat were incomplete or repeated. Finally, we obtained 142 complete IgT sequences and 88 IgMsequences from 88 Actinopterygii species. With these sequences, a comparative phylogeneticstudy was undertaken.

    Evolutionary relationships between the IgT and the other immunoglobulins IgM, IgW, andIgNAR can be observed from comparative phylogenetic trees of these sequences. Additionally,the sequences from Elasmobranchii were also included since their origin dates prior to that ofActinopterygii. Thus, using the appearance of the Elasmobranchii as a reference, three cladescan be be observed in the resulting tree: one for Neopterygii IgT, one for Actinopterygii IgM,and a third clade encompassing the Elasmobranchii immunoglobulins. Within the IgM clade, theappearance of two Neopterygii IgT subclades is observed, one is for the 2-domain IgT found in

    6

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • Cichliform fish, and the other is for the IgT3D found in Lepisosteus oculatus. These two anomaliesmay be explained by the high homology of its CH1 with CH1M (both domains have quasi-identicalsequences), together with the decrease in the number of domains present.

    The clade corresponding to the majority of IgT sequences is unique and does not share acommon node with IgM from Actinopterygii. This suggests an early origin, thereby discountingthe notion of an IgM duplication in the evolution towards Actinopterygii (see Fig 3).

    A study of the IgT domains in holosteos is of particular interest, since until now, the oldestIgTs described in the scientific literature correspond to those of Cypriniformes. In addition, theseobservations of IgT in other teleost species whose origin is prior to that of Cypriniformes, havenot been previously described. As such, the large number of these IgT sequences provides anopportunity to study the evolutionary events that may underlie the origin of IgT (Figure 4). In 53IgT sequences, exon coding CH1T is very similar to that of CH1M (taxa are in the same clade),while 80 other sequences are within a clade related to CH1M . These results suggest that the exoncoding CH1 of the Neopterygii IgT shows a tendency to be exchanged for the exon coding CH1of the IgM of the same species; in some cases, this occurred quite recently, since the CH1M andCH1T sequences have similarities of more than 98%. Such phenomena is already observed earlyin the IgT3D of Lepisosteus oculatus.

    The CH2 and CH3 domains of IgT show a greater evolutionary proximity to CH2 and CH3 ofIgW and IgNAR than to those of Actinopterygii IgM. Finally, the CH4 of IgT generates a cladethat is evolutionary distant from the rest of the immunoglobulins. This may be because its origincoincides with the rise of immunoglobulins, or because of rapid evolutionary processes of thisdomain driven by selective pressure.

    3.3. IgT absence in TeleosteiFrom the analysis with CHfinder, genes were not found for the IgT in 25 species out of the 73

    Actinopterygii studied (see Table S1). The absence in two of these species (Epinephelus lanceo-latus and Datnioides undecimradiatus) can be explained by assemble problems (presence of gapsin the locus that contain the immunoglobulins). In other cases, one species of Siluriform (channelcatfish) and another of Beloniformes (medaka) had already been described as lacking the genefor the IgT (Magadán-Mompó et al., 2011; Bengtén et al., 2006). Here, we also did not find thisgene in three other Siluriformes species as well as another from the Beloniformes. In all other fishspecies studied, the loss of IgT is new information that has not been previously described. For acomplete listing, refer to Table S4 and Figure 5.

    7

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • IgT1 4

    D Asty

    anax

    mexic

    anus

    IgT

    3D C

    ynog

    loss

    us s

    emila

    evis

    IgT 3D Cebidichthys violaceus

    IgM C

    yprinus carpio

    IgM

    Dat

    nioi

    des

    mic

    role

    pis

    IgM Huso huso

    IgT 4D

    Cten

    opha

    ryng

    odon

    idell

    a

    IgT1 2D Maylandia zebra

    IgW Scyliorhinus canicula

    IgT 4D Atractosteus spat

    ula

    IgT 4D Xiphophorus maculatus

    IgT1 4D Salmo salar

    IgM Papyrocranus afer

    IgT5 2D Oreochrom

    is niloticus

    IgM Lepisosteus OculatusIg

    M L

    utja

    nus

    seba

    e

    IgT 4D B

    ovichtus diacanthus

    IgT5 4D Planiliza haematocheilus

    IgT1 3D Planiliza haematocheilus

    IgM

    Eso

    x lu

    cius

    IgT3 3D Ang

    uilla japonica

    IgT2 4D

    Astyan

    ax mexic

    anus

    IgT4 4D Myripristis murdjan

    IgM

    Pla

    niliz

    a ha

    emat

    oche

    ilus

    IgM An

    abas

    testu

    dineu

    s

    IgM

    Sal

    mo

    sala

    r

    IgT1

    3D

    Trip

    loph

    ysa

    tibet

    ana

    IgT 2D

    Astya

    nax me

    xicanu

    s

    IgT 2D Astatotilapia calliptera

    IgM Acipenser baerii

    IgT1 3D Perca flavescens

    IgM

    Lab

    rus

    berg

    ylta

    IgNAR Scyliorhinus canicula

    IgM

    Aulo

    stom

    us m

    acul

    atus

    IgT1 4D Esox lucius

    IgT 3D Lepisosteus oculatus

    IgT2 4D Lepisosteus oculatus

    IgT1 4D Oncorhynchus kisutch

    IgM

    Ter

    apon

    jarb

    ua

    IgT

    4D D

    icen

    trarc

    hus

    labr

    ax

    IgW Triakis scyllium

    IgM Astyanax m

    exicanus

    IgNAR Squalus acanthias

    IgM Triakis scyllium

    IgT1 4D P

    aramormy

    rops king

    sleyae

    IgM Arc

    hocent

    rus cen

    trarchu

    s

    IgT1 4D Salarias fasciatusIg

    M M

    yrip

    ristis

    mur

    djan

    IgT1 4D Mastacembelus arm

    atus

    IgM Chiloscyllium punctatum

    IgM C

    ollich

    thys l

    ucidu

    s

    IgT2 2D Maylandia zebra

    IgT4 2D Oreochromis niloticus

    IgM Lepisosteus osseus

    IgM A

    nguilla japonica

    IgT

    4D D

    repa

    ne p

    unct

    ata

    IgM P

    erca

    flave

    scen

    s

    IgT1 3D Parambassis ranga

    IgT 4D Ang

    uilla japon

    ica

    IgT1

    4D

    Lat

    eola

    brax

    mac

    ulat

    us

    IgT 4D Thunnus orientalisIgT3 4D Planiliza haem

    atocheilus

    IgM

    Tak

    ifugu

    rubr

    ipes

    IgM

    Sin

    iper

    ca c

    huat

    si

    IgT 4D Terapon jarbua

    IgM Cy

    noglo

    ssus

    semi

    laevis

    IgT 4D Epinephelus coioides

    IgT6

    3D

    Chan

    osch

    anos

    IgT1

    4D D

    anio

    rerio

    IgM Acipenser ruthenus

    IgM Ginglymostoma cirratum

    IgT 4D C

    entropomus sp

    IgM Sa

    larias

    fasci

    atus

    IgT 3D P

    apyrocr

    anus af

    er

    IgT 2D Mastacembelus armatus

    IgT 4D Amia Calv

    a

    IgM D

    anio rerio

    IgT2 4D Planiliza haematocheilus

    IgT1 4D Myripristis murdjan

    IgT 2D

    Cyp

    rinus

    carp

    io

    IgM Pa

    rambas

    sis ran

    ga

    IgT 2D Takifugu rubripes

    IgM Scyliorhinus canicula

    IgM Maylan

    dia zebra

    IgT 4D

    Ambly

    gaste

    r clup

    eoide

    s

    IgT1 2D Ana

    bas testudin

    eusIgT1 2D Archoc

    entrus centrar

    chus

    IgT

    4D S

    paru

    s au

    rata

    IgM Squalus acanthias

    IgM Asta

    totilapia

    callipter

    a

    IgT

    4D S

    coph

    thal

    mus

    max

    imus

    /1-6

    05

    IgM Erpetoichthys calabaricus

    IgM Amia calvaIgM

    Amblygaster clupeoides

    IgNAR Triakis scyllium

    IgM Ore

    ochrom

    is niloti

    cus

    IgM Chanos chanos

    IgW Squalus acanthias

    IgT1

    3D C

    hano

    s cha

    nos

    IgT 3D

    Astya

    nax me

    xicanu

    s

    IgT1 4D Planiliza haematocheilus

    IgT

    4DLa

    brus

    ber

    gylta

    IgT1 4D Oncorhynchus mykiss

    Figure 3: The phylogenetic tree consisting of 105 immunoglobulin sequences. The identified clades are as follows:IgT of Neopterygii (green) , IgM of Actinopterygii (red), and the immunoglobulins of Elasmobranchii (blue). IgT4D, IgT 3D, and IgT 2D refer to the number of immunoglobulin domains that IgT exhibits. Gray circles mark thedivergence points of immunoglobulins, taking as reference their appearance in Elasmobranchii.

    4. Discussion

    At present, there is an increasing availability of high-quality genomes and transcriptomes offish species. By using machine learning, the CHfinder program has allowed us to study fish Igs ina fast and agile manner. The program identifies the majority of the CH exons in available genomes

    8

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • CH4IgTActinopterygii(142)

    CH2IgTActinopterygii(99)

    CH3IgTActinopterygii(142)

    CH1IgTTeleostei (80)

    CH1IgT/CH1IgMTeleostei (53/70)

    CH1IgTAnguilla japonica(5)

    CH3/CH5 IgW/IgNARElasmobranchii(13)

    CH3IgMElasmobranchii(5)

    CH3IgMActinopterygii(85)

    CH6 IgW/IgNARElasmobranchii(6)

    CH4IgMElasmobranchii(5)

    CH4IgMActinopterygii(82)

    CH2IgM

    Elasmobr

    anchii(5

    )

    CH2/CH4 IgW/IgNARElasmobranchii(14)

    CH1IgM

    Actinopterygii(7)

    CH2IgMActinopterygii(85)

    CH1IgW

    Elasmobranchii(3)CH1IgNAR

    Elasmobranchii(3)

    CH1IgMTeleostei(5)

    CH1IgM

    Elasmobranchii(5)

    12

    3

    45

    6

    Figure 4: The phylogenetic tree of the domain study of the 252 immunoglobulin sequences used in this work. Thenumber of domains per clade is provided in brackets. The immunoglobulin domains are labelled as follows: IgM ofActinopterygii and Elasmobranchii (red), the Neopterygii IgT (green), those of IgW and IgNAR of Elasmobranchii(orange), and a mixed clade with IgM and IgT CH1 domains (blue). Asterisks are used to indicate the presence ofa domain for the IgT of holosteos. In particular, these are as follows: (asterisk 1) the CH1 IgT of the IgT3D ofLepisosteus oculatus, (asterisk 2) the CH1 IgT domain of the Holosteos IgT residue, (asterisk 3) the CH2 IgT fromHolosteos, (asterisk 4) the CH3 IgT of IgT3D, (asterisk 5) the CH3 IgT domain of the Holosteos IgT residue, and(asterisk 6) the CH4 IgT from Holosteos.

    with high accuracy. The absolute number of CH exons may be an underestimate in some casesdue to the early stages of sequencing projects and the presence of gaps. For genome searches, itdoes not attempt to differentiate whether an exon sequence belongs to a pseudogene or a viablegene. The program provides information about the presence of homologous exon sequences tohigh precision. As such, it is valid for the identification of genes and obtaining sequences forevolutionary studies.

    Previous publications suggest that IgT had its origin through duplication of the IgM gene.

    9

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • Ictaluridae

    Pangasiidae

    Loricariidae

    Percophidae

    Denticipitidae

    Salmonidae

    Congridae

    Batrachoididae

    Mormyridae

    Characidae

    Osphron

    emidae

    Sinipercidae

    Siluridae

    Nemacheilidae

    Pomacentridae

    Gasteropelecidae

    Muraenesocidae

    Callionymidae

    Bovichtidae

    Cirrhitidae

    Amiidae

    Echeneidae

    Nothobranchiidae

    Amblycipitidae

    Lutjanidae

    Esocidae

    Adrianichthyidae

    Ostraciidae

    Syngnathidae

    Moronidae

    Botiidae

    Mullidae

    Aulostomid

    ae

    Gadidae

    Cynoglossidae

    Haemulidae

    Terapontidae

    Paralichthyidae

    Diodontidae

    Serranid

    ae

    PolypteridaeSisoridae

    Percichthyidae

    Notopteridae

    Poeciliidae

    Oplegnathidae

    Channid

    ae

    Mugilidae

    Callichthyidae

    Datnioididae

    SciaenidaeTetraodontidae

    GobiesocidaeChaenopsidae

    Cichlidae

    Cyprinidae

    Eleotridae

    Lateolabracidae

    Scophthalmidae

    Gymnotidae Pl

    otosidae

    Pomacanthidae Gerreidae

    Caproidae

    Ambassidae

    Apogonidae

    Percidae

    Chanidae

    Centrarchidae

    Engraulidae

    Anguillidae

    Labridae

    Tripterygiidae

    Muraenidae

    Stichaeidae

    Acanthuridae

    Pleuronectidae

    Carangidae

    Lepisosteidae

    Gobiidae

    Holocentridae

    Osteoglossidae

    Mastacem

    belidae

    Phallostethidae

    Acipenseridae

    Pantodontidae

    Cobitidae

    Blenniidae

    Gasterosteida

    e

    Anabantid

    ae

    Balistidae

    Clupeidae

    Bagridae

    Gyrinocheilidae

    Peristediidae

    Nototheniidae

    Erythrinidae

    Melanotaeniidae

    Rivulidae

    Epigonidae

    Scorpaenid

    ae

    Sparidae

    Ictaluridae

    Pangasiidae

    Loricariidae

    Percophidae

    Denticipitidae

    Salmonidae

    Congridae

    Batrachoididae

    Mormyridae

    Characidae

    Osphron

    emidae

    Sinipercidae

    Siluridae

    Nemacheilidae

    Pomacentridae

    Gasteropelecidae

    Muraenesocidae

    Callionymidae

    Bovichtidae

    Cirrhitidae

    Amiidae

    Echeneidae

    Nothobranchiidae

    Amblycipitidae

    Lutjanidae

    Esocidae

    Adrianichthyidae

    Ostraciidae

    Syngnathidae

    Moronidae

    Botiidae

    Mullidae

    Aulostomid

    ae

    Gadidae

    Cynoglossidae

    Haemulidae

    Terapontidae

    Paralichthyidae

    Diodontidae

    Serranid

    ae

    PolypteridaeSisoridae

    Percichthyidae

    Notopteridae

    Poeciliidae

    Oplegnathidae

    Channid

    ae

    Mugilidae

    Callichthyidae

    Datnioididae

    SciaenidaeTetraodontidae

    GobiesocidaeChaenopsidae

    Cichlidae

    Cyprinidae

    Eleotridae

    Lateolabracidae

    Scophthalmidae

    Gymnotidae Pl

    otosidae

    Pomacanthidae Gerreidae

    Caproidae

    Ambassidae

    Apogonidae

    Percidae

    Chanidae

    Centrarchidae

    Engraulidae

    Anguillidae

    Labridae

    Tripterygiidae

    Muraenidae

    Stichaeidae

    Acanthuridae

    Pleuronectidae

    Carangidae

    Lepisosteidae

    Gobiidae

    Holocentridae

    Osteoglossidae

    Mastacem

    belidae

    Phallostethidae

    Acipenseridae

    Pantodontidae

    Cobitidae

    Blenniidae

    Gasterosteida

    e

    Anabantid

    ae

    Balistidae

    Clupeidae

    Bagridae

    Gyrinocheilidae

    Peristediidae

    Nototheniidae

    Erythrinidae

    Melanotaeniidae

    Rivulidae

    Epigonidae

    Scorpaenid

    ae

    Sparidae

    No IgT

    IgT

    No Evidence for IgT

    Siluriform

    es

    Osteoglossiformes

    Atheri

    nomorp

    hae

    Gobiaria

    Figure 5: Cladogram from the data obtained in Table ??. Clades in green indicate the presence of IgT in at least onemember of that family. The red clades indicate the loss of IgT in the members analyzed for that family. Those cladeswith insufficient data to determine the absence of IgT are colored orange.

    However, this work indicate a more complex origin. CH1T is evolutionarily related to CH1Mand there are numerous species with identical sequences in these two domains. Probably the needto receive the VDJ complex is the basis of its similarities and the cause of its integration intoIgT. The CH2T and CH3T domains by evolutionary proximity are closer to the CH2 and CH3domains of IgW and IgNAR of Elasmobranchii than to those of IgM. Finally, the CH4 domainraises doubts as to its origin due to the high divergence that it presents against its IgM and ofthe IgW and IgNAR counterparts, suggesting the possibility that this domain is so ancient that itdirectly connects with the appearance of the immunoglobulins themselves. In 2016, the genome

    10

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • of Lepisosteus oculatus was sequenced and the presence of two Immunoglobulin loci was noted(Braasch et al., 2016). In this work, we describe two new IgTs, one with 4 domains located in allHolostei fishes and one with 3 domains in spotted gar (IgT3D). Holostei have approximately 320million years of independent evolution with respect to Teleostei. The CH2 and CH3 domains of theHolostei IgT are more similar to IgW domains, suggestive of their probable origin. IgT3D presentstwo peculiarities: it does not present the CH2 domain and the CH1 domain has a high similaritywith the CH1 of the IgM, indicating a recent exchange. Both observations are in accordancewith previous works in Teleosts. The presence of IgT in Holostei show that it is not a specificimmunoglobulin of Teleostei.

    Here, we found that both Holostei and Telostei possess IgT, contrary to the belief that it is aspecific teleost immunoglobulin. Its origin would be approximately 300 Mya, coinciding with thelate Permian and the appearance of the Neopterygii. This is supported by the fact that we havenot found IgT in Acipenseriformes or in Polypteriformes. However, the Ig domain tree shows thatCH2, CH3, and CH4 of the IgT in Neopterygii diverged prior to the occurrence of Actinopterygii,suggesting a recent loss of IgT in Acipenseriformes and Polypteriformes. This loss in fish ofwhat seem to be key elements of the adaptive immune systems, without seeming to condition theviability of these species, is seen in several species. Examples include the loss of MHC-II in theAtlantic cod, pipefish y anglerfish (Star et al., 2011; Haase et al., 2013; Dubin et al., 2019), theloss of IgT in the medaka and channel catfish, or the loss of immunoglobulin genes in Gouaniawilldenowii.

    Our work corroborates previous studies that IgT exists throughout the Neopterygii clade. Untilnow however, IgT loss has been documented in only two species of Teleostei. Here we describethat the extent of this loss is greater than previously observed. Moreover, this appears to be at thelevel of order or family. Nonetheless, the causes and consequences of the loss of this Ig isotyperemains unclear. In this work we have sought to clarify the origin of IgT and described its presencein Holostei. However, several questions remain, including whether IgT arose as an IgM-IgW/NARchimera with the emergence of the Neopterygii.

    11

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • 5. References

    References

    Afgan, E., Baker, D., Batut, B., Van Den Beek, M., Bouvier, D., Čech, M., Chilton, J., Clements, D., Coraor, N.,Grüning, B. A. et al. (2018). The galaxy platform for accessible, reproducible and collaborative biomedical analy-ses: 2018 update. Nucleic acids research, 46, W537–W544.

    Bengtén, E., Clem, L. W., Miller, N. W., Warr, G. W., & Wilson, M. (2006). Channel catfish immunoglobulins:repertoire and expression. Developmental & Comparative Immunology, 30, 77–92.

    Bengtén, E., Leanderson, T., & Pilström, L. (1991). Immunoglobulin heavy chain cDNA from the teleost Atlanticcod (Gadus morhua l.): nucleotide sequences of secretory and membrane form show an unusual splicing pattern.European journal of immunology, 21, 3027–3033.

    Bengtén, E., Quiniou, S. M.-A., Stuge, T. B., Katagiri, T., Miller, N. W., Clem, L. W., Warr, G. W., & Wilson, M.(2002). The IgH locus of the channel catfish, Ictalurus punctatus, contains multiple constant region gene sequences:different genes encode heavy chains of membrane and secreted IgD. The Journal of Immunology, 169, 2488–2497.

    Bilal, S., Lie, K. K., Dalum, A. S., Karlsen, O. A., & Hordvik, I. (2019). Analysis of immunoglobulin and T cellreceptor gene expression in ballan wrasse (labrus bergylta) revealed an extraordinarily high IgM expression in thegut. Fish & shellfish immunology, 87, 650–658.

    Braasch, I., Gehrke, A. R., Smith, J. J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel,P., Catchen, J. et al. (2016). The spotted gar genome illuminates vertebrate evolution and facilitates human-teleostcomparisons. Nature genetics, 48, 427–437.

    Buonocore, F., Stocchi, V., Nunez-Ortiz, N., Randelli, E., Gerdol, M., Pallavicini, A., Facchiano, A., Bernini, C.,Guerra, L., Scapigliati, G. et al. (2017). Immunoglobulin T from sea bass (Dicentrarchus labrax L.): molecularcharacterization, tissue localization and expression after nodavirus infection. BMC molecular biology, 18, 8.

    Castro, C. D., & Flajnik, M. F. (2014). Putting J chain back on the map: how might its expression define plasma celldevelopment? The Journal of Immunology, 193, 3248–3255.

    Chen, K., Xu, W., Wilson, M., He, B., Miller, N. W., Bengten, E., Edholm, E.-S., Santini, P. A., Rath, P., Chiu, A.et al. (2009). Immunoglobulin d enhances immune surveillance by activating antimicrobial, proinflammatory andB cell–stimulating programs in basophils. Nature immunology, 10, 889.

    Cooper, M. D., & Alder, M. N. (2006). The evolution of adaptive immune systems. Cell, 124, 815–822.Danilova, N., Bussmann, J., Jekosch, K., & Steiner, L. A. (2005). The immunoglobulin heavy-chain locus in zebrafish:

    identification and expression of a previously unknown isotype, immunoglobulin Z. Nature immunology, 6, 295.Du, Y., Tang, X., Zhan, W., Xing, J., & Sheng, X. (2016). Immunoglobulin tau heavy chain (IgT) in flounder,

    Paralichthys olivaceus: molecular cloning, characterization, and expression analyses. International journal ofmolecular sciences, 17, 1571.

    Dubin, A., Jørgensen, T. E., Moum, T., Johansen, S. D., & Jakt, L. M. (2019). Complete loss of the MHC II pathwayin an anglerfish, Lophius piscatorius. Biology letters, 15, 20190594.

    Edelman, G. M., Cunningham, B. A., Gall, W. E., Gottlieb, P. D., Rutishauser, U., & Waxdal, M. J. (1969). Thecovalent structure of an entire γG immunoglobulin molecule. Proceedings of the National Academy of Sciences,63, 78–85.

    Flajnik, M. F., & Kasahara, M. (2010). Origin and evolution of the adaptive immune system: genetic events andselective pressures. Nature Reviews Genetics, 11, 47–59.

    Gambon-Deza, F., Sánchez-Espinel, C., & Magadan-Mompo, S. (2009). The immunoglobulin heavy chain locus inthe platypus (Ornithorhynchus anatinus). Molecular immunology, 46, 2515–2523.

    Gambón-Deza, F., Sánchez-Espinel, C., & Magadán-Mompó, S. (2010). Presence of an unique IgT on the IGH locusin three-spined stickleback fish (Gasterosteus aculeatus) and the very recent generation of a repertoire of VH genes.Developmental & Comparative Immunology, 34, 114–122.

    Ghaffari, S. H., & Lobb, C. (1989). Cloning and sequence analysis of channel catfish heavy chain cDNA indicatephylogenetic diversity within the IgM immunoglobulin family. The Journal of Immunology, 142, 1356–1365.

    Giacomelli, S., Buonocore, F., Albanese, F., Scapigliati, G., Gerdol, M., Oreste, U., & Coscia, M. R. (2015). Newinsights into evolution of IgT genes coming from Antarctic teleosts. Marine genomics, 24, 55–68.

    12

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • Gouy, M., Guindon, S., & Gascuel, O. (2009). SeaView version 4: a multiplatform graphical user interface forsequence alignment and phylogenetic tree building. Molecular biology and evolution, 27, 221–224.

    Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Ray-chowdhury, R., Zeng, Q. et al. (2011). Trinity: reconstructing a full-length transcriptome without a genome fromRNA-Seq data. Nature biotechnology, 29, 644.

    Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B.,Lieber, M. et al. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform forreference generation and analysis. Nature protocols, 8, 1494.

    Haase, D., Roth, O., Kalbe, M., Schmiedeskamp, G., Scharsack, J. P., Rosenstiel, P., & Reusch, T. B. (2013). Absenceof major histocompatibility complex class II mediated immunity in pipefish, Syngnathus typhle: evidence fromdeep transcriptome sequencing. Biology letters, 9, 20130044.

    Hansen, J. D., Landis, E. D., & Phillips, R. B. (2005). Discovery of a unique Ig heavy-chain isotype (IgT) in rainbowtrout: Implications for a distinctive B cell developmental pathway in teleost fish. Proceedings of the NationalAcademy of Sciences, 102, 6919–6924.

    Hikima, J.-i., Jung, T.-S., & Aoki, T. (2011). Immunoglobulin genes and their transcriptional control in teleosts.Developmental & Comparative Immunology, 35, 924–936.

    Hordvik, I., Thevarajan, J., Samdal, I., Bastani, N., & Krossoy, B. (1999). Molecular cloning and phylogeneticanalysis of the Atlantic salmon immunoglobulin D gene. Scandinavian journal of immunology, 50, 202–210.

    Hu, Y.-L., Xiang, L.-X., & Shao, J.-Z. (2010). Identification and characterization of a novel immunoglobulin Z isotypein zebrafish: implications for a distinct b cell receptor in lower vertebrates. Molecular immunology, 47, 738–746.

    Kar, B., Mohapatra, A., Mohanty, J., & Sahoo, P. K. (2015). Transcriptional changes in three immunoglobulin isotypesof rohu, labeo rohita in response to Argulus siamensis infection. Fish & shellfish immunology, 47, 28–33.

    Kato, G., Takano, T., Sakai, T., Matsuyama, T., Sano, N., & Nakayasu, C. (2015). Cloning and expression analysesof a unique IgT in ayu plecoglossus altivelis. Fisheries science, 81, 29–36.

    Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements inperformance and usability. Molecular biology and evolution, 30, 772–780.

    Le, S. Q., & Gascuel, O. (2008). An improved general amino acid replacement matrix. Molecular biology andevolution, 25, 1307–1320.

    Letunic, I., & Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleicacids research, 47, W256–W259.

    Magadán-Mompó, S., Sánchez-Espinel, C., & Gambón-Deza, F. (2011). Immunoglobulin heavy chains in medaka(oryzias latipes). BMC evolutionary biology, 11, 165.

    Mashoof, S., Pohlenz, C., Chen, P. L., Deiss, T. C., Gatlin III, D., Buentello, A., & Criscitiello, M. F. (2014). ExpressedIgH µ and τ transcripts share diversity segment in ranched Thunnus orientalis. Developmental & ComparativeImmunology, 43, 76–86.

    Ohta, Y., & Flajnik, M. (2006). IgD, like IgM, is a primordial immunoglobulin class perpetuated in most jawedvertebrates. Proceedings of the National Academy of Sciences, 103, 10723–10728.

    Pancer, Z., Amemiya, C. T., Ehrhardt, G. R., Ceitlin, J., Gartland, G. L., & Cooper, M. D. (2004). Somatic diversifi-cation of variable lymphocyte receptors in the agnathan sea lamprey. Nature, 430, 174–180.

    Patel, B., Banerjee, R., Basu, M., Lenka, S., Samanta, M., & Das, S. (2016). Molecular cloning of IgZ heavychain isotype in Catla catla and comparative expression profile of IgZ and IgM following pathogenic infection.Microbiology and immunology, 60, 561–567.

    Peterson, P. A., Cunningham, B. A., Berggård, I., & Edelman, G. M. (1972). β2-Microglobulin—a free immunoglob-ulin domain. Proceedings of the National Academy of Sciences, 69, 1697–1701.

    Piazzon, M. C., Galindo-Villegas, J., Pereiro, P., Estensoro, I., Calduch-Giner, J. A., Gómez-Casado, E., Novoa, B.,Mulero, V., Sitjà-Bobadilla, A., & Pérez-Sánchez, J. (2016). Differential modulation of IgT and IgM upon parasitic,bacterial, viral, and dietary challenges in a Perciform fish. Frontiers in immunology, 7, 637.

    Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). Fasttree 2–approximately maximum-likelihood trees for largealignments. PloS one, 5.

    Ross, D. A., Wilson, M. R., Miller, N. W., Clem, L. W., Warr, G. W., Ross, D. A., Wilson, M. R., Miller, N. W., Clem,L. W., & Warr, G. W. (1998). Evolutionary variation of immunoglobulin µ heavy chain RNA processing pathways:

    13

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • origins, effects, and implications. Immunological reviews, 166, 143–151.Ryo, S., Wijdeven, R. H., Tyagi, A., Hermsen, T., Kono, T., Karunasagar, I., Rombout, J. H., Sakai, M., Verburg-

    van Kemenade, B. L., & Savan, R. (2010). Common carp have two subclasses of bonyfish specific antibody IgZshowing differential expression in response to infection. Developmental & Comparative Immunology, 34, 1183–1190.

    Sahoo, M., Edholm, E.-S., Stafford, J. L., Bengtén, E., Miller, N. W., & Wilson, M. (2008). B cell receptor accessorymolecules in the channel catfish, Ictalurus punctatus. Developmental & Comparative Immunology, 32, 1385–1397.

    Savan, R., Aman, A., Nakao, M., Watanuki, H., & Sakai, M. (2005a). Discovery of a novel immunoglobulin heavychain gene chimera from common carp (Cyprinus carpio L.). Immunogenetics, 57, 458–463.

    Savan, R., Aman, A., Sato, K., Yamaguchi, R., & Sakai, M. (2005b). Discovery of a new class of immunoglobulinheavy chain from fugu. European journal of immunology, 35, 3320–3331.

    Sievers, F., & Higgins, D. G. (2014). Clustal Omega, accurate alignment of very large numbers of sequences. InMultiple sequence alignment methods (pp. 105–116). Springer.

    Star, B., Nederbragt, A. J., Jentoft, S., Grimholt, U., Malmstrøm, M., Gregers, T. F., Rounge, T. B., Paulsen, J.,Solbakken, M. H., Sharma, A. et al. (2011). The genome sequence of Atlantic cod reveals a unique immunesystem. Nature, 477, 207.

    Stenvik, J., & Jørgensen, T. Ø. (2000). Immunoglobulin d (igd) of atlantic cod has a unique structure. Immunogenetics,51, 452–461.

    Sun, S.-C., Lindstrom, I., Boman, H. G., Faye, I., & Schmidt, O. (1990). Hemolin: an insect-immune proteinbelonging to the immunoglobulin superfamily. Science, 250, 1729–1732.

    Sun, Y., Huang, Y., Li, X., Baldwin, C. C., Zhou, Z., Yan, Z., Crandall, K. A., Zhang, Y., Zhao, X., Wang, M. et al.(2016). Fish-t1k (Transcriptomes of 1,000 Fishes) Project: large-scale transcriptome data for fish evolution studies.Gigascience, 5, 18.

    Tang, X., Du, Y., Sheng, X., Xing, J., & Zhan, W. (2018). Molecular cloning and expression analyses of immunoglob-ulin tau heavy chain (IgT) in turbot, Scophthalmus maximus. Veterinary immunology and immunopathology, 203,1–12.

    Tian, J., Sun, B., Luo, Y., Zhang, Y., & Nie, P. (2009). Distribution of IgM, IgD and IgZ in mandarin fish, Sinipercachuatsi lymphoid tissues and their transcriptional changes after Flavobacterium columnare stimulation. Aquacul-ture, 288, 14–21.

    Velázquez, J., Acosta, J., Lugo, J. M., Reyes, E., Herrera, F., González, O., Morales, A., Carpio, Y., & Estrada, M. P.(2018). Discovery of immunoglobulin T in nile tilapia (Oreochromis niloticus): A potential molecular marker tounderstand mucosal immunity in this species. Developmental & Comparative Immunology, 88, 124–136.

    Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., & Barton, G. J. (2009). Jalview version 2—a multiplesequence alignment editor and analysis workbench. Bioinformatics, 25, 1189–1191.

    Wilson, M., Bengtén, E., Miller, N. W., Clem, L. W., Du Pasquier, L., & Warr, G. W. (1997). A novel chimeric igheavy chain from a teleost fish shares similarities to IgD. Proceedings of the National Academy of Sciences, 94,4593–4597.

    Xia, H., Liu, W., Wu, K., Wang, W., & Zhang, X. (2016). sIgZ exhibited maternal transmission in embryonicdevelopment and played a prominent role in mucosal immune response of Megalabrama amblycephala. Fish &shellfish immunology, 54, 107–117.

    Xiao, F., Wang, Y., Yan, W., Chang, M., Yao, W., Xu, Q., Wang, X., Gao, Q., & Nie, P. (2010). Ig heavy chain genesand their locus in grass carp Ctenopharyngodon idella. Fish & shellfish immunology, 29, 594–599.

    Xu, J., Yu, Y., Huang, Z., Dong, S., Luo, Y., Yu, W., Yin, Y., Li, H., Liu, Y., Zhou, X. et al. (2019). Immunoglob-ulin (Ig) heavy chain gene locus and immune responses upon parasitic, bacterial and fungal infection in loach,Misgurnus anguillicaudatus. Fish & shellfish immunology, 86, 1139–1150.

    Yasuike, M., De Boer, J., von Schalburg, K. R., Cooper, G. A., McKinnel, L., Messmer, A., So, S., Davidson, W. S.,& Koop, B. F. (2010). Evolution of duplicated IgH loci in atlantic salmon, salmo salar. BMC genomics, 11, 486.

    Ye, J., Bromage, E. S., & Kaattari, S. L. (2010). The strength of B cell interaction with antigen determines the degreeof IgM polymerization. The journal of immunology, 184, 844–850.

    Zhang, N., Zhang, X.-J., Chen, D.-D., Sunyer, J. O., & Zhang, Y.-A. (2017). Molecular characterization and expres-sion analysis of three subclasses of IgT in rainbow trout (Oncorhynchus mykiss). Developmental & Comparative

    14

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • Immunology, 70, 94–105.Zhang, S.-M., Adema, C. M., Kepler, T. B., & Loker, E. S. (2004). Diversification of Ig superfamily genes in an

    invertebrate. Science, 305, 251–254.Zhang, Y.-A., Salinas, I., & Sunyer, J. O. (2011). Recent findings on the structure and function of teleost IgT. Fish &

    shellfish immunology, 31, 627–634.Zhao, Y., Cui, H., Whittington, C. M., Wei, Z., Zhang, X., Zhang, Z., Yu, L., Ren, L., Hu, X., Zhang, Y. et al.

    (2009). Ornithorhynchus anatinus (platypus) links the evolution of immunoglobulin genes in eutherian mammalsand nonmammalian tetrapods. The Journal of Immunology, 183, 3285–3293.

    15

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • Supplementary Material

    Immunoglobulins genes in ActinopterygiiSpecie IGT IGM IGD Order FamilyCLADISTIAErpetoichthys calabaricus 0 1 1 Polypteriformes PolypteridaeACTINOPTERI->ChondrosteiAcipenser ruthenus 0 2 3 Acipenseriformes Acipenseridae->Neopterygii–>HolosteiLepisosteus oculatus 2 1 1 Lepisosteiformes Lepisosteidae–>Teleostei—>ElopocephalaAnguilla japonica 5 1 1 Anguilliormes Anguillidae—>OsteoglossocephalaScleropages formosus 0 2 2 Osteoglossiformes OsteoglossidaeParamormyrops kingsleyae 2 1 1 Osteoglossiformes Mormyridae—>Clupeocephala—->OtomorphaClupea harengus 1 2 2 Clupeiformes ClupeidaeCoilia nasus 2 1 1 Clupeiformes EngraulidaeDenticeps clupeoides 0 1 1 Clupeiformes DenticipitidaeChanos chanos 6 2 2 Gonorynchiformes ChanidaeCarassius auratus 4 2 2 Cypriniformes CyprinidaeDanio rerio 1 1 1 Cypriniformes CyprinidaeCyprinus carpio 2 2 3 Cypriniformes CyprinidaeTriplophysa tibetana 2 2 2 Cypriniformes NemacheilidaeElectrophorus electricus 1 1 1 Gymnotiformes GymnotidaeBagarius yarrelli 0 1 1 Siluriformes SisoridaeIctalurus punctatus 0 1 2 Siluriformes IctaluridaeTachysurus fulvidraco 0 1 1 Siluriformes BagridaePangasianodon hypophthalmus 0 Gap 1 Siluriformes PangasiidaeAstyanax mexicanus 5 1 3 Characiformes Characidae—->Euteleosteomorpha—–>ProtacanthopterygiiSalmo trutta 3 2 2 Salmoniformes SalmonidaeOncorhynchus mykiss 3 2 4 Salmoniformes SalmonidaeOncorhynchus tshawytscha 1 2 2 Salmoniformes SalmonidaeOncorhynchus kisutch 3 1 2 Salmoniformes SalmonidaeCoregonus 3 1 3 Salmoniformes SalmonidaeEsox lucius 2 2 2 Esociformes Esocidae

    16

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • Specie IGT IGM IGD Order Family—->Neoteleostei—–>ParacanthomorphaceaGadus morhua 0 3 3 Gadiformes Gadidae——>HolocentrimorphaceaeMyripristis murdjan 5 8 8 Holocentriformes Holocentridae——>Percomorphaceae——->BatrachoidiariaThalassophryne amazonica 1 2 0 Batrachoidiformes Batrachoididae——>Percomorphaceae——->EupercariaLabrus bergylta 7 12 16 Labriformes LabridaeNotolabrus celidotus 2 1 1 Labriformes LabridaeTakifugu rubripes 1 1 1 Tetraodontiformes TetraodontidaeLarimichthys crocea 1 2 1 Acanthuriformes SciaenidaeSparus aurata 5 2 2 Spariformes SparidaeCebidichthys violaceus 1 2 2 Perciformes StichaeidaeCottoperca gobio 1 1 1 Perciformes BovichtidaePerca flavescens 3 1 1 Perciformes PercidaePlectropomus leopardus 1 1 1 Perciformes SerranidaeEpinephelus lanceolatus Gap 2 1 Perciformes SerranidaeEpinephelus moara 0 1 1 Perciformes SerranidaeOplegnathus fasciatus 2 1 1 Centrarchiformes OplegnathidaeLateolabrax maculatus 2 2 2 Pempheriformes LateolabracidaeCollichthys lucidus 1 4 3 I. s. in Eupercaria SciaenidaeDatnioides undecimradiatus Gap 1 1 Lobotiformes Datnioididae——>Percomorphaceae——->GobiariaPeriophthalmus magnuspinnatus 0 1 1 Gobiiformes GobiidaeNeogobius melanostomus 0 2 2 Gobiiformes GobiidaeSphaeramia orbicularis 0 1 2 Kurtiformes Apogonidae——>Percomorphaceae——->SyngnathariaSyngnathus acus 0 1 1 Syngnathiformes Syngnathidae——>Percomorphaceae——->AnabantariaAnabas testudineus 3 1 3 Anabantiformes AnabantidaeBetta splendens 0 1 1 Anabantiformes OsphronemidaeChanna argus 1 1 4 Anabantiformes ChannidaeMastacembelus armatus 4 1 1 Synbranchiformes Mastacembelidae

    17

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • Specie IGT IGM IGD Order Family——>Percomorphaceae——->CarangariaCynoglossus semilaevis 1 1 1 Pleuronectiformes CynoglossidaeScophthalmus maximus 1 1 1 Pleuronectiformes ScophthalmidaeReinhardtius hippoglossoides 0 1 1 Pleuronectiformes PleuronectidaeHippoglossus hippoglossus 0 1 1 Pleuronectiformes PleuronectidaeEcheneis naucrates 1 3 3 Carangiformes Echeneidae——>Percomorphaceae——->OvalentariaPlaniliza haematocheilus 20 4 4 Mugiliformes MugilidaeArchocentrus centrarchus 4 4 4 Cichliformes CichlidaeOreochromis niloticus 5 6 6 Cichliformes CichlidaeAstatotilapia calliptera 1 2 3 Cichliformes CichlidaeMaylandia zebra 4 2 3 Cichliformes CichlidaeNeostethus bicornis 0 1 1 Atheriniformes PhallostethidaePoecilia reticulata 2 1 1 Cyprinodontiformes PoeciliidaeXiphophorus maculatus 2 1 1 Cyprinodontiformes PoeciliidaeNothobranchius furzeri 0 1 2 Cyprinodontiformes NothobranchiidaeKryptolebias hermaphroditus 2 2 2 Cyprinodontiformes RivulidaeOryzias latipes 0 6 6 Beloniformes AdrianichthyidaeOryzias javanicus 0 3 3 Beloniformes AdrianichthyidaeSalarias fasciatus 5 9 11 Blenniiformes BlenniidaeGouania willdenowi 0 0 0 Blenniiformes GobiesocidaeParambassis ranga 4 1 2 I. s. in Ovalentaria AmbassidaeAmphiprion percula 0 4 6 I. s. in Ovalentaria Pomacentridae

    Table S1: Results of gene/exon identification with CHfinder

    18

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • IgT 2D M

    astacembelus arm

    atus

    IgM

    Larim

    ichth

    ys cro

    cea

    IgM Megalobrama amblycephala

    IgT3 4D M

    astacembelus arm

    atus

    IgM Esox lucius

    IgT 4

    D Th

    alass

    oma b

    ifasc

    iatum

    IgT2 4D Astyanax m

    exicanus

    IgT3 3D Chanos chanos

    IgT2 2D Maylandia zebra

    IgM Aul

    ostomus

    macula

    tus

    IgT3 2D Archocentrus centrarchus

    IgT2 4D Coregonus sp

    IgM

    Das

    cyllu

    s tr

    imac

    ulay

    us

    IgT1 4D Paramormyrops kingsleyae

    IgM Scleropages form

    osus

    IgM

    Lat

    eola

    brax

    mac

    ulat

    us

    IgT3

    4D

    Pla

    niliz

    a ha

    emat

    oche

    ilus

    IgT3 2D M

    aylandia zebra

    IgM Danio rerio

    IgT 2D Astyanax

    mexicanus

    IgT4

    4D

    Pla

    niliz

    a ha

    emat

    oche

    ilus

    IgM

    Par

    amba

    ssis

    ran

    ga

    IgT 4D Epi

    nephelus c

    oioides

    IgM M

    aylandia zebra

    IgT 4D Oncorhynchus tshawytscha

    IgM Scyliorhinus canicula

    IgT 4D

    Ople

    gnat

    hus f

    ascia

    tus

    IgT2 3D Param

    bassis ranga

    IgM

    Ceb

    idic

    hthy

    s vi

    olac

    eus

    IgT 2D Echeneis naucrates

    IgT3 3D Param

    bassis ranga

    IgM Ec

    heneis

    naucr

    ates

    IgT 2D Cyprinus carpio

    IgT2 4D Anguilla japonica

    IgT

    4D T

    rach

    inot

    us o

    vatu

    s

    IgT2 4D Paramormyrops kingsleyae

    IgM

    Poe

    cilia

    ret

    icul

    ata

    IgM Ctenopharyngodon idella

    IgM Param

    ormyrops kingsleyae

    IgM

    Xip

    hoph

    orus

    mac

    ulat

    us

    IgT3 3D Planiliza

    haematocheilus

    IgT1 4D Myripristis m

    urdjan

    IgT 4D Polynem

    us dubius

    IgM-A Salm

    o/1-448

    IgT 4D Thunnus orientalis

    IgT 3D Thalassophryne am

    azonica

    IgT

    2D O

    plegn

    athu

    s pun

    ctat

    us

    IgM

    Lutja

    nus s

    ebae

    IgM

    Tak

    ifugu

    rubr

    ipes

    IgT1 4D Esox lucius

    IgT 3D Trematomus bernacchii

    IgM Erpetoichthys calabaricus

    IgT1 4D

    Sparus

    aurata

    IgM

    Sal

    aria

    s fa

    scia

    tusIgM

    Archocentrus centrarchus

    IgT2 4D Myripristis m

    urdjan

    IgT2 3D Planiliz

    a haematocheil

    us

    IgT1

    4D

    Pla

    niliz

    a ha

    emat

    oche

    ilus

    IgM O

    ncorhynchus mykiss

    IgT

    4D P

    aral

    ichth

    ys o

    livac

    eus

    IgM

    Par

    aper

    cis

    xant

    hozo

    na

    IgT 3D

    Lutjan

    us seba

    e

    IgT 4D Pro

    notogramm

    us martinice

    nsis

    IgT 4D

    Labru

    s berg

    ylta

    IgT 3D Gaste

    ropelecus sp

    IgM Ch

    anna m

    icropel

    tes

    IgM Erythrinus erythrinus

    IgW Scyliorhinus canicula

    IgT 4D

    Zanc

    lus co

    rnutus

    IgT3 3D Anguilla japonica

    IgT1 3D Plan

    iliza haematoc

    heilus

    IgT

    4D S

    inip

    erca

    chu

    atsi

    IgM

    Zanc

    lus co

    rnut

    us

    IgT 4D

    Diodo

    n holo

    canthu

    s

    IgT4 3D Anguilla japonica

    IgT

    4D A

    ulos

    tom

    us m

    acul

    atus

    IgM Amia calva

    IgT2 4D Oncorhynchus mykiss

    IgT2 3D Triplophysa tibetana

    IgM

    Tha

    lass

    oma

    bifa

    scia

    tum

    IgT 4D P

    oecilia r

    eticulata

    IgM Scleropages form

    osus

    IgT 3D Param

    bassis pulcinella

    IgM

    Par

    amba

    ssis

    pul

    cine

    lla

    IgM Lepisosteus osseus

    IgT 3D Papyrocranus afer

    IgM K

    ryptolebias hermaphroditus

    IgT 4D Cottoperca g

    obio

    IgM

    Pom

    acan

    thus

    par

    u

    IgT 4D Anguilla japonica

    IgM O

    reochromis niloticus

    IgT 2D

    Lutjan

    us fulv

    iflamm

    a

    IgT5 4D Anguilla japonica

    IgM Squalus acanthias

    IgT

    4D C

    hann

    a ga

    chua

    IgT6

    4D

    Pla

    niliz

    a ha

    emat

    oche

    ilus

    IgT2 2D Oreochromis niloticus

    IgT 3D Esox lucius

    IgM

    Sin

    iper

    ca c

    huat

    si

    IgT 3D Lepisosteus oculatus

    IgNAR Squalus acanthiasIg

    T 2D

    Kry

    ptol

    ebia

    s he

    rmap

    hrod

    itus

    IgM Sc

    ophth

    almus

    maxim

    us

    IgM Acipenser ruthenus

    IgT 3D Plecoglossus altivelis

    IgM

    Datn

    ioide

    s micr

    olepis

    IgM

    Tha

    lass

    ophr

    yne

    amaz

    onic

    a

    IgM

    Dice

    ntra

    rchus

    labr

    ax

    IgT5 2D O

    reochromis niloticus

    IgT2 4D Danio rerio

    IgT2 4D Salarias fasciatus

    IgM Ginglymostoma cirratum

    IgT 4D K

    ryptolebias hermaphroditus

    IgT1 2D M

    aylandia zebra

    IgW Squalus acanthias

    IgT

    4D T

    erap

    on ja

    rbua

    IgM

    Anab

    as te

    studin

    eus

    IgT1 4D Salarias fasciatus

    IgNAR Scyliorhinus canicula

    IgM Cy

    noglo

    ssus s

    emila

    evis

    IgT 2D

    Chae

    todon

    aurig

    a

    IgT3 4D Myripristis m

    urdjan

    IgT 3D

    Labru

    s berg

    ylta

    IgT 4D Megalobrama amblycephala

    IgM Chiloscyllium punctatum

    IgNAR Triakis scyllium

    IgT 3D Astyana

    x mexicanus

    IgM

    Per

    ca fl

    aves

    cens

    IgM

    Collic

    hthy

    s luc

    idus

    IgM Carassius auratus

    IgT 4D A

    mblyga

    ster clup

    eoides

    IgM Cyprinus carpio

    IgT 3D Notothenia coriiceps

    IgM Plecoglossus altivelis

    IgT 4D

    Sparu

    s aurata

    IgM A

    statotilapia calliptera

    IgT 4D Ele

    ctrophorus

    electricus

    IgT 3D Cebid

    ichthys viola

    ceus

    IgT1 4D Coregonus sp

    IgM Ma

    stacem

    belus

    armatu

    s

    IgM Huso huso

    IgMAstyanax m

    exicanus

    IgT4 3D Chanos chanos

    IgM

    Ter

    apon

    jarb

    ua

    IgM

    Myr

    iprist

    is m

    urdj

    an

    IgM

    Ple

    ctro

    pom

    us le

    opar

    dus

    IgM Anguilla anguilla

    IgM

    Cot

    tope

    rca

    gobi

    o

    IgM Electrophorus electricus

    IgM

    Bov

    icht

    us d

    iaca

    nthu

    s

    IgT3 4D Oncorhynchus mykiss

    IgM Tr

    achino

    tus ov

    atus

    IgT 4D La

    rimichthy

    s crocea

    IgT1 4D Danio rerio

    IgT

    4D G

    erre

    s fil

    amen

    tosu

    s

    IgW Triakis scyllium

    IgT2 4D Lepisosteus oculatus

    IgT4 4D Myripristis m

    urdjan

    IgT1 3D Chanos chanos

    IgT 4D Bovichtus diacant

    hus

    IgT1 4D M

    astacembelus arm

    atus

    IgT2 4D M

    astacembelus arm

    atus

    IgT3 4D Salarias fasciatus

    IgM Lepisosteus Oculatus

    IgM Anguilla japonica

    IgT2 2D Archocentrus centrarchus

    IgM Amblygaster clupeoides

    IgT2 4D Oncorhynchus kisutch

    IgM

    Not

    othe

    nia

    corii

    ceps

    IgT6 3D Chanos chanos

    IgT1 3D Triplophysa tibetana

    IgM Salm

    o salar

    IgM Chanos chanos

    IgT3 4D Carassius auratus

    IgT 4D Hemig

    rammus blehe

    ri

    IgM Acipenser baerii

    IgT1 3D

    Coilia na

    sus

    IgT2 3D

    Coilia na

    sus

    IgM Pa

    ralich

    thys o

    livaceu

    s

    IgT7

    4D

    Pla

    niliz

    a ha

    emat

    oche

    ilus

    IgT2

    2D A

    naba

    s tes

    tudin

    eus

    IgM Ch

    anna

    argu

    s

    IgT 4D C

    entropomus sp

    IgT1 4D Salmo salar

    IgT1 4D Carassius auratus

    IgM C

    haet

    odon

    aur

    iga

    IgT

    4D X

    ipho

    phor

    us m

    acul

    atus

    IgM

    Epi

    neph

    elus

    coi

    oide

    s

    IgT 2D Astatotilapia calliptera

    IgT4 4D Salarias fasciatus

    IgT5 3D Chanos chanos

    IgT2 4D Carassius auratus

    IgT

    3D C

    ynog

    loss

    us s

    emila

    evis

    IgT3 2D Oreochromis niloticus

    IgT 4D

    Dice

    ntra

    rchus

    labr

    ax

    IgT4 2D Archocentrus centrarchus

    IgM

    Lab

    rus

    berg

    ylta

    IgT 2D Takifugu rubripes

    IgT1

    2D

    Anab

    as te

    studin

    eus

    IgT 4D Ery

    thrinus eryt

    hrinus

    IgM

    Pla

    niliz

    a ha

    emat

    oche

    ilus

    IgT9

    4D

    Pla

    niliz

    a ha

    emat

    oche

    ilus

    IgM Rhamphichthys rostratus

    IgT1 3D Param

    bassis ranga

    IgM Th

    unnus o

    rientalis

    IgT2 3D Perca flavescens

    IgM Po

    lynemu

    s dubiu

    s

    IgT 4D C

    hanna argus

    IgM S

    paru

    s au

    rata

    IgM G

    erre

    s fil

    amen

    tosu

    s

    IgT 4D

    Drepa

    ne pun

    ctata

    IgT2 3D Chanos chanos

    IgT1

    4D

    Late

    olab

    rax

    mac

    ulat

    us

    IgT

    4D P

    arap

    ercis

    xan

    thoz

    ona

    IgT2

    4D

    Late

    olab

    rax

    mac

    ulat

    us

    IgT

    4D C

    hann

    a m

    icro

    pelte

    s

    IgT1 3D Perca flavescens

    IgT 4D Ctenopharyngodon idella

    IgM-B Salm

    o/1-448

    IgT2 4D

    Sparus

    aurata

    IgT8

    4D

    Pla

    niliz

    a ha

    emat

    oche

    ilus

    IgM Hemigram

    mus bleheri

    IgM Gyrinocheilus aymonieri

    IgT1 4D Oncorhynchus mykiss

    IgM

    Lutja

    nus f

    ulvifla

    mma

    IgT 4D Amia Calva

    IgT1

    1 4D

    Pla

    niliz

    a ha

    emat

    oche

    ilus

    IgT

    2D O

    pleg

    nath

    us fa

    sciat

    us

    IgT 4D Atractosteus spatula

    IgT2

    4D

    Pla

    niliz

    a ha

    emat

    oche

    ilus

    IgT1 4D A

    styanax m

    exicanus

    IgT 2D

    Datni

    oides

    micro

    lepis/

    1-300

    IgT1

    0 4D

    Pla

    niliz

    a ha

    emat

    oche

    ilus

    IgT2 4D Salmo salar

    IgT5

    4D

    Pla

    niliz

    a ha

    emat

    oche

    ilus

    IgT1 2D Archocentrus centrarchus

    IgT

    4D D

    ascy

    llus

    trim

    acul

    ayus

    IgT3 4D Salmo salar

    IgM O

    reochromis niloticus/1-397

    IgM

    IgT3 4D Oncorhynchus kisutch

    IgT1 4D Oncorhynchus kisutch

    IgM Gasteropelecus sp IgM

    Chan

    na ga

    chua

    IgT 4D Gyrinocheilus aymonieri

    IgT4 2D Oreochromis niloticus

    IgT1

    2 4D

    Pla

    niliz

    a ha

    emat

    oche

    ilus

    IgT 4D Co

    llichthys

    lucidus

    IgT 4D

    Poma

    canthu

    s paru

    IgM Papyrocranus afer

    IgT

    4D S

    coph

    thal

    mus

    max

    imus

    IgM Triakis scyllium

    Figure S1: The phylogenetic tree that includes the 252 immunoglobulin sequences used in this work. The clades arelabelled as follows: IgT of Neopterygii (green), the IgM of Actinopterygii (red), Ig of Elasmobranchii (blue). Thelabels: IgT 4D, IgT 3D, and IgT 2D refer to the number of immunoglobulin domains that IgT exhibits.

    19

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • Summary TablesOrder Family Genome Fish T1K BibliographyPolypteriformes (3)

    Polypteridae (3) NO (1) NO (3) NOAcipenseriformes (2)

    Acipenseridae NO (1) No sample NOPolyodontidae No Genome NO (1) NO

    Lepisosteiformes (3)Lepisosteidae NO (1) NO (2) NO

    Anguilliormes (4)Anguillidae YES (1) YES (1) NOMuraenidae No Genome NO (1) NOMuraenesocidae No Genome NO (1) NOCongridae No Genome NO (1) NO

    Osteoglossiformes (5)Osteoglossidae NO (1) NO (1) NONotopteridae No Genome NO (1) NOPantodontidae No Genome NO (1) NOMormyridae YES (1) YES (1) NO

    Clupeiformes (4)Clupeidae YES (1) YES (1) NOEngraulidae YES (1) No sample NODenticipitidae NO (1) No sample NO

    Gonorynchiformes (1)Chanidae YES (1) No sample NO

    Cypriniformes (13)Cyprinidae YES (3) YES (1) YES (5)Nemacheilidae YES (1) NO (1) NOBotiidae No Genome YES (1) NOGyrinocheilidae No Genome YES (1) NOCobitidae No Genome YES (1) YES (1)

    Gymnotiformes (2)Gymnotidae YES (1) YES (2) No

    Siluriformes (11)Sisoridae NO (1) NO (1) NOIctaluridae NO (1) NO (1) NOBagridae NO (1) NO (2) NOPangasiidae NO (1) No sample NOSiluridae No Genome NO (1) NOLoricariidae No Genome NO (1) NOPlotosidae No Genome NO (1) NOAmblycipitidae No Genome NO (1) NO

    20

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • Order Family Genome Fish T1K BibliographyCallichthyidae No Genome NO (1) NO

    Characiformes (4)Characidae YES (1) YES (1) NOGasteropelecidae No Genome YES (1) NOErythrinidae No Genome YES (1) NO

    Salmoniformes (6)Salmonidae YES (5) No sample YES(2)

    Esociformes (1)Esocidae YES (1) No sample NO

    Gadiformes (2)Gadidae NO (1) NO (1) NO

    Holocentriformes (4)Holocentridae YES (1) YES (3) NO

    Batrachoidiformes(2)Batrachoididae YES (1) YES (1) NO

    Labriformes (4)Labridae YES (2) YES (2) YES (1)

    Tetraodontiformes (5)Tetraodontidae YES (1) No sample YES (1)Balistidae No Genome YES (1) NODiodontidae No Genome YES (1) NOOstraciidae No Genome NO (2) NO

    Acanthuriformes (3)Sciaenidae YES (1) NOZanclidae No Genome YES (1) NOAcanthuridae No Genome NO (1) NO

    Spariformes (1)Sparidae YES (1) No sample YES (1)

    Perciformes (16)Stichaeidae YES (1) No sample NOBovichtidae YES (1) No sample YES (1)Percidae YES (1) No sample NOSerranidae YES/NO (1/2) YES (1) YES (1)Nototheniidae No Genome No sample YES (2)Gasterosteidae No Genome No sample YES (1)Scorpaenidae No Genome YES/NO (2/2) NOPeristediidae No Genome NO (1) NO

    Centrarchiformes (8)Oplegnathidae YES (1) YES (1) NOSinipercidae No Genome YES (1) YES (1)Terapontidae No Genome YES (1) NO

    21

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • Order Family Genome Fish T1K BibliographyCentrarchidae No Genome YES (1) NOCirrhitidae No Genome NO (1) NOPercichthyidae No Genome NO (1) NO

    Pempheriformes (3)Lateolabracidae YES (1) No sample NOEpigonidae No Genome NO (1) NOPercophidae No Genome NO (1) NO

    I. s. in Eupercaria (10)Sciaenidae YES (1) YES (1) NOLutjanidae No Genome YES (2) NOPomacanthidae No Genome YES (1) NOGerreidae No Genome YES (2) NOHaemulidae No Genome YES (1) NOCaproidae No Genome YES (1) NOMoronidae No Genome No sample YES (1)

    Lobotiformes (2)Datnioididae NO (1) YES (1) NO

    Gobiiformes (5)Gobiidae NO (2) NO (2) NOEleotridae No Genome NO (1) NO

    Kurtiformes (3)Apogonidae NO (1) NO (2) NO

    Syngnathiformes (2)Syngnathidae NO (1) NO (1) NOMullidae No Genome YES (1) NOCallionymidae No Genome NO (1) NOAulostomidae No Genome YES (1) NO

    Anabantiformes (6)Anabantidae YES (1) NO (1) NOOsphronemidae NO (1) YES (1) NOChannidae YES (1) YES (2) NO

    Synbranchiformes (2)Mastacembelidae YES (1) NO (2) NO

    Pleuronectiformes (5)Cynoglossidae YES (1) No sample NOScophthalmidae NO (1) NO (1) YES (1)Pleuronectidae NO (2) No sample NOParalichthyidae No Genome No sample YES (1)

    Carangiformes (3)Echeneidae YES (1) No sample NOCarangidae No Genome YES (2) NO

    22

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • Order Family Genome Fish T1K BibliographyMugiliformes

    Mugilidae YES (1) YES/NO (1/1) NOCichliformes (6)

    Cichlidae YES (4) NO (2) YESAtheriniformes

    Phallostethidae NO (1) No sample NOMelanotaeniidae No Genome NO (2) NO

    CyprinodontiformesPoeciliidae YES (2) YES (2) NONothobranchiidae NO (1) No sample NORivulidae YES No sample NO

    Beloniformes (3)Adrianichthyidae NO (2) NO (1) NO

    BlenniiformesBlenniidae YES (1) No sample NOGobiesocidae NO (1) NO (2) NOTripterygiidae No Genome NO (1) NOChaenopsidae No Genome NO (1) NO

    I. s. in Ovalentaria (5)Ambassidae YES (1) (1) NOPomacentridae NO (1) YES (2) NO

    Table S4: Data for the IgT cladogram.

    23

    (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprintthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108993doi: bioRxiv preprint

    https://doi.org/10.1101/2020.05.21.108993

  • IgT of different Teleostei published in scientific articlesSpecie IGT Domain Order Family Protein NCBI Bibliography

    Megalabrama amblycephala 1 4 Cypriniformes Cyprinidae AGR34024.1 (Xia et al., 2016)

    Ctenopharyngodon idella 1 4 Cypriniformes Cyprinidae ADD82655.1 (Xiao et al., 2010)

    Cyprinus carpio 1 2(1,4) Cypriniformes Cyprinidae BAD69715.1 (Savan et al., 2005a)Cyprinus carpio 1 4 Cypriniformes Cyprinidae BAJ41037.1 (Ryo et al., 2010)

    Danio rerio 1 4 Cypriniformes Cyprinidae AAT67444.1 (Danilova et al., 2005)Danio rerio 1 4 Cypriniformes Cyprinidae ACH92959.1 (Hu et al., 2010)

    Oncorhynchus mykiss 3 4 Salmoniformes Salmonidae AAW66978.1 (Zhang et al., 2017)Oncorhynchus mykiss 3 4 Salmoniformes Salmonidae AAV48553.1 (Zhang et al., 2017)Oncorhynchus mykiss 3 4 Salmoniformes Salmonidae ANW11927.1 (Zhang et al., 2017)

    Salmo salar 3 4 Salmoniformes Salmonidae ADD59873.1 (Yasuike et al., 2010)Salmo salar 3 4 Salmoniformes Salmonidae ADD59858.1 (Yasuike et al., 2010)Salmo salar 3 4 Salmoniformes Salmonidae ADD59859.1 (Yasuike et al., 2010)

    Plecoglossus altivelis 1 3(1,2,4) Osmeriformes Plecoglossidae BAP75403.1 (Kato et al., 2015)

    Takifugu rubripes 1 2(1,4) Tetraodontiformes Tetraodontidae BAD69712.1 (Savan et al., 2005b)

    Sparus aurata 1 4 Spariformes Sparidae ASK39431.1 (Piazzon et al., 2016)

    Bovichtus diacanthus 1 4 Perciformes Bovichtidae AKA09828.1 (Giacomelli et al., 2015)

    Trematomus bernacchii 3 3(1,3,4) Perciformes Nototheniidae AKA09825.1 (Giacomelli et al., 2015)

    Notothenia coriiceps ? 3(1,3,4) Perciformes Nototheniidae AKA09827.1 (Giacomelli et al., 2015)

    Epinephelus coioides 1 4 Perciformes Serranidae ACZ54909.1 (Du et al., 2016)

    Siniperca chuatsi 1 4 Centrarchiformes Sinipercidae AAY42141 (Tian et al., 2009)

    Thunnus orientalis 1 4 Scombriformes Scombridae AHC31432 (Mashoof et al., 2014)

    Dicentrarchus labrax 1 4 Eupercaria I.S. Moronidae AKK32388.1 (Buonocore et al., 2017)

    Scophthalm