Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

61
Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek

Transcript of Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Page 1: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Immuno-epidemiology of coccidiosis

Don Klinkenberg

Maite Severins

Hans Heesterbeek

Page 2: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Coccidiosis

• Caused by Eimeria spp

• Protozoan

• Intestinal infection– sometimes lesions– main problem: production loss

• Seven species in chickens– location in the intestine– no cross-immunity

Page 3: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Parasite classification

• After lecture notes by Kretschmar (micro/macro):

Microparasite Macroparasite Eimeria

Parasite lifespan Short Long Short

Reproduction within host

Rapid None Rapid (but dose effect)

Transmission Direct Indirect Indirect

Infection events One Multiple Multiple

Immunity Complete Partial, slowly acquired

Accumulative, slowly acquired

Model type SIR type Parasite load ???

Page 4: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Essential characteristics

• Transmission through environment

• Dose-dependent infectivity

• Slowly acquired immune response– stronger upon re-infection– reduces parasite excretion

• Within-host dynamics!

Page 5: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

This presentation

• Model of within-host dynamics– relation between uptake and excretion of

infectious material (oocysts)– interaction with immune system

• Model of between-host dynamics (I)– coupling excretion and uptake of oocysts– interaction chickens and environment

• Model of between-host dynamics (II)

Page 6: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Within-host model

• Eimeria characteristics:– transmission through oocysts– Eimeria parasitises gut epithelial cells– limited number of asexual generations

Page 7: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Eimeria cycle

Oocyst uptake (W)

Sporozoites

Schizont I (X(1))

Merozoites I (u(1))

Schizont II (X(2))

Merozoites II (u(2))

Gamont

Oocyst excretion (Z)

Page 8: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Eimeria cycle

Oocyst uptake (W)

Schizont I (X(1))

Schizont II (X(2))

Oocyst excretion (Z)

Page 9: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Eimeria cycle

tt

tt

tt

XZ

XX

WaX

222

111

2

111

Oocyst uptake (W)

Schizont I (X(1))

Schizont II (X(2))

Oocyst excretion (Z)

Page 10: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Adding immunity

• Primarily T cell immunity

• Immunity evoked by schizonts

• Immunity inhibits schizont development

• Keeping the model simple: one immunity variable Y

Page 11: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Eimeria cycle with immunity

Oocyst uptake (W)

Schizont I (X(1))

Schizont II (X(2))

Oocyst excretion (Z)

Immunity (Y)+

+– –

Page 12: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Eimeria cycle with immunity

Oocyst uptake (W)

Schizont I (X(1))

Schizont II (X(2))

Oocyst excretion (Z)

Immunity (Y)

+

+

tt

tt

tt

XZ

XX

WaX

222

111

2

111

Page 13: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Eimeria cycle with immunity

Oocyst uptake (W)

Schizont I (X(1))

Schizont II (X(2))

Oocyst excretion (Z)

Immunity (Y)

+

+

tttt

ttt

ttt

tt

XXYgY

YfXZ

YfXX

WaX

211

222

111

2

111

,

Page 14: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Eimeria cycle with immunity

tttt

ttt

ttt

tt

XXYgY

YfXZ

YfXX

WaX

211

222

111

2

111

,

2121,

1

1

XXYYXXYg

YYf

m

Page 15: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Model summary

• Discrete time

• Two asexual schizont generations

• T cell immunity against schizont development

Page 16: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Model analysis

• Compare model experiments to data– relation single dose and excretion

• saturation followed by decrease

– excretion during trickle infections• excretion terminates after some time

– immunising effect of trickle and single immunisation

• trickle immunisation gives better protection

Page 17: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Single dose and excretion

5

5.5

6

6.5

7

7.5

8

0 2 4 6

Log(oocyst uptake)

Lo

g(o

oc

ys

t e

xc

reti

on

) E. tenella

Page 18: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Model analysis

• Model experiments– single dose and excretion

• relation between W0 and Z4

– trickle infections– trickle vs single immunisation

Page 19: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Analysis: single dose

4.5

5.5

6.5

7.5

0 2 4 6 logw 0

logz 4

l 1: logz 4=p 1+logw 0

l 2: logz 4=p 1+(1-m )logw 0-mp 2

l 1

l 2

mWa

WaZ

01

02114

1

Page 20: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Analysis: single dose

2 4 6 8

4

6

8E. tenella

Page 21: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Analysis: single dose

2 4 6 8

4

6

8E. acervulina

Page 22: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Analysis: single dose

2 4 6 8

4

6

8E. maxima

Page 23: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Model analysis

• Model experiments– single dose and excretion

• relation between W0 and Z4

• > 0 (naïve immunity growth)• m ≠ 1 (non-linear immune effectiveness)

– trickle infections & immunisation• conclusions on and

Page 24: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Conclusions within-host model

• Simple model of parasite input-output behaviour

• Single immunity variable can explain experimental data

• Solid basis for studying re-infection and between-host transmission

Page 25: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Between-host model

• Relate excretion to uptake with oocyst level in environment V

• Simplifying assumption: average chicken

Page 26: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Eimeria cycle

Oocyst uptake (W)

Schizont I (X(1))

Schizont II (X(2))

Oocyst excretion (Z)

Immunity (Y)+

+– –

Page 27: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Eimeria cycle

× a0

Oocyst uptake (W)

Schizont I (X(1))

Schizont II (X(2))

Gamont (G)

Oocyst excretion (Z)

Immunity (Y)+

+– –

Environmental oocysts (V)

× a1

× 1× 2

× 1

× 1

inside the chickens

outside the chickens

Page 28: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Two new parameters

• Per time step of ca. 2 days

• Uptake rate a0

– estimate from a single experiment: 0.01

• Oocyst degradation rate– estimate from couple of articles: 0.5

Page 29: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Interesting variables

• Oocyst level in environment– decrease due to degradation (+ uptake)– increase due to excretion

• Immunity level in average chicken– increase due to presence of schizonts– decrease by fixed rate

• Number of infected cells as measure of damage– numbers of schizonts and gamonts

Page 30: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Basic dynamics

Page 31: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

× a0

Oocyst uptake (W)

Schizont I (X(1))

Schizont II (X(2))

Gamont (G)

Oocyst excretion (Z)

Immunity (Y)+

+– –

Environmental oocysts (V)

× a1

× 1× 2

× 1

× 1

inside the chickens

outside the chickens

0

1

2

3

4

5

5

3

2

Page 32: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Dynamics in single chicken cohort

• First dose of each infection generation most important– major change compared to previous dose– fast decay of oocysts in environment

• Dynamics can be described in terms of infection generations

Page 33: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Damage in single chicken cohort

• Cumulative damage ≈ maximum damage

7.5 5 2.5 2.5 5 7.5 10

456789

1011

logv0

logdmax

Page 34: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Conclusion on damage

• Production damage is reflected by the maximum number of infected cells

• Damage may take local minimum with intermediate oocyst level V0

• Mechanism – maximum damage if a single infection

generation dominates– minimum when generation dominance

switches

Page 35: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Damage in single chicken cohort

• Cumulative damage ≈ maximum damage

7.5 5 2.5 2.5 5 7.5 10

456789

1011

logv0

logdmax

1234

gamonts

schizonts II

Page 36: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Discussion of the model

• Single ‘average’ chicken

• Deterministic model

• No spatial effects

Page 37: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Different approach

• Individual chickens

• Stochastic model

• Spatial model

• Cost:– No continuous infection/immune level

Page 38: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Individual based model

• Patches interact with walking chickens

• Patches– oocyst level empty, low, medium, high (0; 103;

105; 107)– level rises if chicken excretes higher level– level falls after 14 days without excretion

Page 39: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Individual based model

• Chickens– walk or ‘shuffle’ each hour– pick up maximum daily exposure (0, 101; 3; 5)– excrete once per day depending on

• uptake -4 days• level of immunity (no, partial, full)• regulated by excretion templates

– immunity level may increase depending on• time since first dose• number and level of doses

Page 40: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Example: fit to data (Galmes)

0

1

10

100

1,000

10,000

100,000

1,000,000

0 5 10 15 20 25 30 35 40

oo

cy

sts

x1

0^

31000x2020000controlmodel 1000x20model 100000model control

Page 41: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 42: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 43: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 44: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 45: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 46: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 47: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 48: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 49: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 50: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 51: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 52: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 53: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 54: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 55: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 56: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 57: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.
Page 58: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

“damage” related to initial level

High oocyst excretion

0

1

2

3

4

5

6

0.01 0.1 1 10 100

% initial contamination

mea

n #

exc

reti

on

s/ch

ick

walk

shuffle

Page 59: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Local minimum

• Mechanism?– High excretion due to serial medium doses

• medium doses require serial low doses

– If initial level is• high: early excretion of many medium, so serial

medium doses before immunity• intermediate: early exposure for start-up immunity,

but less serial medium exposure• low: many chicks are not immune while others

already shed medium doses

Page 60: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

More generalized mechanism for local minimum damage

• Low initial level: exposure of naive chickens to large oocyst quantities excreted by first infection generation

• Intermediate initial level: immunity builds up before large oocyst quantities are available

• High initial level: large oocyst quantities available before immunity is reached

• However: relation to level of mixing yet unclear

Page 61: Immuno-epidemiology of coccidiosis Don Klinkenberg Maite Severins Hans Heesterbeek.

Our coccidiosis modellers

• Deterministic continuous model– Don Klinkenberg, Hans Heesterbeek

• Stochastic discrete model– Maite Severins, DK, HH

• Stochastic continuous model (not shown)– Andriy Rychahivskyy, DK, HH