Imagining the Banach-Tarski Paradox - Rachel...

79
Imagining the Banach-Tarski Paradox Rachel Levanger University of North Florida August 4, 2011 Rachel Levanger Imagining the Banach-Tarski Paradox

Transcript of Imagining the Banach-Tarski Paradox - Rachel...

Page 1: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

Imagining the Banach-Tarski Paradox

Rachel Levanger

University of North Florida

August 4, 2011

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 2: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

Introduction

The Banach-Tarski Paradox: A solid ball in 3-dimensionalspace can be split into a finite number of non-overlapping pieces,which can then be put back together in a different way to yield twoidentical copies of the original ball.

1Source: WikipediaRachel Levanger Imagining the Banach-Tarski Paradox

Page 3: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

Banach-Tarski in Pop Culture

Futurama June 23, 2011

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 4: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

Banach-Tarski in Pop Culture

XKCD Oct 11, 2010

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 5: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

Definition

Paradoxical

Let X be an infinite set and suppose E ⊆ X . We say that E isparadoxical if for some positive integers n, m there are pairwisedisjoint subsets A1, ...,An,B1, ...,Bm of E and correspondingpermutations g1, ..., gn, h1, ..., hm of X such that⋃

gi (Ai ) = E and⋃

hk(Bk) = E .

2The formal definition typically given involves that of a group G acting on aset X . To simplify the presentation for an audience of undergraduates, thedefinition was modified to remove references to group actions, and instead usessets and permutations. It can be shown that if X is infinite, then it isparadoxical under the group of all permutations.

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 6: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

Example: Rotations by arccos 13 ≈ 70.53◦

σ±1 =

13 ∓2

√2

3 0

±2√2

313 0

0 0 1

Rotation by arccos 1

3around z-axis

τ±1 =

1 0 0

0 13 ∓2

√2

3

0 ±2√2

313

Rotation by arccos 1

3around x-axis

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 7: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

Example: Rotations by arccos 13 ≈ 70.53◦

Why rotate by arccos 13?

Angle is an irrational multiple of π

Iterations of rotations take points to unique images

Moreover, products of rotations take points to unique images

3Fixed points of rotations are addressed later on in the presentation.Rachel Levanger Imagining the Banach-Tarski Paradox

Page 8: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

A paradoxical set of rotations

F is Paradoxical with Respect to Itself

The set F of finite (reduced) products of the matricesσ, σ−1, τ , and τ−1 is paradoxical.

σ±1 =

13 ∓2

√2

3 0

±2√2

313 0

0 0 1

σ

Examples:σσ−1 = idσσττσ

τ±1 =

1 0 0

0 13 ∓2

√2

3

0 ±2√2

313

σσ

σττσ−1τ−1σστ−1στσστσ1τττττττττττττττττττττ

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 9: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

A paradoxical set of rotations

P(σ)

σ

P(σ−1) P(τ)

τ

P(τ−1)

σ

σ

σ−1 τ

τ

τ−1

a a a a

σσ

σ

σ−1σ−1 ττ

τ

τ−1τ−1

σσ...

σ

σ−1σ−1... ττ ...

τ

τ−1τ−1...

a a a a

στ

σ

σ−1τ τσ

τ

τ−1σστ ...

σ

σ−1τ ... τσ...

τ

τ−1σ...

a a a a

στ−1

σ

σ−1τ−1 τσ−1

τ

τ−1σ−1

στ−1...

σ

σ−1τ−1... τσ−1...

τ

τ−1σ−1...

P(σ) ∪ σP(σ−1) = F = P(τ) ∪ τP(τ−1)

Sort products basedon left-most rotationin product

Divide into twogroups

Apply σ and τrotations

Adjacent rotationscancel to yieldparadoxicaldecomposition

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 10: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

A paradoxical set of rotations

P(σ)

σ

P(σ−1) P(τ)

τ

P(τ−1)

σ

σ

σ−1 τ

τ

τ−1

a a a a

σσ

σ

σ−1σ−1 ττ

τ

τ−1τ−1

σσ...

σ

σ−1σ−1... ττ ...

τ

τ−1τ−1...

a a a a

στ

σ

σ−1τ τσ

τ

τ−1σστ ...

σ

σ−1τ ... τσ...

τ

τ−1σ...

a a a a

στ−1

σ

σ−1τ−1 τσ−1

τ

τ−1σ−1

στ−1...

σ

σ−1τ−1... τσ−1...

τ

τ−1σ−1...

P(σ) ∪ σP(σ−1) = F = P(τ) ∪ τP(τ−1)

Sort products basedon left-most rotationin product

Divide into twogroups

Apply σ and τrotations

Adjacent rotationscancel to yieldparadoxicaldecomposition

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 11: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

A paradoxical set of rotations

P(σ) σP(σ−1) P(τ) τP(τ−1)

σ σσ−1 τ ττ−1

a a a a

σσ σσ−1σ−1 ττ ττ−1τ−1

σσ... σσ−1σ−1... ττ ... ττ−1τ−1...

a a a a

στ σσ−1τ τσ ττ−1σστ ... σσ−1τ ... τσ... ττ−1σ...

a a a a

στ−1 σσ−1τ−1 τσ−1 ττ−1σ−1

στ−1... σσ−1τ−1... τσ−1... ττ−1σ−1...

P(σ) ∪ σP(σ−1) = F = P(τ) ∪ τP(τ−1)

Sort products basedon left-most rotationin product

Divide into twogroups

Apply σ and τrotations

Adjacent rotationscancel to yieldparadoxicaldecomposition

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 12: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

A paradoxical set of rotations

P(σ) σP(σ−1) P(τ) τP(τ−1)

σ

σ

id τ

τ

id

a a a a

σσ

σσ−1

σ−1 ττ

ττ−1

τ−1

σσ...

σσ−1

σ−1... ττ ...

ττ−1

τ−1...

a a a a

στ

σσ−1

τ τσ

ττ−1

σστ ...

σσ−1

τ ... τσ...

ττ−1

σ...

a a a a

στ−1

σσ−1

τ−1 τσ−1

ττ−1

σ−1

στ−1...

σσ−1

τ−1... τσ−1...

ττ−1

σ−1...

P(σ) ∪ σP(σ−1) = F = P(τ) ∪ τP(τ−1)

Sort products basedon left-most rotationin product

Divide into twogroups

Apply σ and τrotations

Adjacent rotationscancel to yieldparadoxicaldecomposition

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 13: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

A paradoxical set of rotations

P(σ) σP(σ−1) P(τ) τP(τ−1)

σ

σ

id τ

τ

id

a a a a

σσ

σσ−1

σ−1 ττ

ττ−1

τ−1

σσ...

σσ−1

σ−1... ττ ...

ττ−1

τ−1...

a a a a

στ

σσ−1

τ τσ

ττ−1

σστ ...

σσ−1

τ ... τσ...

ττ−1

σ...

a a a a

στ−1

σσ−1

τ−1 τσ−1

ττ−1

σ−1

στ−1...

σσ−1

τ−1... τσ−1...

ττ−1

σ−1...

P(σ) ∪ σP(σ−1) = F = P(τ) ∪ τP(τ−1)

Sort products basedon left-most rotationin product

Divide into twogroups

Apply σ and τrotations

Adjacent rotationscancel to yieldparadoxicaldecomposition

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 14: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

Felix Hausdorff

In 1914, Felix Hausdorff finds a way toleverage the paradox on F to a subsetof the hollow sphere, S2.

space

He originally used a different set ofrotations, but the idea is similar to whatis presented here.

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 15: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

S2\D is Paradoxical (Felix Hausdorff, 1914)

Let D be the set of all fixed points of the hollow sphere S2 underthe rotations in F . The set S2\D is paradoxical using four pieces.

Fixed points of a rotation: two points of intersectionbetween the axis of rotation and the sphere

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 16: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

First we look at the image of a single point under rotations in F ,the finite reduced products of σ, σ−1, τ , and τ−1:

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 17: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

First we look at the image of a single point under rotations in F ,the finite reduced products of σ, σ−1, τ , and τ−1:

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 18: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

First we look at the image of a single point under rotations in F ,the finite reduced products of σ, σ−1, τ , and τ−1:

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 19: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

First we look at the image of a single point under rotations in F ,the finite reduced products of σ, σ−1, τ , and τ−1:

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 20: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

First we look at the image of a single point under rotations in F ,the finite reduced products of σ, σ−1, τ , and τ−1:

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 21: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

First we look at the image of a single point under rotations in F ,the finite reduced products of σ, σ−1, τ , and τ−1:

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 22: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

First we look at the image of a single point under rotations in F ,the finite reduced products of σ, σ−1, τ , and τ−1:

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 23: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

First we look at the image of a single point under rotations in F ,the finite reduced products of σ, σ−1, τ , and τ−1:

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 24: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

First we look at the image of a single point under rotations in F ,the finite reduced products of σ, σ−1, τ , and τ−1:

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 25: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

First we look at the image of a single point under rotations in F ,the finite reduced products of σ, σ−1, τ , and τ−1:

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 26: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

How do we create a correspondence between a partition ofS2\D and F ?

Each image set is countable, since F is

An uncountable number of these image sets partition S2\DUsing the Axiom of Choice, we create a choice set by choosingone representative from each image set in the partition

The choice set is uncountable and, when rotated by elementsof F , creates the correspondence we’re looking for

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 27: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 28: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 29: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 30: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 31: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 32: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 33: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Hausdorff Paradox

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 34: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

Piecewise Congruence

Piecewise congruent, A ∼ B

Suppose A,B ⊆ X . Then A and B are piecewise congruent if forsome positive integer n, there exists a

partition of A, {Ai : 1 ≤ i ≤ n}partition of B, {Bi : 1 ≤ i ≤ n}set of rigid motions g1, ..., gn of X

such that gi (Ai ) = Bi for each 1 ≤ i ≤ n. We write that A ∼ B ifsuch a correspondence exists.

Piecewise congruence preserves paradoxes

If A ∼ B and A is paradoxical, then B is paradoxical.

4This definition is also referred to as equidecomposable.Rachel Levanger Imagining the Banach-Tarski Paradox

Page 35: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

spaceCreate partition set:

1 Isolate the “hole”

2 Repeatedly apply rotationφ = arccos 1

3 to the hole

3 Look only at the image setof the hole, (1, 0)

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 36: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Create partition set:

1 Isolate the “hole”

2 Repeatedly apply rotationφ = arccos 1

3 to the hole

3 Look only at the image setof the hole, (1, 0)

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 37: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Create partition set:

1 Isolate the “hole”

2 Repeatedly apply rotationφ = arccos 1

3 to the hole

3 Look only at the image setof the hole, (1, 0)

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 38: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Create partition set:

1 Isolate the “hole”

2 Repeatedly apply rotationφ = arccos 1

3 to the hole

3 Look only at the image setof the hole, (1, 0)

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 39: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Create partition set:

1 Isolate the “hole”

2 Repeatedly apply rotationφ = arccos 1

3 to the hole

3 Look only at the image setof the hole, (1, 0)

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 40: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Create partition set:

1 Isolate the “hole”

2 Repeatedly apply rotationφ = arccos 1

3 to the hole

3 Look only at the image setof the hole, (1, 0)

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 41: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Create partition set:

1 Isolate the “hole”

2 Repeatedly apply rotationφ = arccos 1

3 to the hole

3 Look only at the image setof the hole, (1, 0)

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 42: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Create partition set:

1 Isolate the “hole”

2 Repeatedly apply rotationφ = arccos 1

3 to the hole

3 Look only at the image setof the hole, (1, 0)

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 43: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Create partition set:

1 Isolate the “hole”

2 Repeatedly apply rotationφ = arccos 1

3 to the hole

3 Look only at the image setof the hole, (1, 0)

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 44: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Create partition set:

1 Isolate the “hole”

2 Repeatedly apply rotationφ = arccos 1

3 to the hole

3 Look only at the image setof the hole, (1, 0)

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 45: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Create partition set:

1 Isolate the “hole”

2 Repeatedly apply rotationφ = arccos 1

3 to the hole

3 Look only at the image setof the hole, (1, 0)

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 46: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Create partition set:

1 Isolate the “hole”

2 Repeatedly apply rotationφ = arccos 1

3 to the hole

3 Look only at the image setof the hole, (1, 0)

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 47: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Create partition set:

1 Isolate the “hole”

2 Repeatedly apply rotationφ = arccos 1

3 to the hole

3 Look only at the image setof the hole, (1, 0)

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 48: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Piecewise congruent partition:

The image set, (1, 0)

The rest of the points,S1\(1, 0)

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 49: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Piecewise congruent partition:

The image set, (1, 0)

The rest of the points,S1\(1, 0)

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 50: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Piecewise congruent partition:

The image set, (1, 0)

The rest of the points,S1\(1, 0)

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 51: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

spaceCreate partition set:

1 Isolate the “holes,” D

2 Repeatedly apply rotation φto the holes

3 Look only at the image setof the hole, D

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 52: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

space

Create partition set:

1 Isolate the “holes,” D

2 Repeatedly apply rotation φto the holes

3 Look only at the image setof the hole, D

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 53: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

space

Create partition set:

1 Isolate the “holes,” D

2 Repeatedly apply rotation φto the holes

3 Look only at the image setof the hole, D

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 54: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

space

Create partition set:

1 Isolate the “holes,” D

2 Repeatedly apply rotation φto the holes

3 Look only at the image setof the hole, D

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 55: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

space

Create partition set:

1 Isolate the “holes,” D

2 Repeatedly apply rotation φto the holes

3 Look only at the image setof the hole, D

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 56: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

space

Create partition set:

1 Isolate the “holes,” D

2 Repeatedly apply rotation φto the holes

3 Look only at the image setof the hole, D

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 57: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

space

Create partition set:

1 Isolate the “holes,” D

2 Repeatedly apply rotation φto the holes

3 Look only at the image setof the hole, D

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 58: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

space

Create partition set:

1 Isolate the “holes,” D

2 Repeatedly apply rotation φto the holes

3 Look only at the image setof the hole, D

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 59: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

space

Create partition set:

1 Isolate the “holes,” D

2 Repeatedly apply rotation φto the holes

3 Look only at the image setof the hole, D

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 60: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

space

Create partition set:

1 Isolate the “holes,” D

2 Repeatedly apply rotation φto the holes

3 Look only at the image setof the hole, D

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 61: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

space

Create partition set:

1 Isolate the “holes,” D

2 Repeatedly apply rotation φto the holes

3 Look only at the image setof the hole, D

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 62: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

space

Create partition set:

1 Isolate the “holes,” D

2 Repeatedly apply rotation φto the holes

3 Look only at the image setof the hole, D

4 Apply inverse rotation, φ−1

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 63: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

space

Piecewise congruent partition:

The image set, D

The rest of the points, S2\DspaceBy the Hausdorff Paradox,and since piecewise congruencepreserves paradoxicaldecompositions,S2 is Paradoxical!

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 64: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

space

Piecewise congruent partition:

The image set, D

The rest of the points, S2\DspaceBy the Hausdorff Paradox,and since piecewise congruencepreserves paradoxicaldecompositions,S2 is Paradoxical!

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 65: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

space

Piecewise congruent partition:

The image set, D

The rest of the points, S2\D

spaceBy the Hausdorff Paradox,and since piecewise congruencepreserves paradoxicaldecompositions,S2 is Paradoxical!

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 66: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

“Filling in the set D”

S2 ∼ S2\DThe unit sphere S2 is piecewise congruent to S2\D.

space

Piecewise congruent partition:

The image set, D

The rest of the points, S2\D

space

By the Hausdorff Paradox,and since piecewise congruencepreserves paradoxicaldecompositions,S2 is Paradoxical!

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 67: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Banach-Tarski Paradox

Stefan Banach Alfred Tarski

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 68: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Banach-Tarski Paradox

B\(0, 0, 0) is paradoxical

The unit ball minus the origin B\(0, 0, 0) is paradoxical withrespect to rotations in R3.

Begin with the Hausdorff Paradox decomposition

Use radial correspondence between S2 and B\(0, 0, 0)

Apply the same rotations needed to create paradox with S2

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 69: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Banach-Tarski Paradox

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 70: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Banach-Tarski Paradox

B\(0, 0, 0) ∼ B

The unit ball minus origin B\(0, 0, 0) is piecewise congruent to Bwith respect to isometries of R3.

1 Isolate the “hole”

2 Repeatedly apply rotation φaround ` to the hole

3 Look only at the image setof the hole, (0, 0, 0)

4 Apply inverse rotation, φ−1

to fill in the holes

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 71: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Banach-Tarski Paradox

B\(0, 0, 0) ∼ B

The unit ball minus origin B\(0, 0, 0) is piecewise congruent to Bwith respect to isometries of R3.

1 Isolate the “hole”

2 Repeatedly apply rotation φaround ` to the hole

3 Look only at the image setof the hole, (0, 0, 0)

4 Apply inverse rotation, φ−1

to fill in the holes

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 72: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Banach-Tarski Paradox

B\(0, 0, 0) ∼ B

The unit ball minus origin B\(0, 0, 0) is piecewise congruent to Bwith respect to isometries of R3.

1 Isolate the “hole”

2 Repeatedly apply rotation φaround ` to the hole

3 Look only at the image setof the hole, (0, 0, 0)

4 Apply inverse rotation, φ−1

to fill in the holes

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 73: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Banach-Tarski Paradox

B\(0, 0, 0) ∼ B

The unit ball minus origin B\(0, 0, 0) is piecewise congruent to Bwith respect to isometries of R3.

1 Isolate the “hole”

2 Repeatedly apply rotation φaround ` to the hole

3 Look only at the image setof the hole, (0, 0, 0)

4 Apply inverse rotation, φ−1

to fill in the holes

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 74: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Banach-Tarski Paradox

B\(0, 0, 0) ∼ B

The unit ball minus origin B\(0, 0, 0) is piecewise congruent to Bwith respect to isometries of R3.

1 Isolate the “hole”

2 Repeatedly apply rotation φaround ` to the hole

3 Look only at the image setof the hole, (0, 0, 0)

4 Apply inverse rotation, φ−1

to fill in the holes

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 75: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Banach-Tarski Paradox

B\(0, 0, 0) ∼ B

The unit ball minus origin B\(0, 0, 0) is piecewise congruent to Bwith respect to isometries of R3.

1 Isolate the “hole”

2 Repeatedly apply rotation φaround ` to the hole

3 Look only at the image setof the hole, (0, 0, 0)

4 Apply inverse rotation, φ−1

to fill in the holes

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 76: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Banach-Tarski Paradox

B\(0, 0, 0) ∼ B

The unit ball minus origin B\(0, 0, 0) is piecewise congruent to Bwith respect to isometries of R3.

1 Isolate the “hole”

2 Repeatedly apply rotation φaround ` to the hole

3 Look only at the image setof the hole, (0, 0, 0)

4 Apply inverse rotation, φ−1

to fill in the holes

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 77: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Banach-Tarski Paradox

B\(0, 0, 0) ∼ B

The unit ball minus origin B\(0, 0, 0) is piecewise congruent to Bwith respect to isometries of R3.

1 Isolate the “hole”

2 Repeatedly apply rotation φaround ` to the hole

3 Look only at the image setof the hole, (0, 0, 0)

4 Apply inverse rotation, φ−1

to fill in the holes

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 78: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

The Banach-Tarski Paradox

The Banach-Tarski Paradox (Banach and Tarski, 1935)

The solid unit ball centered at the origin in R3 is paradoxical usingisometries on R3.

Rachel Levanger Imagining the Banach-Tarski Paradox

Page 79: Imagining the Banach-Tarski Paradox - Rachel Levangerrachellevanger.com/math/docs/BT_Animated_Presentation_Web.pdf · The Banach-Tarski Paradox: A solid ball in 3-dimensional space

References

S. Wagon, The Banach-Tarski Paradox, Cambridge Univ.Press, Cambridge, 1993, pp. 1–28.

Rachel Levanger Imagining the Banach-Tarski Paradox