Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve...

38
Imaging Emphysema – 3-Helium MR Imaging Edwin J.R. van Beek MD PhD MEd FRCR Professor of Radiology and Medicine Carver College of Medicine, University of Iowa, USA. Permanent Visiting Professor of Radiology, University of Sheffield, UK.

Transcript of Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve...

Page 1: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Imaging Emphysema –

3-Helium MR ImagingEdwin J.R. van Beek MD PhD MEd FRCR

Professor of Radiology and Medicine

Carver College of Medicine,

University of Iowa, USA.

Permanent Visiting Professor of Radiology,

University of Sheffield, UK.

Page 2: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

MRI of COPD

* Proton MRI is capable for assessment of cardiac

anatomy and function (pulmonary hypertension),

diaphragmatic pump and oxygen enhanced

imaging for ventilation assessment (next speaker)

* Hyperpolarized gas MRI is capable of assessing

ventilation, oxygen uptake and lung

microstructure.

Page 3: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Polarization of 3-He:

two methods

ee

σ+

Nucleus

Direct optical pumpingMetastable spin exchange

(Rb-He)

Page 4: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Local production of

hyperpolarized 3-Helium

Page 5: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

HP 3-Helium gas from Mainz

to Sheffield (by airfreight)

Van Beek et al. Eur Radiol 2003

Page 6: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Types of sequences and

information on lung function

* Static ventilation image: ventilation distribution

* Apparent Diffusion Coefficient: small airway size

* Dynamic ventilation imaging: inflow pattern of gas into airways

* Partial oxygen tension: efficiency of regional oxygen uptake

Page 7: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

PHIL project

• Multidisciplinary consortium (7 sites in

France, Spain, Germany, Poland,

Denmark and Great Britain) was set up.

• Part 1: improve production, storage and

distribution of hyperpolarized 3-He gas

(Paris, Mainz)

• Part 2: use hyperpolarized 3-He in study

of animal models of emphysema (Lyon,

Madrid, Krakow)

• Part 3: perform a clinical multi-center

study in normal volunteers and patients

with emphysema (Mainz, Sheffield,

Copenhagen)

www.phil.ens.fr

Page 8: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Score 1 normal Score 2 mild

Normal vs COPD

Page 9: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

33HeHe--MRI: ScoresMRI: Scores

Score 3 moderate Score 4 severe

Page 10: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Correlations: 3He-MRI / PFT

Correlation He-MRI (visual) and FEV1 (%)

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80

non-ventilated lung He-MRI (%)

FE

V1

% p

red

r = -0.71

Page 11: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

SideSide--byby--Side: CT > Side: CT > 33HeHe--MRIMRI

Page 12: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

SideSide--byby--Side: Side: 33HeHe--MRI > CTMRI > CT

Page 13: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

3He-MRI vs. HRCT:

Alpha-1-antitrypsin deficiency

Page 14: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

3He-MR vs. Scintigraphy

Amersham Health

HPG201

Page 15: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Correlations: CT / 3He-MRI

Comparative Visual Assessment

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90

diseased lung HRCT (%)

no

n-v

en

tila

ted

lu

ng

He

-MR

I (%

)

r = 0.61

Page 16: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Ventilated lung volume: quantified

Graph1: Ventilated Lung Volumes

0102030405060708090

100

Volunteer Groups

Me

an

% V

en

tila

tio

n

Never-Smokers "Healthy" Smokers COPD Smokers

Automatic segmentation

feasible for proton and

Helium MRI

Using mask image,

subtraction leads to “actual

ventilated lung volume”

within the total lung

volume

Excellent correlation with

PFTs demonstrated, but

REGIONAL information

possible

Woodhouse et al. J MRI 2005

Page 17: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Ventilation distribution

• A good correlation between HRCT and spin

density HP 3-He MRI was found. However, MRI

tended to underestimate disease compared to

HRCT (classification problem?)

• Both correlated with PFT, but in different ways!

• The tests are DIFFERENT in what they

demonstrate, but complementary in information

yielded (aerated lung vs ventilated lung)

Page 18: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Brownian Motion / ADC

* 3He: high diffusion coefficient (ADC = 1.85 cm2/sec)

* Diffusion effects influence 3He-images

* Restricted diffusion → ADC

* ADC can only be assessed in ventilated areas

“alveoli” “emphysema”

Page 19: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Supine Prone

Right DecubitusLeft Decubitus

2 4 6 8

0.16

0.18

0.2

0.22

0.24

0.26

Slice Number (Superior → Inferior)

AD

C c

m2s

-1

ROI 1

ROI 2

ROI 3

ROI 4

2 4 6 8

0.16

0.18

0.2

0.22

0.24

0.26

Slice Number (Superior → Inferior)

AD

C c

m2s

-1

ROI 1

ROI 2

ROI 3

ROI 4

2 4 6 8

0.16

0.18

0.2

0.22

0.24

0.26

Slice Number (Superior → Inferior)

AD

C c

m2

s-1

ROI 1

ROI 2

ROI 3

ROI 4

2 4 6 8

0.16

0.18

0.2

0.22

0.24

0.26

Slice Number (Superior → Inferior)

AD

C c

m2

s-1

ROI 1

ROI 2

ROI 3

ROI 4

Supine Prone

Right DecubitusLeft Decubitus

2 4 6 8

0.16

0.18

0.2

0.22

0.24

0.26

Slice Number (Superior → Inferior)

AD

C c

m2s

-1

ROI 1

ROI 2

ROI 3

ROI 4

2 4 6 8

0.16

0.18

0.2

0.22

0.24

0.26

Slice Number (Superior → Inferior)

AD

C c

m2s

-1

ROI 1

ROI 2

ROI 3

ROI 4

2 4 6 8

0.16

0.18

0.2

0.22

0.24

0.26

Slice Number (Superior → Inferior)

AD

C c

m2

s-1

ROI 1

ROI 2

ROI 3

ROI 4

2 4 6 8

0.16

0.18

0.2

0.22

0.24

0.26

Slice Number (Superior → Inferior)

AD

C c

m2

s-1

ROI 1

ROI 2

ROI 3

ROI 4RL

R

L

L

R

12

34

1

2

3

41 2

3 4

Prone

1

2 4

3

R L

SupineRight Decubitus Left Decubitus

RL

R

L

L

R

12

34

1

2

3

41 2

3 4

Prone

1

2 4

3

R L

SupineRight Decubitus Left Decubitus

Position influence on lung

microstructure

Fichele et al, J MRI 2004

Page 20: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

NORMAL

SMOKER

COPD

ADC

cm2s-1

1.4

0Swift et al. Eur

J Radiol 2005

Page 21: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

αααα1-antitrypsindeficiency

Page 22: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

FEV1%VC vs ADC R = 0,72

0,0

0,1

0,2

0,3

0,4

0,5

0 20 40 60 80 100

ResultsResultsA

DC

[cm

²/s]

FEV1/VC [%]

Page 23: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

MEF50 vs ADC

0,0

0,1

0,2

0,3

0,4

0,5

0 1 2 3 4 5 6 7

ResultsA

DC

[cm

²/s]

MEF 50 [L/s]

COPD

Alpha1

Volunteer

Page 24: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Regional partial oxygen tension

* Ability to assess oxygen uptake

* Ability to address regional ventilation-

perfusion coefficient (V/Q)

* Future role? (lung reduction surgery,

CTEPH, borderline resectability in lung

cancer, therapy monitoring lung

diseases)

Page 25: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

In-vivo imaging:p02Calculate pO2 from T1 by acquiring series of whole body projection images with different inter scan delays

Set 1

Set 2

0

50

100

150

200

80 mBar

25 mBar

Oxygen

Pressu

re / mB

ar

67 mBar

Pulmonary

artery

Page 26: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

3D oxygen tension map now

feasible

Slope of the curve is the signal decay

as a function of partial oxygen

tension. This represents oxygen

uptake from ventilated lung into

perfused state

2D

3D

Wild et al. MRM 2005

Page 27: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Dynamic ventilation imaging

* To visualise single breath gas in (and out) flow

* Initially FLASH sequences used at approx 120 ms

per frame

* Subsequently spiral sequence developed (Salerno)

* New radial sequence developed in Sheffield (4

ms/frame, sliding window reconstruction)

Wild et al. MRM 2003

Page 28: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Dynamic information

Page 29: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Dynamic ventilation imaging

* Pretty movies, but what does it mean?

* We are able to measure 3He gas inflow into the

lungs, so what ?

* Well, what if we can quantify this inflow or even

outflow if we change our imaging protocol?

* This would lead to regional spirometry (or some

people have called it “fractal ventilation”)

Page 30: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Dynamic assessment of airflow Dynamic assessment of airflow ––

regional regional spirometryspirometry

The upslope of the signal intensity curve is

a direct measure of airflow into the distal

airways (ROI), using the trachea as input

function

Koumellis et al. J MRI 2005

Page 31: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

HP gas MR imaging: future uses

* Imaging of emphysema: can it assist in the

pre-operative planning of lung reduction

surgery?

* Can it detect early emphysema and assess

early intervention changes?

* Can it probe collateral ventilation?

Page 32: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

New publications worth

mentioning

* ADC is age dependent

* Long time-range ADC may be a potent

way to assess the issue of collateral

ventilation

Fain et al. Acad Radiol 2005

Conradi et al. Acad Radiol 2005, Conradi et al. J Appl

Physiol 2006 (in press), Woods et al. MRM 2004, Woods et

al. J Appl Physiol 2005, Wang et al. MRM 2006

Page 33: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Who gets COPD?

Genetic susceptibility has a role to play !

1 in 3 subjects are thought susceptible

Page 34: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Collateral ventilation* Very important physiological phenomenon

* Also clinically relevant, for instance when

considering interventional therapy for emphysema

(valves)

* Long time-range diffusion measurements provide

information on air way connectivity (and thus

collateral ventilation), as it measure diffusion over a

much greater trajectory

* Long time-range diffusion also seems more sensitive

to airspace size increase

Page 35: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Collateral ventilation

Woods et al, MRM 2004

Dog emphysema model with

short vs long time-range ADC;

(emphysematous lung on right)Woods et al, J Appl Physiol 2005

Two human normal donor lungs,

demonstrating greatly different

ADC values depending on time-

range

Page 36: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Long time-range ADC –

earlier detection of emphysema

Wang et al, MRM 2006

Normal volunteer vs patient

with subclinical emphysema

demonstrating much greater

long-range ADC changes

compared to “standard” ADC

Page 37: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Conclusions

* Increase in use of “functional” information from imaging studies

* Both CT and MRI are under development, each with their own advantages/disadvantages

* MRI of the chest will increase over the next few years, not only using HP 3He but also using other new sequences for parenchyma and perfusion.

* Novel methods should focus on QUANTIFICATION above anything else if it is to make an impact in clinical medicine

* 3 He MRI will be a winner, but exact role to be determined

Page 38: Imaging Emphysema – 3-Helium MR Imaging MRI of COPD Heidelberg 061005.pdf · • Part 1: improve production, storage and distribution of hyperpolarized 3-He gas (Paris, Mainz) •

Thank you!

University of Iowa University of Sheffield