Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom...

37
Image restoration Introduction and examples Jean-Fran¸coisGiovannelli Groupe Signal – Image Laboratoire de l’Int´ egration du Mat´ eriau au Syst` eme Univ. Bordeaux – CNRS – BINP 1 / 37

Transcript of Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom...

Page 1: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Image restoration

— Introduction and examples —

Jean-Francois Giovannelli

Groupe Signal – ImageLaboratoire de l’Integration du Materiau au Systeme

Univ. Bordeaux – CNRS – BINP

1 / 37

Page 2: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Topics

Image restoration, deconvolutionMotivating examples: medical, astrophysical, industrial,. . .Various problems: Fourier synthesis, deconvolution,. . .Missing information: ill-posed character and regularisation

Three types of regularised inversion

1 Quadratic penalties and linear solutionsClosed-form expressionComputation through FFTNumerical optimisation, gradient algorithm

2 Non-quadratic penalties and edge preservationHalf-quadratic approaches, including computation through FFTNumerical optimisation, gradient algorithm

3 Constraints: positivity and supportAugmented Lagrangian and ADMM, including computation by FFTOptimisation (e.g., gradient), system solvers (e.g., splitting)

Bayesian strategy: a few incursionsTuning hyperparameters, instrument parameters,. . .Hidden / latent parameters, segmentation, detection,. . .

2 / 37

Page 3: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Interferometry: principles of measurement

Physical principle [Thompson, Moran, Swenson, 2001]

Antenna array large aperture

Frequency band, e.g., 164 MHz

Couple of antennas interference one measure in the Fourier plane

Picture site (NRH) Antenna positions Fourier plane

Nor

th-S

ou

th(km

)

−1 0 1 2 3

−2

−1

0

Fre

qu

ency

(v)

20 40 60 80 100 120

20

40

60

80

100

120

West-Est (km) Frequency (u)

Knowledge of the sun, magnetic activity, eruptions, sunspots,. . .

Forecast of sun events and their impact,. . .

3 / 37

Page 4: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Interferometry: illustrationTrue map ES True map PS

Dirty beam

Dirty map ES Dirty map PS Dirty map PS + ES

4 / 37

Page 5: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

MRI: principles of measurement

Physical principle [Alaux 92]

Intense magnetic field B spin precession, f ∝ ‖B‖Gradient B = B0 +B(x) coding space - frequency

Proton density signal amplitude

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

GE Phantom Frequency coverage Other acquisition schemes

Medical imaging, morphological and functional, neurology,. . .

Fast MRI, cardiovascular applications, flow imaging,. . .

5 / 37

Page 6: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

MRI: illustration

Phantom (true)

Instrument response

100 200 300 400 500

100

200

300

400

500−7

−6

−5

−4

−3

−2

−1

Cross-section

100 200 300 400 500−4.5

−3.5

−2.5

−1.5

−0.5

“Observations”

100

200

300

400

500

600

700

800

900

1000

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

6 / 37

Page 7: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

X-ray tomography (scanner): principles of measurement

Physical principle

X-rays absorption radiography

Rotation around the objet a set of radiographies (sinogram)

Radon transform

Materials analysis and characterization, airport security,. . .

Medical imaging: diagnosis, therapeutic follow-ups,. . .

7 / 37

Page 8: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

X-ray tomography: illustration

8 / 37

Page 9: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Hydrogeology and source identification

Physical principle

Source: chemical, radioactive, odor,. . .

Transport phenomena in porous media

Groundwater sensors (drilling)

x

y

z

(ZNS)

(ZS)

0 100 200

0

1

2

3

4

5x 10

5

t[j]

(1)

0 100 200

0

1

2

3

4

5x 10

5

t[j]

(2)

0 100 200

0

1

2

3

4

5x 10

5

t[j]

(3)

0 100 200

0

1

2

3

4

5x 10

5

t[j]

(4)

Monitoring: electricity generation, chemical industry,. . .

Knowledge for its own sake: subsoils, transportation, geology,. . .

9 / 37

Page 10: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Ultrasonic imaging

Physical principle

Interaction: ultrasonic wave ↔ medium of interest

Acoustic impedance: inhomogeneity, discontinuity, medium change

emission :

reception :

transducteurfaisceau

acoustique

interfaces

deplacement

mm

mic

ros.

2 4 6 8 10 12 14

10

20

30

40

50

60

Traces

Tem

ps (

mic

rose

cond

es)

100 200 300 400

10

11

12

13

14

15

16

17

Industrial control: very-early cracks detection (nuclear plants,. . . )

Non destructive evaluation: aeronautics, aerospace,. . .

Tissue characterisation, medical imaging,. . .

10 / 37

Page 11: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Seismic reflection method

Physical principle

Interaction: mechanical wave ↔ medium of interest

Acoustic impedance: inhomogeneity, discontinuity, medium change

?

source geophones

Reflectivite r

Trace z

t

t

AAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAA

Ondelette h

t

Mineral and oil exploration,. . .

Knowledge of subsoils and geology,. . .

11 / 37

Page 12: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Optical imaging (and infrared, thermography)

Physical principle

Fundamentals of optics (geometrical and physical) stain

CCD sensors or bolometers spatial and time response

Public space surveillance (car traffic, marine salvage,. . . )

Satellite imaging: astronomy, remote sensing, environment

Night vision, smokes / fogs / clouds, bad weather conditions

12 / 37

Page 13: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Digital photography and demosaicing

Physical principle

Matrix / filter / Bayer mosaic: red, green, blue

Chrominance and luminance

Holiday pictures

Surveillance (public space, car traffic,. . . )

13 / 37

Page 14: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

The case of super-resolution

Physical principle

Time series of images over-resolved images

Sub-pixel motion ∼ over-sampling

Motion estimation + Restoration

Same applications. . . with higher resolution

14 / 37

Page 15: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

And other imaging. . . fields, modalities, problems,. . .

Fields

Astronomy, geology, hydrology,. . .

Thermography, fluid mechanics, transport phenomena,. . .

Medical: diagnosis, prognosis, theranostics,. . .

Remote sensing, airborne imaging,. . .

Surveillance, security,. . .

Non destructive evaluation, control,. . .

Computer vision, under bad conditions,. . .

Augmented reality, computer vision & graphics,. . .

Photography, games, recreational activities, leisures,. . .

. . .

Health, knowledge, leisure,. . . Augmented Reality, Computer Vision & Graphics,. . . Aerospace, aeronautics, transport, energy, industry,. . .

15 / 37

Page 16: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

And other imaging. . . fields, modalities, problems,. . .

Modalities

Interferometry (radio, optical, coherent,. . . )

Magnetic Resonance Imaging

Tomography based on X-ray, optical wavelength, tera-Hertz,. . .

Ultrasonic imaging, sound, mechanical

Holography

Polarimetry: optical and other

Synthetic aperture radars

Microscopy, atomic force microscopy

Camera, photography

Lidar, radar, sonar,. . .

. . .

Essentially “wave ↔ matter” interaction

16 / 37

Page 17: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

And other imaging. . . fields, modalities, problems,. . .

“Signal – Image” problems

Denoising

Edge / contrast enhancement

Missing data

inpainting / interpolationoutpainting / extrapolation

Deconvolution

Inverse Radon

Fourier synthesis

. . .

And also:

SegmentationDetection of impulsions, salient points,. . .. . .

In the following lectures: deconvolution-denoising

17 / 37

Page 18: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Inversion: standard question

y = H(x) + ε = Hx+ ε = h ? x+ ε

xH +

y

ε

x = X (y)

Restoration, deconvolution-denoising

General problem: ill-posed inverse problems, i.e., lack of information

Methodology: regularisation, i.e., information compensation

Specificity of the inversion / reconstruction / restoration methodsTrade off and tuning parameters

Limited quality results

18 / 37

Page 19: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Inversion: advanced question

y = H(x) + ε = Hx+ ε = h ? x+ ε

x,γ, `H,θ +

y

ε,γ

x = X (y)[x, γ, θ, ] = X (y)

More estimation problems

Hyperparameters, tuning parameters: unsupervised

Instrument parameters (resp. response): myopic (resp. blind)

Hidden variables: edges, regions, singular points,. . . : augmented

Different models for image, noise, response,. . . : model selection

19 / 37

Page 20: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Issues and framework

Inverse problems

Instrument model, direct / forward model

Involves physical principles of

the phenomenom at stakethe acquisition system, the sensor

Inverse

undo the degradations, surpass natural resolutionfrom consequences to causesrestore / rebuild / retrieve

Ill-posed / ill-conditioned character and regularisation

Framework of this course

Direct model

linear and shift invariant, i.e., convolutiveincluding additive error (model and measurement)

Regularisation through penalties and constraints

Criterion optimisation and convexity

20 / 37

Page 21: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Some historical landmarks

Quadratic approaches and linear filtering ∼ 60

Phillips, Twomey, TikhonovKalmanHunt (and Wiener ∼ 40)

Extension: discrete hidden variables ∼ 80

Kormylo & Mendel (impulsions, peaks,. . . )Geman & Geman (lines, contours, edges,. . . )Besag, Graffigne, Descombes (regions, labels,. . . )

Convex penalties (also hidden variables,. . . ) ∼ 90

L2 − L1, Huber, hyperbolic: Sauer, Blanc-Feraud, Idier. . .. . . et les POCSL1: Alliney-Ruzinsky, Taylor ∼ 79, Yarlagadda ∼ 85 . . .And. . .L1-boom ∼ 2005

Back to more complex models ∼ 2000

Unsupervised, myopic, semi-blind, blindStochastic sampling (MCMC, Metropolis-Hastings. . . )

21 / 37

Page 22: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Example due to Hunt (“square” response) [1970]

Convolutive model: y = h ? x+ ε

Samples averaging

−50 0 50 100 150 200

0

0.5

1

1.5

2

True x

−20 0 20

0

0.1

Response h

−50 0 50 100 150 200

0

0.5

1

1.5

2

Observation y22 / 37

Page 23: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Example: photographed photographer (“square” response)

Convolutive model: y = h ? x+ ε

Pixels averaging

Think also about the Fourier domain

True x Spatial response h Observation y

23 / 37

Page 24: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Example: brain (“square” response)

Convolutive model: y = h ? x+ ε

Pixels averaging

Think also about the Fourier domain

True x Spatial response h Observation y

24 / 37

Page 25: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Example: brain (“motion blur”)

Convolutive model: y = h ? x+ ε

Pixels averaging

Think also about the Fourier domain

True x Spatial response h Observation y

25 / 37

Page 26: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Convolution equation (discrete time / space)

Examples of response

Square Motion Gaussian Diffraction Point

Convolutive model

z(n) =

+P∑p=−P

h(p)x(n− p)

z(n,m) =

+P∑p=−P

+Q∑q=−Q

h(p, q)x(n− p,m− q)

Response: h(p) or h(p, q)

impulse response, convolution kernel,. . .. . . point spread function, stain image

26 / 37

Page 27: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Convolution equation (discrete time, 1D ): matrix form

Linear matricial relation: z = Hx

Shift invariance Tœplitz structure

Short response band structure

.

.

.

zn−1 =

zn = hP xn−P + · · ·+ h1xn−1 + h0xn + h−1xn+1 + · · ·+ h−P xn+P

zn+1 =

.

.

.

H =

.

.

....

.

.

....

.

.

....

hP . . . h0 . . . h−P 0 0 0 0 0. . . 0 hP . . . h0 . . . h−P 0 0 0 0 . . .. . . 0 0 hP . . . h0 . . . h−P 0 0 0 . . .. . . 0 0 0 hP . . . h0 . . . h−P 0 0 . . .. . . 0 0 0 0 hP . . . h0 . . . h−P 0 . . .

0 0 0 0 0 hP . . . h0 . . . h−P

.

.

....

.

.

....

.

.

....

See exercise regarding Tœplitz and circulant matrices. . .27 / 37

Page 28: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Short and important incursion in “continuous statement“

More realistic modelling of physical phenomenon

Continuous variable convolution (1D, 2D and 3D,. . . )

Observations

Sampling (discretization) of outputFinite number of samples

Decomposition of unknown object

Again “discrete” convolution

28 / 37

Page 29: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Convolution equation: continuous variable

Convolutive integral equation

z(t) =

∫x(τ)h(t− τ) dτ

z(u, v) =

∫∫x(u′, v′)h(u− u′, v − v′) du′dv′

z(u, v, w) =

∫∫∫x(u′, v′, w′)h(u− u′, v − v′, w − w′) du′dv′dw′

More generally: Fredholm integral equation (first kind)

z(t) =

∫x(τ)h(t, τ) dτ

z(u, v) =

∫∫x(u′, v′)h(u, u′, v, y′) du′dv′

z(u, v, w) =

∫∫∫x(u′, v′, w′)h(u, u′, v, y′, w, w′) du′dv′dw′

29 / 37

Page 30: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Continuous convolution and discrete observations

Convolutive integral equation

for t ∈ R : z(t) =

∫ +∞

−∞x(τ)h(t− τ) dτ

Measurement

Discrete data (just sampling, no approximation). . .

zn = z(nTs) =

∫ +∞

−∞x(τ)h(nTs − τ) dτ

. . . and finite number of data: n = 1, 2, . . . , N .

Unknown object remains “continuous variable”: x(t), for t ∈ R

30 / 37

Page 31: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Object “decomposition-recomposition”

“General” decomposition of continuous time object

x(τ) =∑k

xk ϕk(τ)

Fourier series and finite time extend (finite duration)Cardinal sine and finite bandwidthSpline, wavelets, Gaussian kernel. . .. . .

Infinite dimensional linear algebra

Hilbert spaces, Sobolev spaces. . .Basis, representations. . .Inner products, norms, projections. . .

31 / 37

Page 32: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Object “de / re - composition”: example of finite bandwidth

“General” decomposition of continuous time object

x(τ) =∑k

xk ϕk(τ)

Case of shifted version of a basic function ϕ0

ϕk(τ) = ϕ0(τ − kδ)

Special case with cardinal sine

ϕ0(τ) = sinc[t/δ]

with sinc[u]

=sinπu

πu

That is the Shannon reconstruction formula

x(τ) =∑k∈Z

xk ϕ0(τ − kδ) =∑k∈Z

xk sinc[τ − kδ

δ

]. . . and there is no approximation, no error if

the signal is •and with xk = •

32 / 37

Page 33: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Object “de / re - composition”: example of finite bandwidth

“General” decomposition of continuous time object

x(τ) =∑k

xk ϕk(τ)

Case of shifted version of a basic function ϕ0

ϕk(τ) = ϕ0(τ − kδ)

Special case with cardinal sine

ϕ0(τ) = sinc[t/δ]

with sinc[u]

=sinπu

πu

That is the Shannon reconstruction formula

x(τ) =∑k∈Z

xk ϕ0(τ − kδ) =∑k∈Z

xk sinc[τ − kδ

δ

]. . . and there is no approximation, no error if

the signal is of finite bandwidthand with xk = x(kTs) with Ts •

33 / 37

Page 34: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Object “de / re - composition”: example of finite bandwidth

“General” decomposition of continuous time object

x(τ) =∑k

xk ϕk(τ)

Case of shifted version of a basic function ϕ0

ϕk(τ) = ϕ0(τ − kδ)

Special case with cardinal sine

ϕ0(τ) = sinc[t/δ]

with sinc[u]

=sinπu

πu

That is the Shannon reconstruction formula

x(τ) =∑k∈Z

xk ϕ0(τ − kδ) =∑k∈Z

xk sinc[τ − kδ

δ

]. . . and there is no approximation, no error if

the signal is of finite bandwidthand with xk = x(kTs) with Ts small enough: Fs > 2FM

34 / 37

Page 35: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Convolution: continuous discrete

Given that (discrete observation at time nTs)

zn =

∫ +∞

−∞x(τ)h(nTs − τ) dτ for n = 1, 2, . . . , N

and that (case of shifted version of a basic function ϕ0)

x(τ) =∑k

xk ϕ0(τ − kδ) for τ ∈ R

By substitution, we have

zn =

∫ +∞

−∞

[∑k

xk ϕ0(τ − kδ)

]h(nTs − τ) dτ

=∑k

xk

∫ +∞

−∞ϕ0(τ − kδ)h(nTs − τ) dτ

=∑k

xk

∫ +∞

−∞ϕ0(τ)h([nTs − kδ]− τ) dτ︸ ︷︷ ︸

35 / 37

Page 36: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Convolution: continuous discrete

Let us denote: h = ϕ0 ? h

h(u) =

∫ +∞

−∞ϕ0(τ)h(u− τ) dτ

We then have

zn =∑k

xk

∫ +∞

−∞ϕ0(τ)h([nTs − kδ]− τ) dτ

=∑k

xk h(nTs − kδ)

The zn are given as a function of the xkIt is a “discrete linear” transformThere is no apprximation

36 / 37

Page 37: Image restorationgiovannelli.free.fr/DiapoInverse/InverseIntro.pdf · MRI: illustration Phantom (true) Instrument response 100 200 300 400 500 100 200 300 400 500-7-6-5-4-3-2-1 Cross-section

Convolution: continuous discrete

A specific case when δ = Ts/K

zn =∑k

xk h [nTs − kδ]

=∑k

xk h [nKδ − kδ]

=∑k

xk h [(nK − k)δ]

Subsampled discrete convolution

A specific case when δ = Ts, i.e., K = 1

zn =∑k

xk h [(n− k)δ]

A standard discrete convolution

37 / 37