ILE OSAKA New Concept of DPSSL - Tuning laser parameters by controlling temperature - Junji Kawanaka...

28
New Concept of DPSSL - Tuning laser parameters by controlling temperature - Junji Kawanaka ILE OSAKA US-Japan Workshop on Laser-IFE 21-22 March 2005 General Atomics, San Diego

Transcript of ILE OSAKA New Concept of DPSSL - Tuning laser parameters by controlling temperature - Junji Kawanaka...

ILE OSAKANew Concept of DPSSL

- Tuning laser parameters by controlling temperature -

Junji KawanakaILE OSAKA

US-Japan Workshop on Laser-IFE21-22 March 2005

General Atomics, San Diego

ILE OSAKA

Contributors

S. Tokita, T. Norimatsu, N. Miyanaga, Y. Izawa

H. Nishioka, K. Ueda

M. Fujita

T. Kawashima, T. Ikegawa

Institute for Laser Technology

ILE OSAKA

ILS/UECTokyo

PHOTON IS OUR BUSINESS

ILE OSAKA

Outline

1. IFE Laser Development and Laser Materials・ Nd:glass and Yb:YAG

2. Basic Researches of Cooled Yb:YAG crystal ・ Advantages of Cryogenic Cooling

・ High Average Power and High Optical efficiency (CW Oscillator)

・ Mode-Lock Oscillator with SESAM

3. Summary and Future Plan

ILE OSAKA

1. IFE Driver Development and Laser Materials

ILE OSAKA

Diode-Pumped Solid-State Lasers (DPSSL)

Requirements

Pulse Energy : 1MJ

Repetition Rate : 16Hz

Electrical-Optical Eff. : 10%

Diode-pumped

solid-state lasers

ILE OSAKA

Laser Programs for IFE

Single Shot

Repeatable

ILE OSAKA

Module Developments and Technical Issues

§Amplifier・ Laser Material・ Laser Diode・ Cooling Technique

§Optics・ Wave Front Control・ Optical Switch・ High Damage Threshold Coating・ Non-Linear Optics・ Ultrashort Pulse Technique for F.I.

§System Engineering・ Compact, Long-Life Power Supply・ Segment Assembly・ Spatial Beam Arrangement・ Focused Beam Profile・ Beam Steering

1 0 5 3 n m L a s e r o u t p u t

1 0 k J (3 5 1 n m ) L a s e r o u t p u t

F r e q u e n c y c o n v e rs io n o p t ic s

W a te r c o o le d z ig - z a g s la b

1 k J L a s e r o u t p u t

L a s e r - d io d e m o d u le s

C o o lin g w a te r

1 kJ

10 kJ

100 kJ

1 MJ

Module

Segment

ILE OSAKA

Critical Factors for IFE Driver Materials

Emission Cross Section

Thermal Shock ParameterRT

Large Material Size

Glass, Ceramics

ILE OSAKA

Parastic oscillation limitg0L < 4

Saturation fluence limitJ<10J/cm2

Thermal fracture limitt < 2 cm, Est > 0.1 J/cm3

Nd

Yb

Glass(GEKKO XII,NIF,LMJ)

Glass(Polaris)

Yb:S-FAP(p) (Mercury)Yb:S-FAP(s)

The

rmal

Sho

ck P

aram

eter

(W

/m)

1000

10

100

10000

Emission Cross Section (x 10-20 cm2)

0.5 1.0 50105

Preferable

IFE Laser Materials in the World

Nd

Yb

Yb:YAG

HAP4(HALNA)

Yb:YAG

○   High Thermal

Shock Parameter

△ Low Emission

Cross Section

ILE OSAKA

2. Basic Researches of Cooled Yb:YAG crystal

ILE OSAKA

・ Absorption Spectral Region in NIR (900~1000 nm)

・ Long Fluorecence Life Time (~ ms)

・ High Saturation Fluence (> 10 J/cm2)

・ Low Quantum Defect (< 10%)

Diode-Pump

High Pulse Energy

High Average Power

☞ Diode-Pumped High-Power Lasers

Yb-Doped Laser Materials

ILE OSAKA

Yb:YAG Crystal

Host

ab

 (nm)

ab (FWHM)(nm)

em

(nm)

em (FWHM)(nm)

abs

(10-20 cm2)

em

(10-20 cm2)

RT

 (ms)

(Wm-1K-1)

YAG 941 17 1030 12 0.8 2.03 13

S-FAP 899 4 1047 4 8.6 7.3 -2.0

YLF 960 57 1018 47 0.46 0.75

800

1806.2

KYW 950 47 1000 76 3.5 3.0 -3.3

KGW ↑ ↑ ↑ ↑ ↑ 2.2 -3.3

GdCOB 900 11 1030 44 0.5 0.35 -

Yb:YAG ・ High emission cross section ・ High thermal conductivity ・ High thermal shock parameter

☞ Diode-Pumped ns Lasers with High Pulse Energy High Average Power

glass 950 86 1003 77 0.12 0.37 200

2.4

0.85

ILE OSAKA

Glass(GEKKO XII,NIF,LMJ)

Yb:S-FAP(p) (Mercury)Yb:S-FAP(s)

Glass(Polaris)

The

rmal

Sho

ck P

aram

eter

(W

/m)

1000

10

100

10000

Emission Cross Section (x 10-20 cm2)

0.5 1.0 50105

Preferable

IFE Laser Materials in the World

Nd

YbYb:YAG

T=150K

T=70K

T=300K 150K~270K

Tuning the emission cross section (saturation fluence)

by cooling the crystal

ILE OSAKA

Absorption and Emission Spectra

0

5E-21

1E-20

1.5E-20

900 950 1000 1050 1100Wavelength (nm)

Cro

ss S

ectio

ncm

2)(

10k70k130k180k240k293k

0

5E-20

1E-19

1.5E-19

900 950 1000 1050 1100

Wavelength (nm)

Cro

ss S

ectio

n (cm

2)

10K

70K130K

180K240K

293K

Absorption Emission

Absorption spectral width is kept wide. Emission cross section can be changedwithin a factor of 7.

ILE OSAKA

Room Temperature

Pump

Laser

Re-absorption

4-Level Laser System at Low Temperature

Laser Diode ・ Low Brightness

400~800cm-1

Quasi-3-Level

Low Temperature

No Re-absorption

4-Level

2F7/2

2F5/2

Efficient laser operation

in diode-pump

ILE OSAKA

Thermal Conductivity of Crystals

1

10

100

1000

10000

0 50 100 150 200 250 300 350 400

Temperature (K)

Th

erm

al c

on

duct

ivity

(W

/mK

)Sapphire

YAGYLF

ILE OSAKA

Why Cool the Materials ?

1. Wide Tuning Range of Emission Cross Section (Saturation Fluence)

→ Realize an efficient energy extraction without optics dam

ages

2. 4-Level Laser System

→ Enough Laser gain even in diode-pump

3. Improved Thermal Conductivity

→ High average power operation

Because there are dramatic Improvements.

ILE OSAKACavity Cavity Length : 910 mm TEM00 Diameter : 1.5 mm (1/e2) Coupler : R = 75%, r = 5000 mm

Pump (on the Crystal) Beam Dia. : 1.5 mm (FWHM) Spatial Profile : Flat top Pump Power (max.) : 135 W Pump Intensity (max.) : 7.6 kW/cm2

Yb:YAG Crystal Sapphire-Sandwiched Conductive cooling with a LN Dewar Concentration : 25 at. % Thickness : 0.6 mm

135 W-Pumped CW Oscillator at 77K

Yb:YAG LN Dewar

10mm

10mm

Cupper Plate

Sapphire(t = 1.6mm)

ILE OSAKA

0

20

40

60

80

0 20 40 60 80 100

slope = 80%

Absorbed pump power [W]

Ou

tpu

t po

we

r [W

]

Pout = 75 W.

opt = 71%

High Output Power for TEM00

TEM00

S. Tokita et al., accepted for Appl. Phys. B

ILE OSAKA

Mode-Lock Oscillator with SESAM at 77K

LD

SESAM

Output coupler(95% reflection)

Focusing lensassembly

Cryo-cooledYb:YAG

Chirped mirror(-400 fs2)

Delay time (ps)

Aut

ocor

rela

tion

–20 0 20

0

0.5

1

1028.5 1029 1029.50

0.5

1

Wavelength (nm)

Spe

ctru

m

p = 6.8 ps(sech2)

FWHM = 0.26 nm

ILE OSAKA

0

2

4

6

8

0 20 40 60 80 100 120 140 160

g 0 (

cm-1)

Crystal Temperature (K)

Small Signal Gain Coefficient   g0

g0 = 8 cm-1

at 1.3 kW/cm2

Calculation

Using the observed em and ab

We can calculate the laser gain accurately at any temperature. any pump intensity.

Dope : 25 at.%

Thickness : 1 mm

ILE OSAKA

How cold should we cool the crystal ?

geff = g0exp(-Ein/Es) – ex = 1 – (1 + log )/

T < 200 K

e x > 90%

ILD=2.5 kW/cm2

pump duration : 200 s

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Temperature (K)

Ext

ract

ion

effic

ienc

y 

e

100 kW/cm2

50 kW/cm2

10 kW/cm2

1 kW/cm2

ILE OSAKA

Yb:YAG Active Mirror with a Large Disk at 200K

L

53 cm

2 at. %

Conductivecooling

Disk-Form・ Efficient Cooling・ Efficient Beam Coupling

Active Mirror・ 2-Pass Amplification

Parasitic Oscillation (2g0r < 4)

g0 = 0.038 cm-1

2r = 53 cm

Crystal Temperature (T = 200K)

e = 4 x 10-20 cm2

Es = 4.8 J/cm2

Laser Beam

HRAR

Pump

Pump Intensity

Ipump = 2.5 kW/cm2

@ 600s

ILE OSAKA

Calculated Output Energy with a Single Disk

2.7 kJ/diskCrysta

l Te

mp

eratu

re (K

)

L (cm)

Ma

xim

um

ext

ract

ion

en

erg

y (k

J)

Ext

ract

ion

en

erg

y flu

en

ce (

J/cm

2)

T = 4 K

0

2

3

4

1

5

10

f = 16 Hz

0 10 20200

210

220

240

250

230

1.3 J/cm2

Pump Intensity

Ipump = 2.5 kW/cm2

@ 600s

L = 7.5 cmAssuming ext = 90%

ILE OSAKA

Yb:YAG Module

LD Pump9 MJ

300 kJ

10 kJ

Yb:YAGActive Mirror

ILE OSAKA

Can We Make All Efficiencies Higher Than 90% ?

T abs U stoke st     ex OL = O-O

95% 95% 100% 91% 90%

70% (tp = 1 ms)

80% (0. 6 ms)

90% (0.2ms) 90%    = 53%    = 60%

Optical Transfer

Absorption

Upper State

Stokes

Storage

Extraction

Beam Overlap

Depend on Pump Duration

→  High-Brightness LD

ILE OSAKA

Laser Electric 1 LD emission 0.5 Yb:YAG Laser 0.5x0.6=0.3

Optical Loss 0.5x0.3=0.15 LD Heat 0.5 Crystal Heat 0.5x0.1=0.05

Cryostat Electric X Refrigerate 0.05

Requirement of Electrical-Optical Efficiency Laser Output 0.3 Total Electrical Power 1+X

Electrical-Refrigerate Efficiency

> 0.1 X < 2

0.05

2> 0.025 @200K

How Electrical-Refrigerate Efficiency of Cryostat should be ? ー

ILE OSAKA

Summary and Future Plan – Yb:YAG –

§Tuning of parameters by controlling the temperature has been proposedinstead of producing new materials.

§Cooled Yb:YAG ceramics is one of the promised laser materials.

・ High pulse energy (kJ/disk in calculation )・ No thermal effects such like thermal lensing・ High optical efficiency

§Amplifier Developments

Laser MaterialsLaser Materials・ Material Characteristics (n2, dn/dt, )・ Thick Ceramics・ ns-pulse Demonstration(Q-switch)・ ps-pulse Amplification for Fast Ignition

Laser DiodeLaser Diode・ High Brightness (~10 kW/cm2 @ 200s)

Cooling Cooling ・ High Electrical-Refrigerate Efficiency of Cryostat ( > 2.5% @200K)