ILC Operation – SLAC ILC Controls meeting, 1/19/2006

24
1/19/2006 Marc Ross - SLAC 1 ILC Operation SLAC ILC Controls meeting, 1/19/2006 Turning on the beam The chronology of a trip Separating power and luminosity testing feedbacks Maintaining equilibrium through transients Positrons

description

ILC Operation – SLAC ILC Controls meeting, 1/19/2006. Turning on the beam The chronology of a trip Separating power and luminosity testing feedbacks Maintaining equilibrium through transients Positrons. At first:. Extract the 1% pilot from the DR 10 us later begin the full train sequence - PowerPoint PPT Presentation

Transcript of ILC Operation – SLAC ILC Controls meeting, 1/19/2006

Page 1: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 1

ILC Operation – SLAC ILC Controls meeting, 1/19/2006

Turning on the beam

The chronology of a trip

Separating power and luminosity

testing feedbacks

Maintaining equilibrium through transients

Positrons

Page 2: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 2

At first:

• Extract the 1% pilot from the DR• 10 us later begin the full train sequence• Each bunch must traverse properly or the abort

system will be triggered. • sensed using the

– beam position monitors, – beam loss monitors and – beam intensity monitors

• true single bunch response time devices.

Page 3: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 3

Damping Ring

• Before extraction: must have…– no coherent motion– decent lifetime– appropriate gaps– designated pilot bunch ready to be first– tested kicker pulse in the gap– RF within tols

Page 4: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 4

Abort systems – rtml, linac/undu, bds

• The minimal abort system consists of a spoiler / collimator / absorber block (copper) and a kicker. – Rise time should be fast enough to produce a guaranteed

displacement of more than the pipe radius in an inter-bunch interval. In any given fault, at most 450 bunches would then strike the copper block.

• Assuming the latency for detecting the fault is 500 ns, the upstream signal effective propagation speed is 0.7 c, and the abort kicker latency time is 1 us, the maximum kicker spacing should be 1000m.

Page 5: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 5

MPS abort dumps

• In the baseline configuration five abort systems are needed on the electron side (four on the e+ side): 2 upstream of the linac, one upstream of the undulator and 2 in the beam delivery. – An alternative is an additional abort per kilometer of linac. – may depend on the linac straightness.

• The required kicker deflection is 10 mm, for the radius, and a relatively small additional amount for margin. With a kicker volume of 20 * 20 mm, about 25 MW of peak power would be required for a 50 m long kicker system

Page 6: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 6

Linac failure modes and time scales

• Quads,• RF phase and amplitude – during the pulse• Cryo slow• valves slow• dipoles

• fast time scale energy drop

Page 7: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 7

Energy / Energy spread stabilization

• Nominal plan: end of linac monitoring system• Backup plan: use residual beta oscillation

wavelength– May need additional BPM’s (HOM?)– Chirp bunch train a small amount– High resolution BPM’s needed

• To avoid mid-linac spectrometers.– These are justified when the linac will be operated with narrow

energy bandpass (not this linac)– expected bandpass ~ 50%, depending on straightness?– expect undulator to be narrow - band

Page 8: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 8

Collimation

• 10KW/m max ; with very optimistic halo assumptions

• About 10x SLC max– Mechanical tests, tolerances

• energy collimation likely to demand most care:– narrower than BDS optical bandwidth (0.2%?)

• energy variations on the ‘slits’– intra-train feedback– fast local abort

Page 9: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 9

Expected energy variability:

• LLRF LO– Seen at TTF (250kHz)– Mixing intermodulation 1300 / 52 MHz ?– Interbunch spacing == 400/1300 (=16/52) us– Should be ok.

• Check for intermodulation with digitizer clock – high harmonic relationship

• ‘slow’ quenches outside of feedback correction range– the loss in gradient cannot be compensated by single klystron

vector sum feedback– often seen at TTF

Page 10: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 10

MPS – average power loss

• For stability, it is important to keep as much of the machine operating at a nominal power level. – including the source, damping ring injector and the damping ring itself.

• Segmentation is the key beam shut off points. – Each of these segmentation points is capable of handling the full

beam power, i.e. both a kicker and dump are required.

– also fast abort locations

Page 11: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 11

Begin End

1 e- injector Source (gun) e- Damping ring injection (before)

2 e- damping ring Ring injection e- Ring extraction (after)

3 e- RTML Ring extraction e- Linac injection (before)

4 e- linac Linac injection Undulator (before)

5 Undulator Undulator BD; e+ target

6 e- BDS BD start e- Main dump

7 e+ target e+ target e+ damping ring injection

8 e+ damping ring Ring injection e+ ring extraction

9 e+ RTML ring extraction e+ linac injection

10 e+ linac linac injection e+ BDS

11 e+ BDS e+ BDS e+ main dump

Page 12: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 12

Low Power operation

• intra-train b/b feedback limitations– Pilot bunch + one nominal I bunch?– What is the minimum beam power for ‘nominal operation’?

• beam-sensor performance degradation – LLRF/BPM systematics– Collimation: esp. energy. Does the pilot bunch go through the

slits?

• Reduced repetition rate– 0.1 Hz pulse rate– 10 KHz bunch spacing

• Reduced RF power operation

Page 13: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

Example low power operation:pilot +1 @ 1Hz

• 800W / 11.3 MW factor 15000 reduction– Compelling to test lumi/background/tuning procedures– How many bunches at what intensity / spacing are needed for

systems that MUST have intra-train feedback?– Pilot + 1 at 10 us?– Laserwire scan will take ~1 minute; x y + coupling phase space

15m unless scans can be done in parallel, at both ends of the machine, for example.

• Can electricity use be reduced?– Marx allows controllable pulse length– Baseline?– Klystron thermal stabilization another transient for LLRF to

handle

Page 14: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 14

Equilibrium

• Where are the ‘fields that depend on preceding beam pulses’?– There are (at least) 3 primary subsystems whose configuration depends on

average beam power: – 1) damping ring alignment, – 2) positron capture system phases, – 3) collimation – Klystrons – (depending on power saving strategies)

• In each of these cases, beam heating is a significant part of the total heat flow and will necessarily have some impact.

– At SLC, the beam power on target was ~30KW, about 20% of this was absorbed in the positron capture RF section.

– Much can be done to reduce these effects using more careful initial engineering, • beam power is much more than 30KW; neutral beam may mitigate this• Must consider the impact of residual temperature changes carefully and

assume they will be a problem.

Page 15: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 15

Damping ring stored current

• How to keep the DR full under all variations downstream & upstream?– Lifetime?– Off-axis injection (aka accumulation)?– Abort & fill cycles; low repetition rate– most ring users recommend ‘top up’ for maintaining equilibrium

• Full power dumps are needed in the damping ring (complex) and at the entrance to the linac. – to keep the DRs as warm as possible.

Page 16: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 16

Tune up and steady-state dumps

• 1) purpose for additional high power dumps results from the desire to keep upstream systems in equilibrium during short interruptions. – Other functions include the desire to have beam instrumentation and

related feedback / stabilization systems in operation during the interruptions

• (soft requirements in comparison). – The critical parameters are the degree to which the upstream machine

configuration (includes field strength, phase, alignment etc) depend on the average beam power in those locations.

• If it is guaranteed that there is no difference between full power operation and very low power operation, then additional high power dumps are not needed.

Page 17: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 17

MPS Transients

• two basic kinds of interruptions, – 1) short (MPS or beam tuning) driven where it would be useful if the system

recovered more or less instantly and – 2)longer interruptions involving access etc where upstream thermal time scales

are unimportant. • High power beam auxiliary beam dumps are only needed for 1) (not

2). • The most logical place to dump the full rep rate/n_bunch beam is

before the entrance to the linac, not after it. – recommend removing the baseline requirement for full power dumps at the

entrance to the beam delivery. – These dumps are important but need not take full power, only the full bunch train.

A much lower power, lower cost dump could be implemented, for example one capable of 0.1Hz full train operation.

– expect that 0.5MW dumps will be much cheaper and easier to deal with than full power beam dumps.

– full power dump will cost ~ 50M$ (DESY). • Lower power dumps may cost 1/10 of this, based on the SLC design.

Page 18: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 18

Full power Dumps

• The undulator positron system should also remain operating at full power. This requires a full power charged beam dump at that location. In principle, if there were a problem on the positron side, the electron beam could be transported to the main BDS dumps.

• 6) During access to the BDS area, where the interruption is long compared to these thermal time scales, the power in the entire machine, except the stored beam in the DR, should be scaled back to reasonable levels.

• 7) This is the 'minimum dump' configuration. There are 6 1/2 MW class dumps, one 15 MW (at the e+ source) and 2 nominal full power 20MW dumps. Not including dumps needed in the injector, undamped, system.

• Positron capture

Page 19: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 19

Operation with the ‘keep-alive’

• ring population– both rings full– full e- ring / one e+ – full e+ / one e- (?)– both rings one (or small)

• accumulation (aka off-axis injection) from the keep-alive– full ring fill takes ~ 30,000 10% bunches (100 min @ single

bunch)– lifetime ~ 10 minutes

Page 20: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 20

Pilot control

• Will the pilot bunch go through the energy collimation?

• Coupling vs intensity – two different ways to make a pilot bunch.

Page 21: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 21

Kicker operation

• Feedback– stabilizing the voltage– stabilizing the residual kick

• Feedforward– across the extraction hairpin

• Single point failures

Page 22: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 22

Single point failures

• critical, high power, high speed devices:– damping ring kicker, – DRRF, – linac front end RF, – bunch compressor RF and – dump magnets systems

• redundancy needed. • extraction kicker, a sequence of independent power supplies and

stripline magnets that have minimal common mode failure mechanisms.

• front end and bunch compressor RF, more than one klystron / modulator system powering a given cavity through a tee.

– LLRF feedback must stabilize the RF in the event that one of sources fails ‘mid-pulse’.

– alternate : using a sequence of modestly powered devices controlled completely in parallel,

• There are several serious common mode failures in the timing and phase distribution system that need specially engineered controls.

– frozen unless the system is in the benign – beam tune up mode.

Page 23: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 23

Control limits

• Depending on the state of the machine, – programmed (perhaps at a very low level) ramp rate limits that

keep critical components from changing too quickly. – may have an impact on the speed of beam based feedback.

• Some devices, such as collimators should be effectively frozen in position at the highest beam power level.

• There may be several different modes, basically defined by beam power, that indicate different ramp rate limits.

Page 24: ILC Operation  – SLAC ILC Controls meeting, 1/19/2006

1/19/2006 Marc Ross - SLAC 24

The Baseline Machine (500GeV)