ILC Dominant Technologies

44
ILC Dominant Technologies M. Ross, SLAC Linac Coherent Light Source-II Cryogenics System Manager 25 October 2018 LCWS 2018 UTA LCLS-II Partnership

Transcript of ILC Dominant Technologies

Page 1: ILC Dominant Technologies

ILC Dominant Technologies

M. Ross, SLAC

Linac Coherent Light Source-II

Cryogenics System Manager

25 October 2018

LCWS 2018 UTA

LCLS-II Partnership

Page 2: ILC Dominant Technologies

2

Background:

Involving Industry in Superconducting RF

LCWS18 M. Ross (SLAC)

TESLA and ILC – Design studies and Industrialization

R&D from 1992 to 2013; continuing to present

• 20 year technical and infrastructure development: Creating a

de-facto standard

EU-XFEL Project – Execution 2010 to 2016

LCLS-II Project – Execution 2013 – 2020

Two 7 year-long ~1B$ highly Industrialized Projects

realization of TESLA vision

10 years of effort and investment in support of photon science

1-15 keV X-ray

Free Electron Lasers

Page 3: ILC Dominant Technologies

TDR ILC Cost Model:

Basis type

15.05.2013 IPAC 13, Marc Ross, SLAC 3

SC Linac: 35% Value

estimate

Cost Basis

type for

ENTIRE ILC

estimate

IPAC 2013 Industrial Session

Page 4: ILC Dominant Technologies

LCLS-II large scale deployment of ILC technology

Fermilab 25 March 2015 (M. Ross, SLAC)

e.g. Cavity / Cryomodule:

• Cost Validation : few percent scale

• Cost Reduction

- Applied production balanced against continued R&D

- From C100 (JLab) to EXFEL: factor 2 cavity cost reduction

• Technical Risk Mitigation

- Demonstrate construction and performance of ILC-type

cryomodules for science in the US

For US, the work on ILC and now on LCLS II has brought

together SRF programs in a way that maximizes

collaboration, efficient sharing of IP, and facilities giving the

most “bang for the buck”.

Page 5: ILC Dominant Technologies

5

ILC Dominant Technologies for LCLS-II:

Outline

• LCLS-II Industrialization Progress and Challenges

• Superconducting RF (SRF) Technology

• Cryogenic Systems

• Supporting Technologies

• Institutional Contributions

• Fermilab, Jefferson Lab, Cornell U, and SLAC

• Industrial-work in an institutional context

• Implications for ILC

• US team is better prepared, and may contribute to ILC as

a strong partner

LCWS18 M. Ross (SLAC)

Cryomodule Design

modifications by

Fermilab

Page 6: ILC Dominant Technologies

LCWS18 M. Ross (SLAC)

Slide 6

LCLS-II(Linac Coherent Light Source-II)

New Injector and

New Superconducting Linac

Existing Bypass Line

New Transport Line

Two New Undulators

And X-Ray Transport

Exploit Existing

Experimental Stations

New Cryoplant

Remove SLAC

Linac from

Sectors 0-10

Page 7: ILC Dominant Technologies

7

LCLS-II:

A CW linac using TESLA / ILC / XFEL technology

LCWS18 M. Ross (SLAC)

• 4 GeV, Low Current (100uA), High power (1.2 MW), 100% DF

• Cavity / Coupler Heat Load is a critical performance criteria

• Cavity “Q0” Improved 3x compared to XFEL/ILC

• Gradient v/v Heat Load: intrinsic / extrinsic

• Bulk Nb, Magnetic Hygiene, Fast cool-down, Quench

management

• 95% of the cryogenic load is DYNAMIC

• Re-evaluation of cryogenic plumbing and level control

• Removal of 5K shield: static load is too small to justify

• RF Power: Solid State Amplifiers

• Cryogenic Capacity

• Different philosophy from LHC primary heat load at 2 Kelvin

Page 8: ILC Dominant Technologies

LCWS18 M. Ross (SLAC)

LCLS-II Cryogenic System:

(ILC Technologies)

Component Count Parameters

Linac 4 cold -

segments

35 each 8 cavity Cryomodules (1.3 GHz)

2 each 8 cavity Cryomodules (3.9 GHz)

1.3 GHz Cryomodule

(CM)

8 cavities/CM 13 m long. Cavities + SC Magnet package

+ BPM

3.9 GHz Cryomodule 8 cavities/CM 6.2 m long. Cavities + BPM

Additional

Cryomodules

1.3 GHz: 4 production + 1 spare

3.9 GHz: 1 spare

1.3 GHz 9-cell cavity 320 each 16 MV/m; Q0 ~ 2.7e10 (avg); 2.0 K;

gradient reach to 19 MV/m (No Q-spec);

bulk niobium sheet - metal

3.9 GHz 9-cell cavity 24 each 13.4 MV/m; Q0~2.0e9

Cryoplant (CP1/CP2) 2 each 4.5 K / 2.0 K cold boxes; 4 kW @ 2.0 K; 18

kW @ 4.5 K; 3.7 kW nom. tot. load

Spare compressors 2 Warm He Comp. 1 spare Cold Comp.

Cryogenic Distribution

System (CDS)

210 m vacuum-jacketed line, 2 each distribution boxes, 6

each feedcap / 2 each endcap 8

Page 9: ILC Dominant Technologies

9

SRF Linac Dominant Technology Score-Card (2018)

LCWS18 M. Ross (SLAC)

Technology XFEL / LCLS-II

xfer to industry

Issues: XFEL Issues: LCLS-II

Niobium/NbTi Y OK Bulk Specification

Cavity Resonator Y OK – FE rerinse FE rerinse, high

Q performance

Power Coupler Y Plating Bellows

Tuner Y OK New design – OK

Helium Vessel Y Ti welding

(nearby pipes)

Ti bellows

Magnet (Q, X, Y) Y OK New design – OK

Cryostat/cold

mass

Y OK OK – high heat

load, magnetic

hygiene

Assembly Y/N OK Institution

Test Partner institute/N OK Institution

Page 10: ILC Dominant Technologies

Cavity Resonator

LCWS18 M. Ross (SLAC)

LCLS-II Specification: Q0≥ 2.7x1010 @ Eacc = 16 MV/m in 5 mG remnant field

• Additionally the cavities must reach 19 MV/m in VT

• Reduce 2K cryogenic load, and thus operating cost of machine.

• Made possible by Nitrogen doping of SRF cavities.

• 2 trade-offs.

• Losses from trapped magnetic flux can be up to 3.6 times higher

• Reduction in maximum achievable gradient of cavity – not an issue for CW

• Remedied by:

• Improved magnetic hygiene and shielding

• Optimized design and cooldown procedures

10

N2 doping developed by

Fermilab and transferred to

industry by LCLS-II team

Page 11: ILC Dominant Technologies

New results up to 49 MV/m in Tesla shape 1.3 GHz cavities

10/24/2018Anna Grassellino - highQ/high G R&D @ FNAL11

Modified low T bake cavities

Seven different single cell cavities have now achieved unprecedented accelerating gradients with Q > 1.5e10 at 40 MV/m, post the new low T bake tweak (addition of step at 50-75C); detailed investigations ongoing; cavities sent to Cornell and Jlab, then to KEK for verification in different dewars

Grassellino et al,

FNAL

arXiv:1806.09824

See Anna’s talk

Thursday 25 Oct

Page 12: ILC Dominant Technologies

Power Coupler

RF input (room temperature)

Cryogenic

temperature

LCWS18 M. Ross (SLAC)

Bellows Challenges:

1. Failure

2. Plating quality

Page 13: ILC Dominant Technologies

13

Cavity Tuner

LCWS18 M. Ross (SLAC)

Precision electro-mechanical

component @2K

Stepping motor; Piezo-actuator

Page 14: ILC Dominant Technologies

14

Cavity Tuner Performance:

LCWS18 M. Ross (SLAC)

LCLS-II Data

Showing real-time resonator

tune

Spec: +/- 10 Hz deviation

must not happen more than

once ~ hours

Page 15: ILC Dominant Technologies

15

XFEL vs ILC vs LCLS-II 2K

He vessel

LCWS18 M. Ross (SLAC)

ILC

LCLS-2

XFEL

Challenges:

Ti welding

Bellows weakness

Page 16: ILC Dominant Technologies

16

Conduction-cooled SC Magnet

Package

LCWS18 M. Ross (SLAC)

Fermilab-design

Made by US company

XFEL Magnet package (Ciemat)

Page 17: ILC Dominant Technologies

17

LCLS-II Cryomodule – adapted for 100W (2K) operation

~10x XFEL

LCWS18 M. Ross (SLAC)

Page 18: ILC Dominant Technologies

18

Magnetic Hygiene, De-gaussing, Magnetic Shielding

LCWS18 M. Ross (SLAC)

LCLS-II Double-layer

‘hermetic’ shielding reduces

B_ambient to <5 mGauss

Page 19: ILC Dominant Technologies

1.3 GHz CM Progress

Cavities Vendor performance good

• 256 cavities assigned to strings

• Avg Q0 of these cavities in vertical test: 3.0 x 1010

Cryomodules

• 30 (of 40) cryomodule assemblies started

• 20 cryomodule tests complete (4 require retest)

• Gradient performance 14% above spec (128MV/m)

• Net gradient reduction (from Vertical Test) due to Field

Emission: 128 MV

• Q0 at spec (2.7e10 @ 16 MV/m)

No CM delivered to SLAC yet

19DOE IPR, Aug 28-29th, 2018

Page 20: ILC Dominant Technologies

CM Q0 Performance

Cryomodule Heat-Load (Average Q0) Test Results

X 1010 X 1010

FNAL pCM 2.9 Jlab pCM 2.7 *

* tested at Fermilab

F1.3-02 2.1 J1.3-02 1.7 JLab

slow

cool-

down

(now

fixed)

F1.3-03 3.4 J1.3-03 2.2

F1.3-04 3.1 J1.3-04 1.9

F1.3-05 3.0 J1.3-05 2.3

F1.3-06 1.9 J1.3-07 1.9

F1.3-07 2.6 J1.3-08 2.5

F1.3-08 2.3 J1.3-10 3.0

F1.3-09 3.3

F1.3-10 2.7

F1.3-11 3.6

F1.3-12 3.3

Operations model (with

test results shown here)

suggest that we will

have a total heat load

(@2K):

~3.7 kW

7.5% margin, one CP

Both 1.3-02 modules with low heat-treat cavities

JLab-tested CM are

expected to show in-

spec heat load with

proper cool-down

Page 21: ILC Dominant Technologies

CM E_acc Performance

Cryomodule E_acc Test Results

MV MV

FNAL pCM 145 Jlab pCM 145

F1.3-02 166 J1.3-02 138

F1.3-03 146 J1.3-03 134

F1.3-04 164 J1.3-04 144

F1.3-05 158 J1.3-05 150

F1.3-06 166 J1.3-07 130

F1.3-07 167 J1.3-08 127

F1.3-08 162 J1.3-10 156

F1.3-09 171

F1.3-10 168

F1.3-11 163

F1.3-12 152

Spec:

128 MV/cryomodule

(avg)

Exceed spec in all but

one

Four CM have no field

emission

Page 22: ILC Dominant Technologies

2. Cryogenics: “PROCESS”: Loads

22

1.3 GHz Cryo-Modules: x 35

• Cavities: 8

• Length 12 m

• Weight 8,000 kg

CP #1 CP #2

Cryo-Modules: x 37

3.9 GHz Cryo-Modules: x 2

• Cavities: 8

• Length 6 m

• Weight 4,000 kg

LCWS18 M. Ross (SLAC)

Page 23: ILC Dominant Technologies

2. PROCESS: Loads

23

CAVITIES:

- A: 4K, 3.00 bar

- B: 2K, 0.03 bar

INTERCEPT:

- C: 5.5K, 3.0 bar

- D: 7.5K, 1.3 bar

SHIELDS:

- A: 35 K, 3.0 bar

- B: 55 K, 1.3 bar

• Loads: Cryo-Modules

LCWS18 M. Ross (SLAC)

Page 24: ILC Dominant Technologies

2. Cryoplant: Capacity - 2x 18kW eq. @ 4.5K

24

3 421

45K Shield

8K Shield

Design Temp. kW eq @ 4.5K

Warm Sh. 45 K 1.8 kW

Cold Sh. 6.5 K 1.2 kW

Liquef. 4.5 K 1.5 kW

Cavities 2.0 K 13.7 kW

TOTAL eq. at 4.5K 18 kW / Plant

“2x Cryo-plants: LN2 Pre-Cooled, 4 Turbines, 75% Capacity @ 2.0K”

Eric Fauve

Cryoplant design: JLab

Page 25: ILC Dominant Technologies

2. PROCESS: Cold Compressors

25

Comp. P [mbar] T [K]

C1 Suct. 27 3.5

C2 Suct. 85 6.3

C3 Suct. 202 9.8

C4 Suct. 410 14.1

C5 Suct. 781 19.9

C5 Disch. 1 202 25.2

Total Flow: 215 g/s

3 421

45K Shield

8K Shield

LCWS18 M. Ross (SLAC)

Difference wrt LHC

Critical Technology

Page 26: ILC Dominant Technologies

3. EQUIPMENT: CRYO-PLANT / Compressors

26

• 12x HOWDEN 321 / 193

STAGE / Plant Power L W H Weight

LP 3 x 600 kW 800 hp 7.0 m 3.3 m 3.4 m 25 tons

MP 1 x 750 kW 1 000 hp 7.0 m 3.3 m 3.5 m 25 tons

HP 1 x1 850 kW 2 500 hp 7.6 m 3.3 m 3.6 m 27 tons

SWING 1 x

600 kW to 1 850 kW / L ~ 7.5 m x W ~ 3.5m x H ~ 3.5 m / ~ 25 tons

Dana Arenius

LCWS18 M. Ross (SLAC)

Difference wrt LHC

Integrated unit developed

and industrialized - JLab

Page 27: ILC Dominant Technologies

3. EQUIPMENT: CRYO-PLANT / Compressors

27

• Compressor Skids:

“A JLab Design: Compact & Cost Effective” (~20 made)

Dana Arenius

Page 28: ILC Dominant Technologies

28

LCLS-II Warm

Compressors

made by

PHPK,

(Columbus,

OH). Installed

at SLAC

LCWS18 M. Ross (SLAC)

Page 29: ILC Dominant Technologies

3. EQUIPMENT: CRYO-PLANT / Cold Boxes

29

• Upper Cold Boxes:

• H: 13m x D: 4m, ~50 tons

• LN2 Pre-cooler.

• Lower Cold Boxes:

• L: 11m x D: 4m, ~50 tons

• 4x Turbines.

• 2.0 K Cold Boxes:

• H= 3.5 m, D= 3.5m, ~15 tons

• 5x Cold Compressors *

Dana Arenius

LCWS18 M. Ross (SLAC)

Page 30: ILC Dominant Technologies

30

Jlab CEBAF 12 GeV

Upgrade 4.5 K cold-

box (Linde) ‘CHL 2’

OutlineLCWS18 M. Ross (SLAC)

Page 31: ILC Dominant Technologies

31

Two large cold-boxes at SLAC, Oct 2018

LCWS18 M. Ross (SLAC)

Page 32: ILC Dominant Technologies

32

Brazed Al Heat Exchanger:

Critical Technology

LCWS18 M. Ross (SLAC)

Performance

Issues:

SNS, JLab CHL2

Sumitomo PP (Kobe)

Chart Industries (LaCrosse, WI)

Page 33: ILC Dominant Technologies

View along main linac:

LCWS18 M. Ross (SLAC) 33

Page 34: ILC Dominant Technologies

RF Power Source and Distribution

Marx modulator 10MW MB Klystron

Adjustable local power distribution system

34LCWS18 M. Ross (SLAC)

Page 35: ILC Dominant Technologies

LCWS18 M. Ross (SLAC) 35

Multi-beam klystron

The High-power RF

source for ILC

Page 36: ILC Dominant Technologies

SLAC Marx Modulator:

32 cells x 4 kV / each to deliver

120 kV, 1.6 ms, 5 HzLCWS18 M. Ross (SLAC)

36

Page 37: ILC Dominant Technologies

37LCWS18 M. Ross (SLAC)

Page 38: ILC Dominant Technologies

Shielding

Cap

Conduits

38

Basic Layout at a typical LCLS-II 1.3 GHz HPRF

5 possible variations at the

accelerator housing ceiling:

• 4 upstream

• 4 downstream

• 2 upstream, 2 downstream

• 3 upstream, 1 downstream

• 1 upstream, 3 downstream

LCWS18 M. Ross (SLAC)

Page 39: ILC Dominant Technologies

• Waveguide system consists of

• Isolator immediately after the SSA output

• Straights

• E, H and U bends

• 2 Flex Guides (downstream of Isolator and

final E-bend in the housing

• Directional Coupler after second flex guide

• Identical layouts for

• SSA to cryomodule (slight support variations

possible)

• in penetration

• cryomodule to accelerator housing ceiling

39

Basic LCLS-II Waveguide System

~10’

~ 20’

~36’

LCWS18 M. Ross (SLAC)

SS Amplifier (R&K Fuji-City)

Waveguide (Mega Gorham

ME)

Page 40: ILC Dominant Technologies

40

Cryomodule Assembly and Testing at Institutes

LCWS18 M. Ross (SLAC)

Jefferson Lab and Fermilab

• Different infrastructure; equivalent process

• Experienced in-house staff

• Infrastructure (clean-room, rails and cantilever, tooling)

adapted from DESY/Saclay

• Critical welding, water-rinse, cryogenic testing, etc

technology

Page 41: ILC Dominant Technologies

41

Summary

LCWS18 M. Ross (SLAC)

• 1.3 GHz CM produced every four days (CEA and DESY

and vendors)

• Three weeks for LCLS-II

• Mass Production of integrated SRF module

• EU-XFEL started in May 2017

• LCLS-II to start in early 2021

• LCLS-II-HE extension to 8GeV launched (CD0)

• ~20 new cavities

• New cavity doping to extend gradient

Page 42: ILC Dominant Technologies

Cold Coupler Assembly into cavity

LCWS18 M. Ross (SLAC) CEA Saclay, France

Clean Room

work

44

Page 43: ILC Dominant Technologies

Basic LCLS II 1.3 GHz SSA Unit

Basic SSA Units include

• Control Module

• Amplifier Modules

• Power supplies

• Heat Exchanger

45

Front and Side Back

The R&K 1.3 GHz SSA Rack for LCLS II

LCWS18 M. Ross (SLAC)

Page 44: ILC Dominant Technologies

7 each 1.3 GHz SSAs Prior to Shipment

46LCWS18 M. Ross (SLAC)

Outline

(Fuji City)