I.L. Aleiner ( Columbia U, NYC, USA ) B.L. Altshuler ( Columbia U, NYC, USA )

41
I.L. Aleiner (Columbia U, NYC, USA) B.L. Altshuler (Columbia U, NYC, USA) K.B. Efetov (Ruhr-Universitaet,Bochum, Germ Localization and Critical Diffusion of Quantum Dipoles in Two Dimensions Windsor Summer School August 25, 2012 Phys. Rev. Lett. 107, 076401 (2011)

description

I.L. Aleiner ( Columbia U, NYC, USA ) B.L. Altshuler ( Columbia U, NYC, USA ) K.B. Efetov ( Ruhr- Universitaet,Bochum , Germany). Localization and Critical Diffusion of Quantum Dipoles in Two Dimensions. Phys. Rev. Lett .  107 , 076401 (2011). Windsor Summer School. August 25, 2012. - PowerPoint PPT Presentation

Transcript of I.L. Aleiner ( Columbia U, NYC, USA ) B.L. Altshuler ( Columbia U, NYC, USA )

Page 1: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

I.L. Aleiner (Columbia U, NYC, USA)B.L. Altshuler (Columbia U, NYC, USA)K.B. Efetov (Ruhr-Universitaet,Bochum, Germany)

Localization and Critical Diffusion of Quantum Dipoles in Two Dimensions

Windsor Summer School August 25, 2012

Phys. Rev. Lett. 107, 076401 (2011)

Page 2: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

2

Outline:1) Introduction: a) “dirty” – Localization in two dimensions

b) “clean” – Dipole excitations in clean system

2) Qualitative discussion and results for localization of dipoles:Fixed points accessible by perturbative renormalization group.

3) Modified non-linear -s model for localization

4) Conclusions

Page 3: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

1. Localization of single-electron wave-functions:

extended

localized

d=1; All states are localized

M.E. Gertsenshtein, V.B. Vasil’ev, (1959)

Exact solution for one channel:

D.J. Thouless, (1977)

Exact solutions for multi-channel:

Scaling argument for multi-channel :

K.B.Efetov, A.I. Larkin (1983)O.N. Dorokhov (1983)

“Conjecture” for one channel:Sir N.F. Mott and W.D. Twose (1961)

Exact solution for ( )s w for one channel:V.L. Berezinskii, (1973)

Page 4: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

1. Localization of single-electron wave-functions:

extended

localized

d=1; All states are localized

d=3; Anderson transitionAnderson (1958); Proof of the stability of the insulator

Page 5: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

1. Localization of single-electron wave-functions:

extended

localized

d=1; All states are localized

d=3; Anderson transition

d=2; All states are localized

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T.V. Ramakrishnan, (1979)

Thouless scaling + ansatz:

If no spin-orbit interaction

Instability of metal with respect to quantum(weak localization) corrections:L.P. Gorkov, A.I.Larkin, D.E. Khmelnitskii, (1979)

First numerical evidence:A Maccinnon, B. Kramer, (1981)

Page 6: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

d=2; All states are localized

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T.V. Ramakrishnan, (1979)

Thouless scaling + ansatz:

If no spin-orbit interaction

Conductivity

Density of state per unit

area

Diffusion coefficient

Dimensionless conductance

Thouless energy

Level spacing

/

Page 7: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

d=2; All states are localized E. Abrahams, P. W. Anderson, D. C. Licciardello, and T.V. Ramakrishnan, (1979)

Thouless scaling + ansatz:

If no spin-orbit interaction

First numerical evidence:A Maccinnon, B. Kramer, (1981)

1

ansatz

Locator expansion

Page 8: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

d=2; All states are localized E. Abrahams, P. W. Anderson, D. C. Licciardello, and T.V. Ramakrishnan, (1979)

Thouless scaling + ansatz:

If no spin-orbit interaction

Instability of metal with respect to quantum(weak localization) corrections:L.P. Gorkov, A.I.Larkin, D.E. Khmelnitskii, (1979); Wegner (1979)

1

ansatz

No magnetic field (GOE)

Page 9: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

d=2; All states are localized E. Abrahams, P. W. Anderson, D. C. Licciardello, and T.V. Ramakrishnan, (1979)

Thouless scaling + ansatz:

If no spin-orbit interaction

Instability of metal with respect to quantum(weak localization) corrections: Wegner (1979)

1

ansatz

In magnetic field (GUE)

Page 10: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

2. Quantum dipoles in clean 2-dimensional systems

Simplest example:Each site can be in four excited states, a

+ -

+

-

+-+

-

Short-range part # of dipoles is not conserved

Square lattice:z

x

Page 11: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Single dipole spectrum

+ -

+

-

+-+

-+ ++

+ -

+

-

+-+

-- -+

+ -+--

+

- +

--

Degeneracy protected by the lattice symmetry

Page 12: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Single dipole spectrum

Degeneracy protected by the lattice symmetry

Alone does nothing

Qualitatively change E-branch

Page 13: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Single dipole long-range hops

+ -

+

-

Second order coupling:

Fourier transform:

Page 14: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Single dipole spectrum

Degeneracy protected by the lattice symmetry lifted by long-range hops

Similar to the transverse-longitudinalsplitting in exciton or phonon polaritons

Page 15: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Single dipole spectrum

Goal: To build the scaling theory of localization including long-range hops

Similar to the transverse-longitudinalsplitting in exciton or phonon polaritons

Page 16: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Dipole two band model and disorder

disorder

Page 17: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

… and disorder and magnetic field

disorder

Page 18: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Approach from metallic side

Only important new parameter:

Page 19: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Scaling results

1

ansatz

No magnetic field (GOE)

Used to be for A=0

Page 20: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Scaling results

1

ansatz

No magnetic field (GOE)

A>0

is not renormalized

Instability of insulator,L.S.Levitov, PRL, 64, 547 (1990)

Stable critical fixed point

Accessible by perturbative RGfor

Critical diffusion (scale invariant)

Page 21: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Scaling results

In magnetic field (GUE)

Used to be for A=0

1

ansatz

Page 22: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Scaling results

1ansatz

In magnetic field (GUE)

A>0

is not renormalized

Unstable critical fixed point

Accessible by perturbative RGfor

“Metal-Instulator” transition (scale

invariant)

Page 23: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

23

Orthogonal ensemble: universal conductance (independent of disorder)

Unitary ensemble: metal-insulator transition

Summary of RG flow:

Page 24: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Qualitative consideration

1) Long hops (Levy flights) Consider two wave-packets

(1)(2)

Page 25: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Qualitative consideration

1) Long hops (Levy flights) Consider two wave-packets

(1)(2)

Page 26: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Qualitative consideration

1) Long hops (Levy flights) Consider two wave-packets

(1)(2)Rate: R

Does not depend on the shape of the wave-function

Levy flights

Page 27: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

2) Weak localization (first loop) due to the short-range hops[old story: Gorkov, Larkin, Khmelnitskii (1979); Wegner (1979)]

Constructive interference

Destructive interference

Page 28: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

2) Weak localization (first loop) due to the short-range hops[old story: Gorkov, Larkin, Khmelnitskii (1979); Wegner (1979)]

Constructive interference

No magnetic field (GOE)

0 in magnetic field (GUE)

Page 29: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

3) Weak localization (second loop) short hops;

In magneticfield; Wegner (1979)

0 no magnetic field (GOE)

Page 30: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

4) New interference term: Second loop: short hops and Levy flight interference:

No magnetic field (GOE)

Page 31: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Scaling results

1

ansatz

No magnetic field (GOE)

A>0

is not renormalized

Stable critical fixed point

Accessible by perturbative RGfor

Page 32: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Scaling results

1ansatz

In magnetic field (GUE)

A>0

is not renormalized

Unstable critical fixed point

Accessible by perturbative RGfor

Page 33: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Standard non-linear s-model for localization

See textbook by K.B. Efetov, Supersymmetry in disorder and chaos, 1997

- supersymmetry

Any correlation function

Page 34: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Free energy functional (form fixed by symmetries) (GOE):

Only running constant (one parameter scaling)

Standard non-linear s-model for localization

Page 35: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Beyond standard non-linear s-model for localization (long range hops)

- supersymmetryAny correlation

function

Page 36: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

Beyond standard non-linear s-model for localization (long range hops)

Page 37: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

37

Orthogonal ensemble: universal conductance (independent of disorder)

Unitary ensemble: metal-insulator transition

Page 38: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

38

Conclusions.

1. Dipoles move easier than particles due to long-range hops.

2. Non-linear sigma-model acquires a new term contributing to RG.

3. RG analysis demonstrates criticality for any disorder for the orthogonal ensemble and existence of a metal-insulator transition for the unitary one.

Page 39: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

39

Renormalization group in two dimensions.

Integration over fast modes:~

0

~

VQVQ

0Q~

Vfast, slow

Expansion in and integration over V 0Q

New non-linear -model with renormalized and ~

D~

Gell-Mann-Low equations:

~

A consequence of the supersymmetry

Physical meaning: the density of states is constant.

Page 40: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

40

1Dt 232 12

1

ttd

dtt

1,0,1 For the orthogonal, unitary and symplectic ensembles

Orthogonal: localization Unitary: localization but with a much larger localization length Symplectic: “antilocalization”

Unfortunately, no exact solution for 2D has been obtained.

)/ln(1 00

0

t

tt

Reason: non-compactness of the symmetry group of Q.

Renormalization group (RG) equations.

Page 41: I.L.  Aleiner ( Columbia U, NYC, USA ) B.L.  Altshuler ( Columbia U, NYC, USA )

41

The explicit structure of Q

UUQQ 0

v

uU

0

0 u,v contain all Grassmann variables

All essential structure is in 0Q

^^

^^

0

cossin

sincos^

i

i

ie

ieQ

i0

0^

(unitary ensemble)

Mixture of both compact and non-compact symmetries rotations: rotations on a sphere and hyperboloid glued by the anticommuting variables.

0

0