IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

download IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

of 33

Transcript of IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    1/33

    InternationalJournalofNanomedicineDovepressopenaccesstoscientificandmedicalresearchOpenAccessFullTextArticleORIGINALRESEARCh

    Improveddrugloadingandantibacterialactivityofminocycline-loadedPLGAnanoparticles(button)(button)preparedbysolid/oil/waterionpairingmethod

    TaherehSadatJafarzadehKashi1SolmazEskandarion1,2MehdiEsfandyari-Manesh3,4SeyyedMahmoudAminMarashi5NasrinSamadi6SeyyedMostafaFatemi1,7FatemehAtyabi2,3SaeedEshraghi8RassoulDinarvand2,3

    1DentalMaterialsDepartment,FacultyofDentistry,2Departmentof

    Pharmaceutics,3NanotechnologyResearchCenter,FacultyofPharmacy,TehranUniversityofMedicalSciences,Tehran,4DepartmentofChemistry,AmirkabirUniversityofTechnology,Tehran,5DepartmentofMicrobiologyandImmunology,FacultyofMedicine,BabolUniversityofMedicalSciences,Babol,6DrugandFoodControlDepartment,FacultyofPharmacy,7ResearchCenterofScienceandTechnologyinMedicine,8Department

    ofMicrobiology,TehranUniversityofMedicalSciences,Tehran,Iran

    Background:Lowdrugentrapmentefficiencyofhydrophilicdrugsintopoly(lactic-co-glycolicacid)(PLGA)nanoparticlesisamajordrawback.TheobjectiveofthisworkwastoinvestigatedifferentmethodsofproducingPLGAnanoparticlescontainingminocycline,adrugsuitableforperiodontalinfections.Methods:Differentmethods,suchassingleanddoublesolventevaporationemulsion,ionpairing,andnanoprecipitationwereusedtopreparebothPLGAandPEGylatedPLGA

    nanoparticles.Theresultingnanoparticleswereanalyzedfortheirmorphology,particlesizeandsizedistribution,drugloadingandentrapmentefficiency,thermalproperties,andantibacterialactivity.Results:Thenanoparticlespreparedinthisstudywerespherical,withanaverageparticlesizeof85424nm.Theentrapmentefficiencyofthenanoparticlespreparedusingdifferentmethods

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    2/33

    wasasfollows:solid/oil/waterionpairing(29.9%).oil/oil(5.5%).water/oil/water(4.7%).modifiedoil/water(4.1%).nanoprecipitation(0.8%).Additionofdextransulfateasanionpairingagent,actingasanionicspacerbetweenPEGylatedPLGAandminocycline,decreasedthewatersolubilityofminocycline,henceincreasingthedrugentrapmentefficiency.EntrapmentefficiencywasalsoincreasedwhenlowmolecularweightPLGAandhighmolecularweightdextransulfatewasused.DrugreleasestudiesperformedinphosphatebufferatpH7.4indicatedslowreleaseofminocyclinefrom3daystoseveralweeks.Onantibacterialanalysis,theminimuminhibitoryconcentrationandminimumbactericidalconcentrationofnanoparticleswasatleasttwotimeslowerthanthatofthefreedrug.Conclusion:Novelminocycline-PEGylatedPLGAnanoparticlespreparedbytheionpairingmethodhadthebestdrugloadingandentrapmentefficiencycomparedwithotherpreparednanoparticles.Theyalsoshowedhigherinvitroantibacterialactivitythanthe

    freedrug.Keywords:nanoparticle,PEGylation,PLGA,ionpairing,minocycline,antibacterial

    Correspondence:RassoulDinarvandFacultyofPharmacy,TehranUniversityofMedicalSciences,TehranPOBox14155-6451,[email protected]

    Introduction

    Manybiodegradablepolymerssuchaschitosan,gelatin,poly(lactic-co-glycolicacid)(PLGA),polymethylmethacrylate,polycaprolactone,andpoly(lacticacid)areusedforthepreparationofmicroparticlesandnanoparticles.15PLGAisoneofthemostbiocompatibleandbiodegradablepolymers,andithasbeenwidelystudiedforpreparingdrug-loadednanoparticles.6,7Severalmethods,suchasphaseseparationorcoacervation,emulsificationdiffusion,spray-drying,andemulsion-solventevaporationtechniqueshavebeenusedtopreparePLGAnanoparticles.811Usingemulsionsolven

    tevaporationmethods,variousdrugmoleculeshavebeenencapsulatedintoPLGAnanoparticles.12,13Forpreparationofnanoparticles,thechoiceofaparticularmethodprimarilydependsonthehydrophilicity/hydrophobicityofthedrugmoleculeand

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7221234

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    3/33

    Dovepress

    2012Kashietal,publisherandlicenseeDoveMedicalPressLtd.ThisisanOpenAccessarticlehttp://dx.doi.org/10.2147/IJN.S27709whichpermitsunrestrictednoncommercialuse,providedtheoriginalworkisproperlycited.

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    4/33

    KashietalDovepress

    stabilityconsiderations.Thepatternofdrugreleasefromparticlesdependsonsomeoftheircharacteristics,includingsize,sizedistribution,entrapmentefficiency,anddrugloading.14Thesecharacteristicsareinfluencedbysomeofthepreparationparameters,suchaspoweranddurationofenergyapplied,organicandaqueousphasevolume,polymeranddrugconcentration,polymermolecularweight,andsolventvolume.Eachoftheseparametersinfluencesthesizeand/orthedrugloadingofthenanoparticles.

    Inthefieldoforaldiseases,polymeric-baseddrugdeliverysystems,suchasfibers,strips,ormicroparticles,havebeenusedforlocaldrugdeliveryindentistrytoprovideadequatedrugconcentrationsdirectlyatthesiteofaction.Thesesystemsareusuallyinsertedintotheperiodontalpocketorinjectedinperiodontaltissuestobothenhancethetherapeuticeffectsofdrugsandreducethesideeffectsofdrugsrelatedtotheirsystemicuse.Localdeliverysystemshavebeensuggestedasanovelconceptfortreatmentofperiodontaldiseases,especiallyincasesthatarerecurrentandchronic.Severalspecializedlocal

    deliverysystemshavebeendesignedforcontrolledreleaseofantibioticsinperiodontaltissues.15,16Thecomplexityofaccesstoperiodontaltissuesmakesallofthesesystemsonlypartiallysuccessful.17Thereareafewstudiesaboutpreparationofantibacterialnanoparticlesforperiodontaltherapy.18,19

    Nanoparticlesprovideseveraladvantages.Forexample,becauseoftheirsmallsize,theypenetrateareas(extracellularandintracellularareas)thatmaybeinaccessibletootherdeliverysystems,suchasbacterialcells,alveolarbonetrabeculae,andfromthegingivalsulcusinwardtotheunderlyingconnectivetissueandtotheperiodontalpocketareasbelowthegumline.17,19,20Nanoparticlesprotectadrugagainstinvivodegradation

    andreducesideeffects.Theyalsohavemorefavorabledrugpharmacokinetics.21Further,comparedwithmicroparticles,nanoparticleshavebetterstabilityinbiologicalfluids.

    Accordingly,nanoparticlescanprovideapotentialperiodontalcarriersystemforthedeliveryofantibioticstoperiodontaltissues.Thesesystemsreducethedosageandfrequencyofantibioticusageandfurtherprovideanadequatesupplyofantibioticsoveranextendedperiodoftime.Differentpropertiesofnanoparticles,suchasparticlesize,entrapmentefficiency,minimuminhibitoryconcentration(MIC),minimumbactericidalconcentrations(MBC),anddrugreleaseinfluencetheclinicaloutcomeofdrugtherapy

    viathefollowingmechanisms:

    SmallerparticlesizefacilitatesthepenetrationofnanoparticlesandenhancestheirantibacterialpropertiesHigherentrapmentefficiencyofnanoparticlesincreasesthedrugcontentatthesiteofactionLowerMICandMBCachievedwithnanoparticles

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    5/33

    indicatesthatbetterantibacterialactivityisachievedwithasmalleramountofdrugInperiodontaltreatment,ahigherconcentrationofantibioticatinitialtimesandthereafteraconstantreleaseofantibioticwithlowerconcentrationisrequired,whichisachievedwithnanoparticles.Minocyclinehasabroaderspectrumofactivitythanothermembersofthetetracyclinegroupofantibiotics.Itisalong-actingandbacteriostaticantibiotic.Generallyithasserumlevelshigherthanthoseofsimpletetracyclinesbecauseofitslonghalf-life.Minocyclineisusedprimarilytotreatacneandothersimilarskindiseases,butinaccordancewiththebroaderspectrumofactivityofminocycline,italsoactsagainstperiodontalpathogens.Minocycline-loadedmicrocapsuleshavebeeninvestigatedinperiodontaltreatments.2224Ithasbeeneffectivelyusedfortreatmentofperiodontitisandrelatedinfectionsinperiodontaldiseases.2527Themajoradvantageofminocyclineisitsanticollagenasepropertiesandabilitytoreducesofttissuedestructionandboneresorptionwhichisveryimportantinthetreatmentofperiodontaldisease.19Inaddition,minocyclineisagoodcandidateforlocalantibioticdelivery.28,29Inthisstudy,minocyclinewaschosentobeincorporatedintoPLGAnanoparticles.Dueto

    thehighhydrophilicityofminocyclineanditsrapidpartitioningtotheaqueousphase,preparationofminocyclinePLGAnanoparticlesremainsarealchallenge.

    Developmentofnewmethodsforthedeliveryofhydrophilicdrugsisemergingasanimportantresearchfieldinpharmaceutics.30,31Incontrastwithlipophilicdrugs,therearesomeproblemswithencapsulationofhydrophilicagents.32,33Thecommonlyutilizedmethodsforpreparinghydrophilicdrugsinnanoparticlessufferfromlowdrugloadingbecauseduringpreparationthedrugrapidlydiffusestotheexternalaqueousphase.34However,anotherproblemwithhydrophilicdrugsisthatthedrugparticlesusually

    encapsulatedintheformofsmallclustersonthesurfaceorwithinthepolymermatrixjustbelowthesurfaceoftheparticles,resultinginahighinitialburstrelease.35

    Inthisstudy,weusedseveralpreparationstrategiestoimprovetheencapsulationefficiencyandloadingofminocyclineasahydrophilicdrug.Water/oil/waterandsolid/oil/wateremulsificationwereusedforthehydrochloridesaltformofminocycline.Theoil/oil,oil/wateremulsification,andnanoprecipitationmethodswereusedforthenon-saltformofminocycline.Wemadesomemodificationstothepreparationmethods,suchasaddinglecithinasanamphiphiliccompoundtothewaterphaseand/ororganic

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    6/33

    DovepressMinocyclinePLGAnanoparticles

    phase,orusingPEGylatedPLGA.36PEGcanbeusedasapromisingmaterialinbiomedicalapplications,becauseofitsgoodhydrophilicity,lowtoxicity,excellentbiocompatibility,andbiodegradability.37Boththesolid/oil/waterandionpairingtechniqueswerecombinedinonemethodtoencapsulatehydrophilicdrugs.WehypothesizedthatuseofPEGylatedPLGA(withdifferentmolecularweights)asanamphiphiliccopolymeranddextransulfate(withdifferentmolecularweights)asanionpairingagentcouldresultinabetterencapsulationyieldofcationicmoleculesinnanoparticles.Dextransulfatewasusedtoreducedrugsolubilitybycoacervatingmoleculesthatdiffuseslowlytotheexternalphaseandallowencapsulationofthecoacervateonthepolymericprecipitate.Dextransulfateisapolyanionicderivativeofdextran(apolymerofanhydroglucose)andhasbeenutilizedinvariouspharmaceuticalformulations.38,39Finally,nanoparticleswerecharacterizedandcomparedfortheirsize,morphology,andespeciallydrugloading,drugentrapmentefficiency,andinvitrodrugreleaseprofile.Inaddition,theantibacterialeffectofnanoparticlesagainststandardAggregatibacteractinomycetemcomitans,themost

    importantpathogeninperiodontalinfections,wasinvestigatedinvitro.40

    Materialsandmethods

    Materials

    PLGA(Resomer502Hand504H,withalactictoglycolicacidratioof50:50)waspurchasedfromBoehringerIngelheim(Ingelheim,Germany).Polyvinylalcohol(molecularweight30,00070,000),dextransulfatesodiumsalt(molecularweight6000and500,000Da),bifunctionalNH2-PEG-NH2(molecularweightof3350Da),sorbitanmonooleate

    (Span80),N-hydroxysuccinimide,anddicyclohexylcarbodiimidewerepurchasedfromSigma-Aldrich(StLouis,MO).Lecithinandhighpressureliquidchromatography(HPLC)gradedimethylformamideandtetrahydrofuranwereobtainedfromMerck(Darmstadt,Germany).MinocyclinewaspurchasedfromKoutingChemicalCo,Ltd,(Songjang,China).Deionizedwaterwasusedthroughouttheexperiment.Brainheartinfusionagar(Merck)wasusedformicrobiologicaltests.Allotheragentsandsolventswereanalyticalorreagentgradeandusedasreceived.

    NanoparticlepreparationO/Wemulsiontechnique

    OilinwateremulsificationwasperformedaccordingtothemethoddevelopedbyEsmaeilietal,withalittlemodification.41Drugandpolymersolutionwerepreparedbydissolving

    150mgminocyclineand350mgofPLGA504Hin20mLofdichloromethaneatroomtemperatureusingamagneticstirrer(Heidolph,Germany).Theorganicphasewasinjectedthroughasyringeequippedwitha20-Gangiocatheterinto75mLofanaqueouspolyvinylalcoholsolutionandhomogenized

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    7/33

    (Ultra-turrax,IKA,Germany)at24,000rpmfor5minutes.Theemulsionwasthensonicated(Misonix,USA)for2minutes(30W).Theresultingnanoemulsionwasmaintainedunderamechanicalstirrer(IKA)undergentlemixingfor4hourstoevaporateofftheorganicsolvent.Afterevaporation,nanoparticleswerecollectedbycentrifugation(Sigma3K30,Germany)at20,000rpmfor20minutesandwashedthreetimeswithdeionizedwatertoremovenonencapsulateddrugandtheremainingsolvent.Thenanoparticledispersionwasfreeze-driedat-40Cfor48hours(Christ,Alpha2-4LD,Germany)toobtainafinepowder.

    ModifiedO/Wemulsiontechnique

    Phospholipidlecithin20mgwasaddedtothewaterphase,oilphase,andoilandwaterphaseasanamphiphiliccompoundaccordingtothemethodreportedbyCheowandHadinoto.36TheO/Wprocesswascarriedoutaccordingtotheprevioussectionwith100mgofminocyclineand400mgofPLGA504H.

    O/Oemulsiontechnique

    Oilinoilemulsificationwasperformedaccordingtothemethod

    developedbyMahdavietal,withalittlemodification.42Drugandpolymersolutionwaspreparedbydissolving7.5mgofminocyclineand37.5mgPLGA504Hin3mLofacetonitrile.Thissolutionwasaddedinto40mLofviscousliquidparaffincontaining200LSpan80andcontinuouslystirred,yieldingafinelydisperseddrugsuspension.Thesuspensionwasheatedto55Candstirredfor2hourstoensurecompleteevaporationofacetonitrile.Nanoparticleswerecollectedbycentrifugationat20,000rpmfor20minutesandwashedthreetimeswithn-hexanetoremoveresidualmineraloilandSpan80.Thenanoparticledispersionwasthenfreeze-driedfor48hours.

    W/O/Wemulsiontechnique

    AdoubleemulsionprocesswasperformedaccordingtothemethoddevelopedbyDillenetal,withalittlemodification.43Anaqueoussolutionofminocyclinewaspreparedbydissolving25mgdrugin3mLofdeionizedwater(innerwaterphase).Thesolutionwassonicatedfor30secondsat20Wandthenfor45secondsat35W.Theinnerwaterphasewasinjectedduringsonicationforoneminuteat20Winanorganicphasewhichconsistedof250mgofPLGA504H

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    8/33

    KashietalDovepress

    dissolvedin10mLofdichloromethane.TheresultingW/Oemulsionwasdispersedin12.5mLofthefirstouterwaterphase,a0.5%w/vpolyvinylalcoholsolution,andthensonicatedfor30secondsat15WtoobtainamultipleW/O/Wemulsion.Theresultingemulsionwasaddedtothesecondouterphase,consistingof60mLof0.2%w/vpolyvinylalcoholinordertominimizecoalescenceoftheemulsion.Theorganicsolventwasallowedtoevaporateduring4hoursatroomtemperatureundergentlemixing.Finally,thenanoparticleswerecollectedbycentrifugationandfreeze-driedafterthreetimeswashingwithdeionizedwater.

    S/O/Wemulsiontechniquebyionpairingmethod

    ThesynthesisschemeforPEGylatedPLGAisshowninFigure1.PEGylatedPLGAwaspreparedaccordingtothemethoddevelopedbyEsmaeilietalwithalittlemodification.8Briefly,2gPLGAdissolvedindichloromethanewasactivatedbydicyclohexylcarbodiimide(207mgforPLGA502Hand115mgfor504H)andN-hydroxysuccinimide(414mgforPLGA502Hand230mgfor504H)atroomtemperature

    underanitrogenatmospherefor24hours.Theresultingmixturewasfilteredandprecipitatedbyadditionofice-colddiethylether.TheactivatedPLGAwasdriedundervacuumandthenreactedwithbis-aminePEG(200mgforPLGA504Hand600mgfor502H)in16mLofdichloromethane.Stoichiometricmolarratiosof1/1.5and1/1.1wereusedforPLGA504H/bis-aminePEGandPLGA502H/bis-aminePEG,respectively.Thereactionwasperformedfor6hoursundernitrogenatmosphereatroomtemperature.Theresultingmixturewasprecipitatedbydroppingitintoice-colddiethylether.TheprecipitatedPEGylatedPLGAwasfiltered,dialyzed,anddried.H-NMRspectraforPEGylatedPLGA

    O

    wereobtainedusingtheBrukerAvence500MHz,inCDCL3.(Figure2).TheconjugationpercentageofterminalcarboxylicacidofPLGAwithbis-aminePEGwas100%(H-chemicalshiftCH,CH2,andCH3ofPLGAandCH2ofPEGare5.2,4.8,1.6,and3.7cm-1,respectively).

    ThemethodusedforpreparationofPEGylatedPLGAnanoparticleswasacombinationofS/O/Wandtheionpairingtechnique.WepreparedfournanoparticleformulationsusingtwokindsofPLGA(502Hand504H)anddextransulfatewithtwomolecularweights(6000and

    500,000).A0.7mLaqueoussolutionofminocyclineHClwasinjectedinto10mLofacetonesolutioncontaining200mgPEGylatedPLGAduringsonication(40W)for60seconds.A0.3mLaqueoussolutioncontaining24mgdextransulfatewasaddedandsonicatedfor30seconds.Theresultingsolidinoilphasewasaddedto60mLofcontinuousphasecontaining0.5%polyvinylalcoholassurfactantunderhomogenation(24,000rpmfor5minutes).Theresultingnanoemulsionwasmaintainedundergentlemixingfor3hours.Consequently,thenanoparticleswere

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    9/33

    collectedbycentrifugationandthenfreeze-driedafterthreetimeswashingwithdeionizedwater.

    Nanoprecipitationtechnique

    NanoprecipitationprocesswasperformedaccordingtothemethoddevelopedbyBilatietal,withalittlemodification.44PLGA504H50mgandminocycline20mgweredissolvedin2mLofdimethylsulfoxidetoformthediffusingphase.Thisphasewastheninjectedto10mLofethanolasanon-solventundergentlemixing.Theresultingnanoparticleswerethencentrifugedthreetimesforcyclesof20minutesat20,000rpmandwashedwithdeionizedwater.

    HO

    OOx-1y-1PEG-bis(amine)PLGADCCNHSOO

    OOOOnNHOCH3OHnNH2H2NxyO

    O+NH2

    CH3OCH3OH

    PEGylatedPLGA

    Figure1SynthesisofPEGylated-PLGAcopolymer.Abbreviations:PEG,poly(ethylene)glycol;PLGA,poly(lactic-co-glycolicacid).

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    10/33

    DovepressMinocyclinePLGAnanoparticles

    Particlesizeandmorphologycharacterization

    Particlesizeandsizedistributionofthenanoparticleswereinvestigatedbylaserlightscattering(MalvernZetasizerZS,Malvern,Worcestershire,UK),aftersuspending5mgofthenanoparticlesin20mLofdeionizedwater.Threedeterminationswerecarriedoutforeachformulation.Morphologicalcharacterizationwasconductedusingscanningelectronmicroscopy(30XLFEG,Philips,Eindhoven,TheNetherlands).Scanningelectronmicroscopywasemployedtodeterminetheshapeandsurfacemorphologyofthenanoparticles,andtheparticleswerecoatedwithgoldusingasputtergoldcoater(BAL-TEC,Switzerland)undervacuumbeforehand.

    Differentialscanningcalorimetry

    Differentialscanningcalorimetry(DSC)ofminocycline,andemptyandminocycline-loadednanoparticleswereperformedonaMettlerDSC823(MettlerToledo,

    Switzerland)equippedwithaJulaboThermocryostateModelFT100Y(JulabolabortechnikGmbH,Germany).AMettlerStarsoftwaresystem,version9.0wasusedfordataacquisition.DSCmeasurementswereperformedataheatingrateof10C/minuteinthe20C350Ctemperaturerange.Thedrynanoparticleswereweighed,putintoanaluminumpan,andsealedcarefully.Duringmeasurement,thesamplecellwaspurgedwithnitrogengas.Calibrationoftheinstrumentwasperformed.

    Determinationofdrugloading

    andentrapmentefficiency

    TheamountofminocyclineentrappedinthenanoparticleswasdeterminedbyHPLCanalysis.Theminocycline-loadednanoparticles(20mg)weredissolvedin5mLacetonitrileand10mLofmethanolwasthenaddedtoprecipitatethepolymer.Thisprocedurewasperformedusing10mLofdeionizedwaterand10mLofdimethylformamidefortheminocycline-loadednanoparticles.Thesampleswerepassedthrougha0.22mMilliporemembraneandtheamountofdrugwasdeterminedbyHPLCanalysis.Thedrugencapsulationefficiencywasdeterminedfromthemassratiooftheencapsulateddrugtotheamountofdruginitiallyadded.The

    amountofdrugloadingandencapsulationefficiencywerecalculatedusingthefollowingequations:42

    Drugloading(%)=(minocyclineweightinsample/totalweightofsample)100%

    Encapsulationefficiency=(actual/theoreticalminocycline

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    11/33

    loading)100%

    Invitrominocyclinereleasefromnanoparticles

    Drugreleasefromthenanoparticleswasstudiedusingadialysistechnique.A20mgsampleofnanoparticleswasresuspendedin5mLofphosphatebuffersolutionatpH7.4andplacedinadialysisbag(Spectra/Por,molecularweightcutoff2000Da)sealedatbothendswithclips(Spectra,Torrance,CA).Thedialysisbagwassoakedin40Lofphosphatebuffersolution(pH7.4)andmaintainedat37C0.5Cand1005rpmshakinginashaker(HeidolphUnimax1010,Germany).Atpredeterminedtimeintervals,individualsamplesweretakenandthewholeofthemediumwasreplacedwith40mLoffreshphosphatebuffersolution.TheamountofminocyclinereleasedintoeachmediumwasquantifiedbyHPLCandcomparedwithastandardcalibrationcurvegeneratedusingknownconcentrationsofminocycline.

    Theconcentrationofminocyclinewasanalyzedusinga

    modifiedUSPHPLCmethod.HPLCanalysiswasperformedatroomtemperatureusingaKnauerapparatusmodelK-1001,WellChrom(Berlin,Germany),equippedwithamodelPDAK-2700ultravioletdetector(Knauer,Germany).TheanalyticalcolumnwasNucleodurC18(250.46cminternaldiameter,poresize5m;Macherey-Nagel,Dren,Germany).Themobilephaseconsistedof0.1Mammoniumoxalate,0.005Medetatedisodium,dimethylformamide,andtetrahydrofuran

    (600:180:240:160v/v)andadjustedwithammoniumhydroxidetoapHof7.2.Theflowratewasfixedat1.5mLperminuteandultravioletdetectionwasperformedat280nm.Theretention

    timeofminocyclinewasabout7.460.2minutes.Theconcentrationofminocyclinewascalculatedforeachsampleusingacalibrationcurveofknownamountsofdrug(withalinearregressioncoefficientofR=0.999).Antibacterialpropertiesofminocycline-loadednanoparticles

    TheantibacterialactivityofthenanoparticleswascomparedwiththatoffreeminocyclinebythewelldiffusionmethodusingAggregatibacteractinomycetocomitans(43718,AmericanTissueCultureCollection,Vanassus,VA).

    Thesurfaceofthebrainheartinfusionagarplatessupplementedbyhemin,vitaminK,bovineserumalbumin,andsheepbloodwereseededbythebacterialsuspensionatacelldensityequivalentto0.5McFarland(1.5108CFU/mL).Theantibacterialagentwassterilizedbyfiltrationusing

    0.22mMilliporemembranes.Wellswith8mmdiameterswerepreparedbypunchingasterilecorkborerontotheagarplatesandremovingtheagartoformawell.Aliquots

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    12/33

    of80Lofeachtestcompoundsolution(3.5g/mLsubmityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    13/33

    KashietalDovepress

    5.75421.0000-CHofPLGA-CH2ofPLGA-CH2ofPEG-CH3ofPLGA2.50624.91929.04477.63155.24615.19904.87584.86053.50453.43813.40453.36833.33263.29702.75542.63462.59042.53942.50622.50332.49992.49642.49282.36092.0840147371.46524.90915.26011050[ppm]

    Figure2h-NuclearmagneticresonancespectrumofsynthesizedPEGylatedPLGAinCDCL3.

    Abbreviations:PEG,poly(ethylene)glycol;PLGA,poly(lactic-co-glycolicacid).

    minocyclinepowderindeionizedwater)weredeliveredintothewells.After48hoursofincubationat37C,theinhibitionzonesaroundthewellsweremeasuredinmillimetersusingacaliper.

    TheMICandMBCofthetestcompoundsweredeterminedusingthebrothmacrodilutionmethod.Astockconcentration

    offreedrugwaspreparedindeionizedwaterthatwasfurtherdilutedinbrainheartinfusionbrothtoreachaconcentrationrangeof0.125to32g/mL.Basedontheactualdrugloadingofthenanoparticles,theamountofnanoparticlesinbrainheartinfusionbrothwasusedtoprovidetheequivalentconcentrationofminocyclinesimilartothatoffreedrug.Thefinalconcentrationofbacteriaintheindividualtubeswasadjustedtoabout5105CFU/mL.ControltubescontainedPEGylatedPLGAnanoparticleswithoutdrugandwithnoantibacterialagent.After48hoursofincubationat37C,thetesttubeswereexaminedforpossiblebacterialturbidity,andtheMICofeachtestcompound

    wasdeterminedasthelowestconcentrationthatcouldinhibitvisiblebacterialgrowth.AfterMICdetermination,analiquotof10Lfromalltubesinwhichnovisiblebacterialgrowthwasobservedwasseededinbrainheartinfusionagarplatesnotsupplementedwithanyfreeminocyclineorminocyclineloadednanoparticles.Theplateswerethenincubatedfor48hoursat37C.TheMBCendpointisdefinedasthelowestconcentrationofantimicrobialagentthatkills.99.9%oftheinitialbacterialpopulationwherenovisiblegrowthofthebacteriawasobservedontheplates.16,41

    Statisticalanalysis

    Resultswereexpressedasthemeanstandarddeviation.One-wayanalysesofvariancewereperformedforevaluationoftheresults.Pvalueslessthan0.05wereconsideredtobestatisticallysignificant.

    Results

    Thebasiccharacteristicsoftheminocycline-loadednanoparticlespreparedusingvariousmethodsinthisstudyare

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    14/33

    presentedinTables1and2.

    Particlesizeandmorphology

    AllofthenanoparticlespreparedfromPLGAandPEGPLGAundervariousconditionshadanacceptablesize(lessthan500nm)andweresuitableforourfinalclinicalpurposesexceptforthenanoparticlespreparedusingtheoilinoilemulsionmethod(OO5).Themeanparticlesizes(z-average)ofallthesamplesareshowninTable1.Therangeofnanoparticlesizewas857070nm.ItcanbeseenthatthesizeofthenanoparticleswasthesmallestandlargestwhentheywerepreparedusingnanoprecipitationandtheO/Oemulsionmethod,respectively.AtypicalscanningelectronmicrophotographofnanoparticlesisshowninFigure3.Theminocycline-PLGAnanoparticleswerewelldefinedandspherical,andhadasmoothsurfacewithoutpores.Nanoparticlespreparedbythenanoprecipitationmethodhadthenarrowestsizedistributionrangewithapolydispersityindexof0.08(Figure4A).Nanoparticlespreparedbythe

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    15/33

    DovepressMinocyclinePLGAnanoparticles

    Table1PreparationofPLGA-basednanoparticleswithdifferentmethodsandtheirparticlesize

    SamplePreparationmethodMeandiameter(nm)OW1Oil/water19314OW2ModifiedLecithininwater22523OW3oil/waterLecithininoil21516OW4Lecithinintwophases24221OO5Oil/oil7070208WOW6Water/oil/water42417SOW7Solid/oil/waterPLGA(MW48,000)+20919byionpairingDS(MW6000)SOW8PLGA(MW48,000)+22615DS(MW500,000)SOW9PLGA(MW12,000)+13912DS(MW6000)

    SOW10PLGA(MW12,000)+18619DS(MW500,000)NPC11Nanoprecipitation857

    Abbreviations:DS,dextransulfate;PLGA,poly(lactic-co-glycolicacid);MW,molecularweight.

    S/O/Wionpairingmethodshowedasomewhatgoodsizedistributionwithapolydispersityindexof0.2(Figure4B).

    Drugloadingandentrapmentefficiency

    Table2displaysthedrugloadingandentrapmentefficiencyforallthesamplespreparedusingvariousmethods.Drugloadingrangedfrom2.6to19.2g/mg.Theleastdrugloading(0.26%)andentrapmentefficiency(0.81%)wasfoundinnanoparticlespreparedbythenanoprecipitationmethod.SignificantlyincreaseddrugloadingandentrapmentefficiencywasobtainedbytheS/O/Wionpairingmethod(1.92%and29.95%).Inclusionofdextransulfateintothepreparations(SOW710)significantlyloweredthepercentageoffreeminocyclinecomparedwiththosewithoutdextransulfate

    Table2Drugloadingandentrapmentefficiency

    SampleDrugloading(%)SDEntrapmentefficiency(%)SDOW10.410.023.850.16OW20.910.034.140.03OW30.310.011.480.28OW40.480.022.150.13OO50.980.045.480.30WOW60.440.014.690.21SOW70.460.0157.691.32SOW80.780.03513.092.40

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    16/33

    SOW91.320.1222.234.70SOW101.920.1929.952.47NP110.260.060.810.18

    Abbreviation:SD,standarddeviation.

    500nm

    ACCVSpotMagnDetWD

    17.0kV2.030,000xSE9.5SI200nm

    ACCVSpotMagnDetWD

    17.0kV2.060,000xSE9.6SIFigure3AtypicalscanningelectronmicrophotographofnanoparticlespreparedbyS/O/Wionpairingmethod,SOW10(upperandlowerimageispresentedat30,000and60,000magnification,respectively).

    (WOW6)andimproveddrugloadingcomparedwithotherformulations.NanoparticlespreparedbytheS/O/Wionpairing

    method,withthehighestentrapmentefficiency,wereusedforotheranalyses.

    DSCanalysis

    DSCthermogramsofminocyclineandtheemptyandminocycline-loadednanoparticleswereobtainedtodefinethephysicalstateofthedruginthenanoparticlesandthermalpropertiesofthepolymernanoparticles.Figure5showstheDSCthermogramsforminocycline,PLGA-PEGnanoparticles,andminocycline-PLGA-PEGnanoparticles(SOW10),respectively.Pureminocyclineshowedanexothermicpeakat200C.Therewasnopeakobservedatthistemperatureforthe

    nanoparticles.DSCstudiesdidnotdetectanyfreeminocyclineinthenanoparticlesamples.Thisconfirmedthemoleculardispersionofminocycline.Afterpreparationthenanoparticles,minocyclinecouldbeinanamorphousphaseofamoleculardispersionorinasolidsolutionstateinthepolymermatrix.

    Invitrodrugrelease

    TheinvitroreleasebehaviorofallnanoparticlesisascumulativepercentagesinFigure6.Releaseover5days

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    17/33

    KashietalDovepress

    A

    16

    1412

    Intensity(%)

    1086420

    B

    201816

    110100Size(d.nm)100010,000110100100010,000

    Intensity(%)

    14

    121086420

    Size(d.nm)

    Figure4Particlesizedistributionsofnanoparticlespreparedby(A)S/O/Wionpairingmethod(SOW10)and(B)nanoprecipitationmethod(NP11).

    wasmeasured.Releaseprofilesfornanoparticlesinphosphatebuffersolution(pH7.4)wereaffectedbythepreparationmethodsandformulationsused.Theinitialburstreleasewasdetectedforallformulationsduringthefirst7hours(morethan20%)exceptforsamples1,2,5,and6.TheSOW9formulationshowedasignificantlyhigherburstrelease(72%in7hours)comparedwiththeotherformulations.Therateofdrugreleasegraduallydecreasedafterabout12daysandremainedconstantevenafter5days(exceptforsample9).

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    18/33

    AsshowninFigure6,drugreleasefromthenanoparticlespreparedbyO/Owasslowerthanfromtheothernanoparticles(approximately10%in5days).

    Antibacterialpropertiesofminocyclinenanoparticles

    Theminocycline-loadednanoparticles,freeminocycline,andemptynanoparticlesweretestedagainstAggregatibacteractinomycetemcomitansinvitrotocomparetheirantibacterialactivity.Inthecaseofminocycline-loadedPLGA-PEGnanoparticles,theSOW10samplehadthehighestentrapmentefficiency.Awelldiffusionassayshowedthattheinhibitionzoneofminocycline-loadednanoparticles(9.2mm)wasgreater

    thanthatoffreeminocycline(3.5mm)andemptyPLGAnanoparticles,whichdidnotshowanyinhibitoryeffect.TheMICsofthesamplesareshowninTable3.TheMICofminocycline-loadednanoparticles(4g/mL)wastwo-foldlessthanforfreeminocycline(8g/mL).TheMBCofminocyclineloadednanoparticles(8g/mL)wasalsotwo-foldlessthanthatforfreeminocycline(16g/mL).Therefore,itcanbeseenthattheantibacterialactivityofminocycline-loadednanoparticleswasgreaterthanforthefreedrug.Emptynanoparticles

    dilutedwithbrainheartinfusionbrothasacontroldidnotshowanyantibacterialeffectagainstthebacteriatested.HenceitcanbeconcludedthattherewasnoantibacterialinteractionbetweenPLGAandthetestedbacteria.

    Discussion

    Thechoiceofasuitablenanoparticlepreparationmethodisdependentonthephysicochemicalpropertiesofthedrugtobeencapsulated.Differentmethodshavebeensuccessfullyusedfortheentrapmentoflipophilicdrugsintonanoparticles.33,45Themainprobleminthepreparationofminocycline-loadednanoparticleswasthelackofdrug

    loadingandentrapmentefficiencybecauseminocyclineisa

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    19/33

    DovepressMinocyclinePLGAnanoparticles

    051015mW20MinocyclinePLGANPsMinocycline-PLGANPs20406080100120140160180200220240260280300320340

    Temperature(C)

    Figure5DSCthermogramsofminocycline,PLGA-PEG,andminocycline-PLGA-PEGnanoparticles.Abbreviations:DSC,differentialscanningcalorimetry;PEG,poly(ethylene)glycol;PLGA,poly(lactic-co-glycolicacid).

    AB

    Releaseofminocycline(%)

    10080604020000

    OW1OW2OW3OW4OO5WOW6100806040200Releaseofminocycline(%)..

    ..................

    ..

    ..

    ..

    ..

    ................

    ......

    ....

    ....

    ..

    ..

    ..

    ..

    ..

    ..0204060801001201400

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    20/33

    20406080100120140

    Time(hours)Time(hours)

    C

    Releaseofminocycline(%)

    100

    80

    60

    40

    20

    0

    SOW7SOW8SOW9SOW10020406080100120140..................

    ....

    ..

    ..

    ..

    ..

    ..

    ..Time(hours)

    Figure6Invitrocumulativereleaseofminocyclinefromnanoparticles(A)OW1,OO5,andWOW6;(B)modifiedO/W(OW2,OW3,andOW4),and(C)S/O/Wionpairingmethod(SOW710),inphosphatebuffersolution(ph7.4,37C).

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    21/33

    KashietalDovepress

    Table3MICandMBCoffreedrugandminocycline-loadednanoparticlesagainstAggregatibacteractinomycetemcomitansbymacrodilutionmethod

    Freedrug(g/mL)Minocycline-loadednanoparticles(g/mL)MIC84MBC168

    Abbreviations:MIC,minimuminhibitoryconcentration;MBC,minimumbacterialconcentration.

    hydrophiliccompoundandthereisaconcernaboutincreasingthedrugloadingofhydrophilicagents.35However,inpractice,preparationofnanoparticleswiththedesiredproperties(adequateentrapmentefficiencyanddrugloading,suitablereleaseprofile,andparticlesizedistribution)canbedifficultduetothelargenumberoffactorsinfluencingtheoutcomeofnanoparticlepreparation.Inthisstudy,severalexperimentswerecarriedouttodeterminethebestmethodandtheformulawiththehighestantibioticloadingofPLGAnanoparticles.

    Nanoparticlespreparedbysolventdiffusionmethods(OW1andWOW6)showedlowentrapmentefficiencyanddrugloadingbecauseminocyclinerapidlydiffusedfromthehydrophobicmatrixintotheexternalaqueousphaseduringpreparation.46Comparedwiththesolventdiffusionmethod,betterentrapmentefficiencyanddrugloadingwereobtainedbytheO/Oemulsionevaporationmethod(OO5).Thiswascontributedtobytheliquidparaffinusedasacontinuationphasewiththismethod.42Thelimitedsolubilityofminocyclineandnildiffusionoffirstoilintoliquidparaffinwereadvantageoustorestrictminocyclineleakageincomparisonwithotheraqueoussolventdiffusionmethods.Polymeric

    particlesobtainedbythismethodhadthelargestparticlesize.AnincreaseofparticlesizewiththeO/Omethodmighthavebeenduetothehighviscosityofthecontinuousphasewhichhindersthehomogenousdispersionofpolymersolutionintothecontinuousphase.Particlesizeiskeytothebiologicalfateofnanoparticlecarriers.Decreasingsizeimprovesthepermeationandpenetrationofnanoparticlecarriers.Therefore,nanoparticlesshouldhaveanappropriatesizetopenetratethebacterialcellwall.Inclusionoflecithinintotheaqueousphase(OW2)usingtheO/Wmethodledtoimprovementinentrapmentefficiencyanddrugloadingcomparedwiththestandardmethod(OW1).Inthisregard,addinglecithinhasbeenshowntoresultinsurfaceadsorptionofamphiphilic

    lecithinontonanoparticlesthroughhydrophobicinteractions.36Minocyclineinteractswiththehydrophobicphospholipidtailsoflecithinsimilartolecithin-PLGAinteractions.Incorporatinglecithinontothenanoparticlesurfacecanenhanceentrapmentefficiencybytrappingminocyclinein

    thephospholipidlayer.However,inclusionoflecithinintheoilphase(OW3)andbothphases(oilandwater)(OW4)hadthereverseeffectonentrapmentefficiencyanddrugloading.Lecithinadsorptionontothenanoparticlesurfacecauseda

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    22/33

    minorincreaseinparticlesize(about10%20%).

    Nanoparticlespreparedbythenanoprecipitationmethodwereconsiderablysmaller(807nm)thannanoparticlespreparedbytheemulsionmethod.ThesizedistributionofnanoparticlespreparedusingthismethodisshowninFigure4A,whereahighlyuniformsizedistributionisobserved(polydispersityindex0.08).Briefly,therearetwomisciblesolventswhenusingthismethod.Drugandpolymerdissolveinthefirstoneasthesolvent.Nanoprecipitationoccursbyrapiddiffusionandaprecipitateofthepolymerwhenthefirstpolymersolutionisaddedtothesecondphaseasanonsolvent.44Precipitationinvolvesimmediatedrugentrapment.Nanoparticlespreparedbythismethodshowthelowestdrugloadingandentrapmentefficiencycomparedwiththeothermethods(Table2).Becauserapiddiffusionofdrug-polymersolutionintothesecondphaseincreasedtheamountoffreedruginthesecondphase,thismethodwasunabletoretainsubstantialamountsofminocyclinetoincorporateintothepolymermatrix.

    HighentrapmentefficiencyusingtheS/O/Wionpairingmethodoccurredasfollows.Thismethodwasacombination

    ofS/O/Wemulsionandionpairingtechniques(Figure7).AnaqueoussolutionofminocyclinewasaddedtoanorganicsolutionofPEGylatedPLGA.Additionofaqueousdextransulfatesolutionproducedaminocycline-dextransulfateprecipitate(solidinoil).Dextransulfatewasusedasanionpairingagenttoreducedrugsolubilitybycoacervation.Theresultingsolidintheoilphasewasthenaddedtotheaqueouspolyvinylalcoholsolution.Theorganicsolventwasremovedbyevaporationunderstirringtoproducenanoparticles.Theelectrostaticforcesformedbetweenoppositeions,cationicminocyclineandanionicdextransulfate,andcationicPEGylatedPLGAandanionicdextransulfate.Dextransulfateasanionpairingagentplayedaroleasanionicspacerbetween

    PEGylatedPLGAandminocycline.Ifionpairingformationisfasterthanpolymerprecipitation,theionpairscouldbetrappedduringparticulateprecipitation.Intheabsenceofdextransulfate(WOW6),theinteractionsbetweentheterminalgroupofthepolymerandminocyclineweremostlydirectedbyweakvanderWaalsforces.AccordingtotheH-NMRresults,thePEGcontentinlowmolecularweightPLGA(502H,molecularweight12,000)wasapproximatelyfourtimesmorethanthehighmolecularweightPLGA(504H,molecularweight48,000).Soahighamountofion

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    23/33

    DovepressMinocyclinePLGAnanoparticles

    Solventdiffusion-evaporation

    Minocycline

    PEGylatedPLGAS/O/WemulsificationMECHANICALSTIRRER300rpmULTRADextransulphateTURRAXON24,000rpmOFFONOFFSolidificationS/OemulsionW/OemulsificationULTRASOUNDONPVAaqueoussolutionDSOFF

    ULTRASOUNDaqueoussolutionMinocyclineONOFFW/OemulsionaqueoussolutionPEGylatedPLGAoilphase

    Figure7SchemeofcombinationofS/O/Wemulsionandionpairingtechniques.

    pairswasformedinlowmolecularweightPEGylatedPLGA,andhencedrugentrapmentwasincreased(SOW9andSOW10).

    Thesignificantlyincreasedentrapmentefficiencyanddrugloadingusinghighmolecularweightdextransulfate(500,000)indicatesthattheadditionalnegativechargesofdextransulfatehavefurtherincorporatedminocycline(about2.32.9times).Thiswasduetoanionpairingmechanismwhichwasmentionedearlier.ImprovedinteractionbetweenthedrugandpolymerandthusentrapmentefficiencywasobtainedbyincreasingPEGylationandahighmolecularweightofdextransulfate.

    Thesizeofthenanoparticlespreparedbydifferentdoubleemulsionmethodswasasfollows:WOW6(424nm).SOW7(209nm).SOW9(139nm).ThereductioninparticlesizecouldbelargelyduetothedecreaseinPLGAmolecularweight(SOW9)andincreaseinamphiphilicpropertiesofthepolymerwithincreasingPEGcontent(SOW7and9).ThesepolymerswithhigherPEGcontentreduceinterfacial

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    24/33

    tensiontofacilitatenanoparticleformation,andresultina

    smallerparticlesize.47Anapproximatelynarrowsizedistributionwasalsoobserved(Figure4B)forthenanoparticlespreparedbyS/O/Wmethod(polydispersityindex0.2).

    Thereleasekineticsofminocyclinefromthenanoparticleswasideal,asusuallyaninitialburstreleaseinthefirst24hoursfollowedbyacontrolledpatternofdrugreleaseisclinicallyfavorable.25,48,49Inmostofthenanoparticlespreparedinthiswork(OO5,WOW6,SOW79,NP10),weobservedlinearminocyclinereleaseratesafterthebursteffectformorethan5days,andthisprofilecouldbeidealforperiodontaldisease.50Theinitialburstcouldbeascribedtotheminocyclinedistributedatorjustbeneaththesurfaceofthenanoparticles.Thelaterconstantreleaseismainlyduetodrugdiffusionandmatrixerosionmechanisms.Theminocyclinereleaseratefromnanoparticlesin24hourswasasfollows:

    OW1(18%).WOW6(14%).OO5(6%).FromthesustaineddrugreleaseofOO5,itcanbeassumedthat

    minocyclinewaswelldispersedinthepolymermatrix,whichallowedregularreleaseofminocyclinewithpolymerdegradation.Thelargesizeoftheparticlessubmityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    25/33

    KashietalDovepress

    (OO5.WOW6.OW1)decreasedthesolid-liquidcontactanddrugdiffusionthroughthepolymericwall.

    OW3(59%).OW4(49%).OW1(18%).OW2(14%).Theeffectoflecithinonthereleaseratewassimilartoitseffectonentrapmentefficiency.InsampleOW2entrapmentefficiencywasimprovedandthereleaseratewasreduced.Conversely,insamplesOW3andOW4entrapmentefficiencywasdecreasedandthereleaseratewasenhanced.SOW9(91%).SOW10(72%),andSOW7(38%).

    SOW8(29%).Nanoparticlespreparedusingdextransulfate(molecularweight500,000)showedaslowerreleaseratethandextransulfatealone(molecularweight6000).Thismaybeduetoahighernegativechargerelatedtodextransulfate500,000thatinducedbetterinteractionwiththecationicdrugandwhichcouldincorporatefurtheramountsofdrugontheinsideaswellasthesurfaceofthenanoparticles.SOW10(72%).SOW8(29%),andSOW9(91%).SOW7(38%).Useoflowmolecularweight

    PLGAinSOW9andSOW10increasedthediffusionofminocyclinethroughthenanoparticlewall.51NanoparticleswiththehighestPEGcontenthavemoreamphiphilicandhydrophilicproperties.Thesepropertiesenhancemoleculardiffusionintoaqueoussolution.SOW7(38%).WOW3(14%).Asmentionedearlier,nanoparticlespreparedbytheS/O/Wionpairmethodhavemoreamphiphilicandhydrophilicpropertiesandsmallerparticlesize.Thesepropertiesenhancediffusionandsurfacedesorptioninaqueoussolution.Thermalstudieswereusedtoinvestigatethephysical

    stateofminocyclineinthenanoparticles,becausethispropertycouldinfluencedrugreleasefromthenanoparticles.Drugmaybepresenteitherasamorphousorcrystallineinanamorphousorcrystallinepolymer.Figure3showstheDSCthermogramsforpureminocycline,andforemptyandminocycline-loadednanoparticles.Polymershowsaglasstransitiontemperatureat50Canddoesnothaveameltingpointtemperature,meaningthatitisanamorphouspolymer.Twopeaksinthetemperaturerangeof150C170Cmayberelatedtoresidenceofpolyvinylalcohol.Pureminocycline

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    26/33

    showedanexothermicpeakat200Crelatedtothemeltingpointwithdecompositiontransition.Minocyclinemeltingwithadecompositionpeakwasdepletedinthethermogramfortheloadednanoparticles,indicatingthepresenceofamorphousminocyclineinthenanoparticles.Itmaybehypothesizedthatcrystallizationofminocyclineisinhibitedduringproductionofnanoparticles.Therefore,minocycline

    inthenanoparticlesisintheamorphousphaseofamoleculardispersion.Theantibacterialpropertiesofminocyclineloadednanoparticlesweredeterminedinvitro;theantibacterialactivityofthenanoparticleswasremarkableandmainlyattributedtothehighantibacterialeffectofthenanosizedparticles(Table3).EncapsulationofminocyclineintonanoparticlesimprovedtheantibacterialefficiencyofminocyclineagainststandardAggregatibacteractinomycetemcomitansbytwo-fold.Becausefreedrugandnanoparticleswereinvestigatedusingthesameconcentrationofminocycline,theimprovementinantibacterialeffectactivitybeduetobetterpenetrationofthenanoparticlesintobacterialcellsandbetterdeliveryofminocyclinetoitssiteofaction.7Nanoparticlesarecapableofbeingendocytosedbyphagocyticcellsandreleasingdrugintothosecells.52,53Theminocycline-loadednanoparticlescouldbe

    suitablefordeliveryofminocyclinetophagocyticcellstoachievebettertreatmentofinfectioncomparedwithtreatmentusingfreeminocycline.Thisindicatesthatthenewlydesignedantibiotic-releasingnanoparticlesmaybeappropriateforperiodontaltreatment.

    Conclusion

    Effectiveentrapmentofdrugsthatarehighlysolubleinbothaqueousandorganicsolventsisdifficulttoachieveusingstandardapproaches,suchassingleanddoubleemulsificationsolventevaporationandnanoprecipitationmethods.Inthisstudyweusedanovelmethodforthepreparationofminocycline-

    loadednanoparticlesbyapplyinganionpairingtechniqueusingsolid/oil/wateremulsification.OurresultsdemonstratethatusingPLGA-PEG-dextransulfateforionpairingsignificantlyincreasesminocyclineloading,andproducesnanoparticleswiththedesiredsize,sizedistribution,andmorphologicalproperties.BydecreasingthemolecularweightofPLGAandincreasingthemolecularweightofdextransulfate,thedesireddrugcontentcanbeobtainedbecauseofthehighPEGcontentandlowdruginsolubility,respectively.PEGylatedPLGA(molecularweight12,000)anddextransulfate(molecularweight500,000)wasthepreferredchoiceforionpairingbecauseitallowedthehighestdrugloadingandentrapmentefficiency.Aninvestigationof

    differentpreparationmethods,physicochemicalcharacterization,invitroreleasetesting,andantibacterialpropertiesofthenanoparticleswascarriedout.Releaseratesvarieddependingonthepreparationmethodandnanoparticlecharacteristics,suchasamphiphilic,polymermolecularweight,particlesize,andpolymercomposition.Invitroreleaseindicatedthataftertheinitialburstrelease,controlledrelease

    submityourmanuscript|www.dovepress.com

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    27/33

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    28/33

    DovepressMinocyclinePLGAnanoparticles

    ofminocyclinecontinuedformorethan5days;thisreleaseprofilecouldbetheidealforperiodontaldisease.Nanoparticlespreparedbynanoprecipitationhadagoodsizeandmorphology;however,thisisnotanefficientmethodforencapsulationofhighlywater-solubledrugssuchasminocycline(reverseofnanoparticlespreparedbyoil/oilmethod).TheinvitroantibacterialresultsshowedthattheminocyclineloadednanoparticlesareremarkablymoreeffectivethanthefreedrugagainstAggregatibacteractinomycetemcomitans.

    Acknowledgments

    ThisstudywasfundedandsupportedbytheTehranUniversityofMedicalSciences(Grant10221).TheauthorsaregratefultotheNanotechnologyResearchCenterofTehranUniversityofMedicalSciences,Tehran,Iran,fortheirfinancialsupportofthiswork.TheyalsothankMrsFKhosraviforhertechnicalassistanceintheexperiments.

    Disclosure

    Theauthorsreportnoconflictsofinterestinthiswork.

    References

    1.KimBK,HwangSJ,ParkJB,ParkHJ.Characteristicsoffelodipinelocatedpoly(epsilon-caprolactone)microspheres.JMicroencapsul.2005;22(2):193203.2.Owusu-AbabioG,RogersJA.Formulationandreleasekineticsofcephalexinmonohydratefrombiodegradablepolymericmicrospheres.JMicroencapsul.1996;13(2):195205.3.AsteteCE,SabliovCM.SynthesisandcharacterizationofPLGAnanoparticles.JBiomaterSciPolymEd.2006;17(3):247289.

    4.DinarvandR,AlimoradMM,AmanlouM,AkbariH.Preparation,characterizationandinvitrodrugreleasepropertiesofpolytrimethylenecarbonate/polyadipicanhydrideblendmicrospheres.JApplPolymSci.2006;101(4):23772383.5.ShokriN,AkbariJavarH,FouladdelSH,etal.Preparationandevaluationofpoly(caprolactonefumarate)nanoparticlescontainingdoxorubicinHC1.Daru.2011;19(1):1222.6.YousefpourP,AtyabiF,Vasheghani-FarahaniE,MousaviMovahediAA,DinarvandR.Targeteddeliveryofdoxorubicin-utilizingchitosannanoparticlessurface-functionalizedwithanti-Her2trastuzumab.IntJNanomedicine.2011;6:19771990.7.DinarvandR,SepehriN,ManoochehriH,RouhaniH,AtyabiF.Polylactide-co-glycolidenanoparticlesforcontrolleddeliveryofanticancer

    agents.IntJNanomedicine.2011;6:877895.8.EsmaeiliF,GhahremaniMH,EsmaeiliB,KhoshayandMR,AtyabiF,DinarvandR.PLGAnanoparticlesofdifferentsurfaceproperties:Preparationandevaluationoftheirbodydistribution.IntJPharm.2008;349(12):249255.9.EsmaeiliF,AtyabiF,DinarvandR.Preparationandcharacterizationofestradiol-loadedPLGAnanoparticlesusinghomogenization-solventdiffusionmethod.Daru.2008;16(4):196202.10.MuL,FengSS.Fabrication,characterizationandinvitroreleaseofpaclitaxel(Taxol)loadedpoly(lactic-co-glycolicacid)microspheres

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    29/33

    preparedbyspraydryingtechniquewithlipid/cholesterolemulsifiers.JControlRelease.2001;76(3):239254.11.JangJY,KwonBS,LeeHE,KimDH,etal.PreparationofbiodegradablePLGAnanospheresemployingafastsolventevaporationmethod.JIndEngChem.2007;13(6):10431046.12.JaiswalJ,GuptaSK,KreuterJ.Preparationofbiodegradablecyclosporinenanoparticlesbyhigh-pressureemulsification-solventevaporationprocess.JControlRelease.2004;96(1):169178.13.DesgouillesS,VauthierC,BazileD,etal.Thedesignofnanoparticlesobtainedbysolventevaporation:Acomprehensivestudy.Langmuir.2003;19(22):95049510.14.GaborF.Ketoprofen-poly(D,L-lactic-co-glycolicacid)microspheres:influenceofmanufacturingparametersandtypeofpolymeronthereleasecharacteristics.JMicroencapsul.1999;16(1):112.15.EspositoE,CortesiR,CervellatiF,MenegattiE,NastruzziC.Biodegradablemicroparticlesforsustaineddeliveryoftetracyclinetotheperiodontalpocket:formulatoryanddrugreleasestudies.JMicroencapsul.1997;14(2):175187.16.Schwach-AbdellaouiK,Vivien-CastioniN,GurnyR.Localdeliveryofantibacterialagentsforthetreatmentofperiodontaldiseases.EurJPharmBiopharm.2000;50(1):8399.17.JainN,JainGK,JavedSH,etal.Recentapproachesforthetreatment

    ofperiodontitis.DrugDiscovToday.2008;13(2122):932943.18.PragatiS,AshokS,KuldeepS.Review:Recentadvancesinperiodontaldrugdeliverysystems.IntJDrugDel.2001;3(1):114.19.Pinon-SegundoE,Ganem-QuintanarA,Alonso-PerezV,Quintanar-GuerreroD.Preparationandcharacterizationoftriclosannanoparticlesforperiodontaltreatment.IntJPharm.2005;294(12):217232.20.ChwalibogA,SawoszE,HotowyA,etal.Visualizationofinteractionbetweeninorganicnanoparticlesandbacteriaorfungi.IntJNanomedicine.2010;5:10851094.21.RezaeiMokarramA,KebriaeeZadehA,KeshavarzM,AhmadiA,MohtatB.Preparationandin-vitroevaluationofindomethacinnanoparticles.Daru.2010;18(3):185192.22.OkudaK,WolffL,OliverR,etal.Minocyclineslow-releaseformulation

    effectonsubgingivalbacteria.JPeriodontol.1992;63(2):7379.23.ParkYJ,LeeJY,YeomHR,etal.Injectablepolysaccharidemicrocapsulesforprolongedreleaseofminocyclineforthetreatmentofperiodontitis.BiotechnolLett.2005;27(22):17611766.24.VandekerckhoveBN,QuirynenM,vanSteenbergheD.Theuseoflocallydeliveredminocyclineinthetreatmentofchronicperiodontitis:Areviewoftheliterature.JClinPeriodontol.1998;25(11Pt2):964968.25.RadvarM,PourtaghiN,KinaneDF.Comparisonof3periodontallocalantibiotictherapiesinpersistentperiodontalpockets.JPeriodontol.1996;67(9):860865.26.SlotsJ.Research,ScienceandTherapyCommittee.Systemicantibioticsinperiodontics.JPeriodontol.2004;75(11):15531565.

    27.Heitz-MayfieldLJ.Systemicantibioticsinperiodontaltherapy.AustDentJ.2009;54Suppl1:96101.28.JonesAA,KornmanKS,NewboldDA,ManwellMA.Clinicalandmicrobiologicaleffectsofcontrolled-releaselocallydeliveredminocyclineinperiodontitis.JPeriodontol.1994;65(11):10581066.29.TimmermanMF,vanderWeijdenGA,vanSteenbergenTJ,MantelMS,deGraaffJ,vanderVeldenU.Evaluationofthelong-termefficacyandsafetyoflocally-appliedminocyclineinadultperiodontitispatients.JClinPeriodontol.1996;23(8):707716.30.FattalE,BochotA.Stateoftheartandperspectivesforthedeliveryof

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    30/33

    antisenseoligonucleotidesandsiRNAbypolymericnanocarriers.IntJPharm.2008;364(2):237248.31.IshiharaT,MizushimaT.Techniquesforefficiententrapmentofpharmaceuticalsinbiodegradablesolidmicro/nanoparticles.ExpertOpinDrugDeliv.2010;7(5):565575.32.ChornyM,FishbeinI,DanenbergHD,GolombG.Lipophilicdrugloadednanospherespreparedbynanoprecipitation:effectofformulationvariablesonsize,drugrecoveryandreleasekinetics.JControlRelease.2002;83(3):389400.33.WischkeC,SchwendemanSP.PrinciplesofencapsulatinghydrophobicdrugsinPLA/PLGAmicroparticles.IntJPharm.2008;364(2):298327.34.GovenderT,StolnikS,GarnettMC,IllumL,DavisSS.PLGAnanoparticlespreparedbynanoprecipitation:drugloadingandreleasestudiesofawatersolubledrug.JControlRelease.1999;57(2):171185.submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    31/33

    KashietalDovepress

    35.ThoteAJ,GuptaRB.Formationofnanoparticlesofahydrophilicdrugusingsupercriticalcarbondioxideandmicroencapsulationforsustainedrelease.Nanomedicine.2005;1(1):8590.36.CheowWS,HadinotoK.Enhancingencapsulationefficiencyofhighlywater-solubleantibioticinpoly(lactic-co-glycolicacid)nanoparticles:Modificationsofstandardnanoparticlepreparationmethods.ColloidsSurfAPhysicochemEngAspects.2010;370(13):7986.37.LuC,ZhongW.Synthesisofpropargyl-terminatedheterobifunctionalpoly(ethyleneglycol).Polymers.2010;2(4):407417.38.DalwadiG,SunderlandB.AnionpairingapproachtoincreasetheloadingofhydrophilicandlipophilicdrugsintoPEGylatedPLGAnanoparticles.EurJPharmBiopharm.2009;71(2):231242.39.TanML,FriedhuberAM,DunstanDE,ChoongPF,DassCR.Theperformanceofdoxorubicinencapsulatedinchitosan-dextransulphatemicroparticlesinanosteosarcomamodel.Biomaterials.2010;31(3):541551.40.FineDH,MarkowitzK,FurgangD,etal.Aggregatibacteractinomycetemcomitansanditsrelationshiptoinitiationoflocalizedaggressiveperiodontitis:longitudinalcohortstudyofinitiallyhealthyadolescents.

    JClinMicrobiol.2007;45(12):38593869.41.EsmaeiliF,Hosseini-NasrM,Rad-MalekshahiM,SamadiN,AtyabiF,DinarvandR.Preparationandantibacterialactivityevaluationofrifampicin-loadedpolylactide-co-glycolidenanoparticles.Nanomedicine.2007;3(2):161167.42.MahdaviH,MirzadehH,HamishehkarH,etal.Theeffectofprocessparametersonthesizeandmorphologyofpoly(D,L-lactide-coglycolide)micro/nanoparticlespreparedbyanoilinoilemulsion/solventevaporationtechnique.JApplPolymSci.2010;116(1):528534.43.DillenK,VandervoortJ,VandenMooterG,VerheydenL,LudwigaA.Factorialdesign,physicochemicalcharacterisationandactivityofciprofloxacin-PLGAnanoparticles.IntJPharm.2004;275(12):

    171187.44.BilatiU,AllemannE,DoelkerE.Developmentofananoprecipitationmethodintendedfortheentrapmentofhydrophilicdrugsintonanoparticles.EurJPharmSci.2005;24(1):6775.InternationalJournalofNanomedicine

    Publishyourworkinthisjournal

    TheInternationalJournalofNanomedicineisaninternational,peer-reviewedjournalfocusingontheapplicationofnanotechnologyindiagnostics,therapeutics,anddrugdeliverysystemsthroughoutthebiomedicalfield.ThisjournalisindexedonPubMedCentral,MedLine,CAS,SciSearch,CurrentContents/ClinicalMedicine,Journal

    45.BarichelloJM,MorishitaM,TakayamaK,NagaiT.EncapsulationofhydrophilicandlipophilicdrugsinPLGAnanoparticlesbythenanoprecipitationmethod.DrugDevIndPharm.1999;25(4):471476.46.YuanH,JiangSP,DuYZ,MiaoJ,ZhangXG,HuFQ.Strategicapproachesforimprovingentrapmentofhydrophilicpeptidedrugsbylipidnanoparticles.ColloidsSurfBBiointerfaces.2009;70(2):248253.47.RileyT,StolnikS,HealdR,etal.Physicochemicalevaluationofnanoparticlesassembledfrompoly(lacticacid)-Poly(ethyleneglycol)

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    32/33

    (PLA-PEG)blockcopolymersasdrugdeliveryvehicles.Langmuir.2001;17(11):31683174.48.LindheJ,HaffajeeAD,SocranskySS.Progressionofperiodontaldiseaseinadultsubjectsintheabsenceofperiodontaltherapy.JClinPeriodontol.1983;10(4):433442.49.ListgartenMA.Natureofperiodontaldiseases:pathogenicmechanisms.JPeriodontalRes.1987;22(3):172178.50.MundargiRC,SrirangarajanS,AgnihotriSA,etal.Developmentandevaluationofnovelbiodegradablemicrospheresbasedonpoly(d,llactide-co-glycolide)andpoly(epsilon-caprolactone)forcontrolleddeliveryofdoxycyclineinthetreatmentofhumanperiodontalpocket:invitroandinvivostudies.JControlRelease.2007;119(1):5968.51.GravesRA,PamujulaS,MoiseyevR,FreemanT,BostanianLA,MandalTK.EffectofdifferentratiosofhighandlowmolecularweightPLGAblendonthecharacteristicsofpentamidinemicrocapsules.IntJPharm.2004;270(12):251262.52.MohammadiG,NokhodchiA,Barzegar-JalaliM,etal.Physicochemicalandanti-bacterialperformancecharacterizationofclarithromycinnanoparticlesascolloidaldrugdeliverysystem.ColloidSurfBBiointerfaces.2011;88(1):3944.53.Page-ClissonME,Pinto-AlphandaryH,OurevitchM,AndremontA,CouvreurP.Developmentofciprofloxacin-loadednanoparticles:physicochemicalstudyofthedrugcarrier.JControlRelease.1998;56(13):2332.

    Dovepress

    CitationReports/ScienceEdition,EMBase,ScopusandtheElsevierBibliographicdatabases.Themanuscriptmanagementsystemiscompletelyonlineandincludesaveryquickandfairpeer-reviewsystem,whichisalleasytouse.Visithttp://www.dovepress.com/testimonials.phptoreadrealquotesfrompublishedauthors.

    Submityourmanuscripthere:http://www.dovepress.com/international-journal-of-nanomedicine-journal

    submityourmanuscript|www.dovepress.com

    InternationalJournalofNanomedicine2012:7

    Dovepress

  • 7/31/2019 IJN 27709 Improved Drug Loading and Antibacterial Activity of Minocycl 010912

    33/33