IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department...

116
IIlu IILIl LLi]] Illll_ .......... °

Transcript of IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department...

Page 1: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

IIluIILIlLLi]]Illll_..........°

Page 2: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,
Page 3: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

DOE/MWIP- I3

Preliminary Hazards Analysis

Plasma Hearth Process

Prepared under the direction of

Richard C. RagainiLawrence Livermore National Laboratory,

Environmental Restoration & Waste ManagementApplied Technology Program

by

M. AycockD. CoordesJ. Russell

W. TenBrookP. Yimbo

Science Applications International Corporation4900 Hopyard Road, Suite 310

Pleasanton, CA 94588

November 1993

Prepared for the

Mixed Waste Integrated ProgramU.S. Department of Energy

Office of Technology DevelopmentWashington, DC 20585

under Lawrence Livermore National LaboratoryContract B 160602

1/18"171_!t!f";lI_[If "i'i!_8II.rlII_{I_,_,I::N!"18I.I_¢1..1_!11_1

Page 4: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

['h_, reF.,,rt _ as prepared as an a,.:cuunt uf work sponsored by an agency of the [.'rated

States(_+vernmcnt. Neither the Untied StatesGuvemment nor any agency thereof, nur

an_, or their empluye_s, makes any warranty, express t)r tmphed, or assumes an_ legalttabtIlt._ ,>r responslb)ILty tot the accuracy, completeness, or usefulness ot an',,mturm_tlun, apparatus, prt>duct, or process d_sclosed, or represents that )ts use would not

_ntrmge privately owned r_ghts. Reference hereto to any specltic commerclal pruduct.

prouess, ur service by trade name. trademark, manufacturer, or otherwise, does not

necessaxtly constitute or imply its endorsement, recommendation, or favorm8 by the

l_'mted States Government or any agency thereof. The views and opmtons of authors

expressed hereto do not necessa.nly state or reflect those of the Umted States Government

,,r any agency thereof.

Page 5: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

TABLE OF CONTENTS

Page

1.() EXECUTIVE SUMMARY .................................................................... 1-1

2.C) APPLICABLE STATUTES, RULES, AND DEPARTMENTAL ORDERS ............. 2-12.1 SCOPE AND C( )NTENT OF HAZARDS ANALYSIS .......................... 2-12.2 INVENTORY OF HAZARDOUS MATERIALS, INCLUDING

RADIOACTIVE MATERIALS ....................................................... 2-12,3 ENERGY SOURCES AND PERSONNEL HAZARD SOURCES ............ 2-l2.4 BOUNDING ANALYSES OF POTENTIAL RELEASES OF

HAZARDOUS MATERIALS, INCLUDING RADIOACTIVE MATERIAL, ,2-22.5 FACILITY HAZARD CLASSIFICATION ........................................ 2-2

3,0 SITE CHARACTERISTICS ................................................................... 3-13.1 SITE I.OCATIONS ................................................................... 3-1

3.1.1 'KansasCity Plant .......................................................... 3-13.1.2 Los Alamos National Laboratory ......................................... 3-13.1.3 Mound Laboratory .......................................................... 3-23 1.4 Pantex Plant ................................................................. 3-33 1.5 Rocky Flats Plant ........................................................... 3-3

1.6 Sandia National Laboratories, New Meraco ............................ 3-33 1.7 Sandm National Laboratories, Califorma ................................ 3-33 1.8 Pmellas Plant ................................................................. 3-33 1.9 Argonne National Laboratory, East ...................................... 3-33.1. I0 Argonne National Laboratory, West ..................................... 3-43.1.11 Brookhaven National Laboratory ......................................... 3-43. l. 12 Idaho Nataonal Engineering Laboratory .................................. 3-43. I. 13 Feed Materials Production Center, Fernald .............................. 3-43, 1.14 Oak Ridge National Laboratory, including X-10, K-25

',andY-12 Sites .............................................................. 3-43.1.15 Paducah Gaseous Diffusion Plant ......................................... 3-53.1.16 Portsmouth Gaseous Diffusdon Plant ..................................... 3-53.1.17 Nevada Test Site ............................................................ 3-53.1.18 Hartford Project Site ....................................................... 3-53.1.19 Lawrence Berkeley Laboratory ........................................... 3-53.1.20 Lawrence IAvermore National Laboratory ................................ 3-53.1.21 Lawrence Livermore National Laboratory, Site 300- Area 854 ....... 3-63.1.22 Lawrence Livermore National Laboratory, Site 300- Areas 834

& 836 ......................................................................... 3-63.1.23 Energy Technology and Engineering Center, Santa Susanna .......... 3-63.1.24 Stanford Linear Accelerator Center ....................................... 3-63,1.25 Savannah River Plant ....................................................... 3-6

3.2 SEISMICITY ........................................................................... 3-63.3 EXTREME WINDS .................................................................. 3-73.4 FLOODING ............................................................................ 3-73.5 TRANSPORTATION AND UTILITIES .......................................... 3-11

4,0 FACILITY DESCRIPTION AND OPERATIONS .......................................... 4-14.1 LOCATION AND DESCRIPTION ................................................. 4-1

4.1.1 Site Location ................................................................. 4-1

4.1,2 General Building Requirements ........................................... 4-14, 1.3 Building Design Requirements ........................................... 4-2

031548040/D-_3.192.337m t ,Vovember 30, 1993

Page 6: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

TABLE OF CONTENTSIContinued)

Page

4.2 GENERAL DESCRIPTION OF OPERATIONS ................................. 4-24.2.1 System Description ......................................................... 4-24 2.2 Pr_ess Descnpuon ........................................................ 4-54.2.3 Required Support Equipment .............................................. 4-6

4.3 DESIGN REVIEW .................................................................... 4-74.3, 1 Safety Sigruficant Structures ............................................... 4-74,3,2 Structures and Containers .................................................. 4-7

5.1) HAZARDS ANALYSIS .................................................................... .... 5-15,1 HAZARDS ANALYSIS METHOD ................................................. 5-15.2 INVENTORIES ........................................................................ 5-95.3 BOUNDING ANALYSES OF POTENTIAL ACCIDENTS ................... 5-19

5,3.1 Operational and Equipment Assessment ................................. 5-215.3.2 Radiological Assessment .................................................. 5-235.3.3 Hazardous Material Assessment .......................................... 5-25

5.4 CONSEQUENCE ANALYSIS AND PRELIMINARY HAZARDCLASSIFICATION .................................................................. 5-285.4.1 Consequence of Radiological Assessments ............................. 5-285.4.2 Consequences of Hazardous Material Assessments .................... 5-285.4,3 Conclusions ................................................................. 5-29

6.0 REFERENCES ................................................................................... 6-1

APPENDIX A HOTSPOT Calculations ............................................................... A-1APPENDIX B Chemical Data ......................................................................... B-IAPPENDIX C Definitions from AIHA, OSHA, ACGIH, and NIOSH .......................... C-1

LIST OF TABLES AND FIGURES

Table 3-1. Maximum Potential Source-Receptor Isolation for DOE Sites (DOE, 1991c) ..... 3-2Table 3-2. Annual Probability of Exceedance tbr Horizontal Ground Motion at DOE Sites

Kennedy, et. al., 1990) .................................................................. 3-8Table 3-3. Annual Probabilities of Exceedance for Design Wind and Tornado Loads at

DOE Sites (Kennedy, et, al., 1990) ................................................... 3-9Table 3-4. Mean Flood Hazard Evaluation and Annual Probabilities of Exceedance

for DOE Sites (Savy and Murray, 1988) ............................................. 3-10Table 4-1. Annual Probability of Exceedance ...................................................... 4-2Table 4-2. Types of Mixed Waste Con_ner ...................................................... 4-3Table 5-1. Potential Hazard Sources ............................................................... 5-3Table 5-2. Hazards Characterization for the Plasma Hearth Process ........................... 5-4Table 5-3. Probability Levels ........................................................................ 5-7Table 5-4. Consequence Levels ..................................................................... 5-7Table 5-5. Maximum Radionuclide Inventory for an Exempt (Below Category 3) Facility 5- I0Table 5-6. Maximum Radionuclide Inventory for a Category 3 Facility ...................... 5-10Table 5-7. DOE Mixed Waste Composition by Type ........................................... 5-12Table 5-8. Mixed Waste Categories Selected as the Standardized Surrogates

for Treatment by Plasma Hearth Process ............................................ 5-15Table 5-9. Hazardous Material Content of Surrogate Waste Streams ......................... 5-16Table 5-10. Radioactive Material Category 3 Release Factors, Source Terms, and Doses.,. 5-24Table 5-11. Radioacuve Material Category 2 Release Factors, Source Terms, ',rodDoses... 5-25

031 548040/D-93.192.33 7m ,_ November 30. 1993

Page 7: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

TABLE OF CONTENTS(Continued)

Page

Table5-12. Waste Fire Accident Results ........................................................... 5-27Table 5-13. Off-Gas System Failure Accident ..................................................... 5-28

Figure 4-1. PHP Prototype Design .................................................................. 4-4F_gure5-l. Hazard Analysis Process ................................................................ 5-2Figure 5-2. Risk Mamx ............................................................................... 5-,';

(J3154804u/D._3- I V2.337m _l November 30. 1993

i

Page 8: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

1.0 EXECUTIVE SUMMARY

This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHI') follows

the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE

Order 5480,21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481. IB (DOE,

1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b).

Consideration is given to the proposed regulations published as l0 CFR 830 (DOE, 1993) and

DOE Safety Guide SG 830.1 l0 (DOE, 1991b).

The purpose of performing a PHA is to establish animtial hazard categorization for a DOE

nuclear facility and to identify those processes and structures which may have an impact on or be

important to safety. The PHA is typically performed during and provides input to project

conceptual design. The PHA then is followed by a Preliminary Safety Analysis Report (PSAR)

performed during Title I and II design. This PSAR then leads to performance of the Final Safety

Analysis Report performed during construction, testing, and ac.c,eptance and completed before

routine operation.

The PHA addresses the first four c_ of the Safety Analysis process, in accordance

with the requirements of DOE Safety Guidelines in SG 830.110 (DOE, 1991b):

• Section 2.0 identifies the statutes, rules, and DOE Orders applicable to methods andcontent of this PHA. DOE Order 5480.23, Nuclear Safety Analysis Reports, andproposed rule 10 CFR 830.110 "Nuclear Safety Management," describe the contentrequirements for the hazards analysis and preliminary classification of a DOE nuclearfacility.

• Section 3.0 provides information on natural phenomena and surrounding activitieswhich may affect the safe operation of a PI-[Pfacility at major DOE Complex sites.Natural features include site geography, seismicity, meteorology, and surface waters.Manmade features such as wans_rtation systems, land use _, and populationdistributions are described.

• Section 4.0 details some of the facility design characteristics important to a future PHPfac_'ty that can impact site selection. Although the PHP process is not affected by thelocation, the environmentalc_cs of potenlJalsites can have a significant

on the design and construction of the facility. This section provides the contextfof the lmza_ c_on table in Section 5, which summarizes the varioushazard energy sources, the event initiators, anticipeteddesign and admmistrauve

tO pl'event of mitiga_ _¢.,cidents, anti potential i_.

• Section 5.0 describes the method used tO identify hazards, analyze events, anddetermine consequences. Postulated maximum inventOries of hazardous andradioactive materials are used tOestablish the preliminary facility hazard classification.The basic hazards associated with energy somr,es and materials which may be presentin the PHP facility and the bounding accident scenarios are discussed and analyzed.The consequences of these maximum release accident scenarios are enumerated and areused to verify the preliminary facility hazard classification.

031548040/D.93.192.337m 1-1 November 23, 1993

Page 9: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Radiological assessments indicate that a PHP facility, depending on the radioacuve material

inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would

result m no significant impact to offsite personnel or the environment. Hazardous material

assessments indicate that a PHP facility will be a Low Hazard facility kavmg no sigmficant impacts

either onsite or offsite to personnel and the environment.

i

031548040/D-93-192.337m 1-2 November 23, 1903

Page 10: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

2.0 APPLICABLE STATUTES, RULES, AND DEPARTMENTAL

ORDERS

This section identifies the statutes, rules, and DOE Or0ers applicable to methods applied

and content of this PHA. DOE Order 5480.23, Attachment 1, Section 4.f.(3), Item 5 (DOE,

t992a) and proposed rule 10 CFR 830.110 (DOE, 1993), describe the content requirements for the

hazards analysis and preliminary classification of a DOE nuclear facility. These content

requirements include a description and inventory of all hazardous materials, including radioactive

materials; identification of energy sources which may cause material releases; bounding analyses of

potential releases; and the hazard classification for all major types of hazards and the facility as-a-

whole. The statutes, rules, and DOE Orders applicable to these areas are listed below. Current

technical guidance for each area is provided.

2.1 SCOPE AND CONTENT OF HAZARDS ANALYSIS

DOE 5480.23, Nuclear Safety Analysis Reports (DOE, 1992a).

10 CFR 830.110 (Proposed Rule), Safety Analysis Report (DOE, 1993).

DOE SG 830.110, Guidelines for the Preparation of Safety Analysis Reports for DOENuclear Facilities and Nonfacility Nuclear Operations (DOE, 1991b).

DOE Order 5481.1B, Safety Analysis and Review System (DOE 1986).

2.2 INVENTORY OF HAZARDOUS MATERIALS, INCLUDINGRADIOACTIVE MATERIALS

DOE-STD- 1027-92, Hazard Categorization and Accident Analysis Techniques forCompliance with DOE Order 5480.23, Nuclear Safety Analysis Reports (DOE, 1992b).

Environmental Protection Agency (EPA), Fetk_ Energy Management Agency, andDepartment of _on (DOT); Technical _e for Hazards Analyses,Emergency Planning for Extremely Hazardous Substances (1987).

of Lab_, Title 29, Code of Federal Regulations, Part 1920.119, "ProcessSafety Management of Highly Hazardous Chemicals," Washington, DC..

Environmental Protection Agency (EPA), "Emergency Planning and Notification," T/tte40, Code of Federal Regulations, Part 355, Washington, DC.

2.3 ENERGY SOURCES AND PERSONNEL HAZARD SOURCES

UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy FacilitiesSubjected to Natural Phentmuma Hazards (Ke_ et at, 1990).

DOE 5480.28, Natural Phenomena Hazards Mitigation, (DOE 1993b)

031548040/D.93192.337m 2.1 November 23, 1993

Page 11: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

2.4 BOUNDING ANALYSES OF POTENTIAL RELEASES OF HAZARDOUSMATERIALS, INCLUDING RADIOACTIVE MATERIAL

LA- 10294-MS/UC-41, A Guide to Radiological Accident Considerationsfor Siting andDesign of DOE Nonreactor Nuclear Facilities (Eider et al., 1986)

DOE-STD- 1027-92, Hazard Categorization and Accident Analysis Techniques forCompliance with DOE Order 5480. 23, Nuclear Safe_ Analysis Reports (DOE, 1992b).

Environmental Protection Agency (EPA), Federal Energy Management Agency, andDepartment of Transportation (DOT), Technical Guidance for Hazards Analyses,Emergency. Planning for Extremely Hazardous Substances (1987).

NUREG-1320, Nuclear Fuel Cycle Accident Analysis Handbook (Ayer et al., 1988).

DOE 5480.11, Radiation Protection for Occupational Workers (DOE, 1989b).

DOE 5400,5, Radiation Protection of the Public and the Environment (DOE, 1990).

DOE/EH-0070, External Dose Conversion Factors for Calculation of Dose to the Public(DOE, 1988c).

DOE/EH-_71, Internal Dose Conversion Factors for Calculation of Dose to the Public(DOE, 1988b).

2.5 FACILITY HAZARD CLASSIFICATION

DOE 548 I. 1B, Safety Analysis and Review System (DOE 1986).

DOE 5480.23, Nuclear Safety Analysis Reports (DOE, 1992a).

I0 CFR 830.1 I0, Safety Analysis Report (DOE, 1991a).

DOE SG 830.1 I0, Guidelines for the Preparation of Safety Analysis Reports for DOENuclear Facilities and Nonfacility Nuclear Operations (DOE, 1991b).

DOE-STD- I027-92, Hazard Categorization and Accident Analysis Techniques forCompliance with DOE Order 5480.23, Nuclear Safety Analysis Reports (DOE, 1992b).

0315480,lO/D.93 f92.337m 2.2 November 23, 1993

Page 12: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

3.0 SITE CHARACTERISTICS

This section provides informataon on natural phenomena and surrounding acUvities

which may affect the safe operation of a PHP facility. Section 3.1 provides a summary of the

se_ng of major DOE Complex sites; Section 3.2 describes the seismic characteristics of candidate

sites; Section 3.3 discusses wind hazards at candidate sites; Section 3.4 addresses surface water

flooding potential for the sites; and Section 3.5 describes transportation system needs and required

utilities.

Future decision-making may deem many of the DOE Complex sites as clearly

incompatible with, or irrelevant to, the deployment of mixed waste treatment technology. Such a

determination probably will be made during site assessments incorporating both safety analyses and

economic analyses. A conclusive site selection assessment is beyond the scope of this PHA.

3.1 SITE LOCATIONS

This section summarizes the settings and locations of _,,amdidateDOE sites for a PHP

facility. Property site areaprovides a general measure of potential isolation from offsite populations

should an accident occur. A general ranking of potential isolalion based on site area is given in

Table 3-1. This ranking is based on a maximum potential source-to-receptor distance for the

particular area specified. The actual distance to potential offsite receptors can only be determined

during evalua_on of the specific site.

3.1.1 Kansas City Plant

The Kansas City Plant is partof the Baanis_ Federal Comi_.ex,located 12 miles south

of downtown Kansas City, Missouri. Manufacturing operations are housed in 3.2 million square

feet of building space (DOE, 199lc).

3.1.2 Los Alamos National Laboratory

Los Alamos National I.xdxxatory (LANL) occupies about 43 square miles in Los Alamos

County, 60 miles north of Albuquerque, New Mexico and 25 miles northwest of Santa Fe, New

Mexico. The laboratory is situated on the Patajito Plateau, a finger-like mesa ranging in elevation

from 6,200 ft to 7,800 ft (DOE, 199lc).

031548040/D-93192.337m 3-1 November 23, 1993

Page 13: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

3.1.3 Mound Laboratory

Mound Laboratory is located within the southern city limits of Miamisburg in

southwestern Otdo. The plant site occupies 306 acres of land overlooking Miamisburg and the

Great Miami River. The Dayton, Ohio metropolitan area is located 10 miles northeast of the

installation (DOE, 1991c).

Table 3-1. Maximum Potential Source-Receptor Isolation for DOE Sites (DOE,1991c)

DOE Site Site Area Maximum Source-Receptor

lscl met.rs I Distance tmeters/

Nevada Test Site 3.50E+09 33_378

Argonne National Laborato_r West 2.3 IE+09 27r116

Idaho National En_g I.aboram_ 2.3 IE+09 27,116

HartfordSite 1.45E+09 21 )484

Savannah Riverplant 8.42E+08 16)371

Los Alamos National Ia_ato_ 1.1 IE+08 5:944

Pantex plant 6.48E+07 4a542

Rocky FLa_ plant 2.89E+07 3r033

LINL Site 300 2.85E+07 3r012

Brookhaven National I _ 2.15E+07 21616

Port_mouth C,a_u_ms Diffusion Plant 1.50E+07 .... 2r185

Padu_ Gaseous Diff_m_m Plant 1.39E+07 2_103

Oak Ridge Naaoaai Lzd_r_c_ 1.17E.t4Y7 11930

Sand'haNationalt_o[_ Allmquc_ue 1.14E+07 1,905

FJ_er_Ry Te,rhnology and l:a,inccting C.¢nmt 1.09E+07 1)863

Argo_ N_u3nal I a__ FMt 6.88E+06 IT480

Oak Ridge National I__m.y_ K-25 Site 6.07E+06 1_390

F__,_t_M_,ri_ts pm,____wtlm_C_t_____rFemAId 4.25E+06 Ir163

O*_k1_ N-_t I.__, Y-12 Site 328E+06 11022

La_ _ _m l_h¢¢_ 2.59E+06 908

Stanfocd I_" .t_b_c¢ Cmus" 1.72E+06 740

Sandia N_n'onal [ _ Califo[nia 1.67E+06 729

Mound I _hot_ 1.24E+06 628

! i 5.2 ,+05 409 ,

Pineli_ P!antI Florida 4.02E+05 358

Kangax City p!ant 2.97E+05 307 ,

031548040/D-93192.337m 3-2 November 23, 1993

Page 14: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

3.1.4 Pantex Plant

Pantex is located in the panhandle of Texas, 17 miles northeast of downtown Amarillo,

Texas and ten miles west of the town of Panhandle. Pantex includes a total land area of about

16,000 acres. The total populaton within a 50-mile r_us of the plant was 259,300 in 1980 (DOE,

1991c).

3.1.5 Rocky Flats Plant

Rocky Flats Plant is located in norttg,-'rnJefferson County, 16 miles northwest of Denver,

Colorado. The plant site covers 11 square miles (DOE, 1991c).

3.1.6 Sandla National Laboratories, New Mexico

Sandia National Laborc_ories, New Mex/co (SNIYN) occupies several parcels of land

covering 2,820 acres within Kirtland Air Force Base, directly south of Albuquerque, New Mexico

(DOE, 1991c).

3.1.7 Sandla National Laboratories, California

Sandia National Laboratories, California (SNIJCA) lies 40 miles east of San Francisco in

the Livermofe Valley, tla'eemiles east of the Livennore city cezlLe¢.SNL/CA Occupies413 acres of

land, only a few city blocks from the edge ofthe city of Livermore. In 1988, the populaton within

50 miles was estimated at nearly 6,000,000 (DOE, 1991c).

3.1.8 Pinellas Plant

The Pinellas Ptant is located on a 99.2 acre site, 6 miles north of St. Petersburg in

Pinellas County, Florida. Ptnellas County is on a peninsula bordered on the west by the Gulf of

Mexico and on Ihe east tad south by Tampa Bay. The 1989 census estimated a populaton of

870,162 in P_ilas Coelgy (DOE, 1991c).

3.1.9 Arllonne National Laboratory, East

Argonne National _ry - East (ANL-E) occupies a 1,700 acre tract located 22 miles

southwest of downtown Chicago in Dupase County, Illinois (DOE, 1991c).

031548040/D-93192.337m 3.3 .... November 23, 1993

Page 15: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

3.1.10 Argonne National Laboratory, West

Argonne National Laboratory - West (ANL-W) is located on the southeastern portion of

Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho (see 3.1.12 below)

(DOE, 1991c).

3.1.1 1 Brookhaven National Laboratory

Brookhaven National Laboratory (BNL) is located in central Suffolk County, New York,

on Long Island, 60 miles east of New York City. The site consists of an 8.3 square mile tract,

most of which is wooded, save for a 2.3 square mile developed area. The laboratory is located

over an EPA-designated, sole sourcedrinking water aquifer (DOE, 199lc).

3.1.12 Idaho National Engineering Laboratory

Idaho National Engineering Laboratory(INEL), situated in southern Idaho along the

western edge of the Eastern Snake River Plains, encompasses an area of approximately 890 square

miles of desert The nearest major community is Idaho Falls, population 46,000, located 42 miles

southeast of INEL (DOE, 1991c).

3.1.13 Feed Materials Production Center, Fernald

The Feed Materials Production Center is located near Fernald, Ohio, northwest of

Cincinnati. The site occupies 1,050 acres (DOE, 1991c).

3.1.14 Oak Ridge National Laboratory, including X-10, K-2_; and Y-12 Sites

Oak Ridge National Laboratory (ORNL) occugies several sites and covers appt'oximately

2,900 acres in Melton Valley and Bethel Valley, 10 miles southwest of downtown Oak Ridge,

Tennessee (DOE, 1991c).

The Oak Ridge K-25 site occupies a 1,500 acre areaadjacent to the Clinch River,

approximately 13 miles west of downtown Oak Ridge, Tennessee (DOE, 1991c).

The Oak Ridge Y-12 site occupies a 811 acre site in Bear Creek Valley, 2 miles from

downtown Oak Ridge, Tennessee (DOE, 1991c).

031.s48040/D-gJ192.337ta .... 3.4 ..... N'm,ember '23, 199J

Page 16: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

3.1.15 Paducah Gaseous Difi'usion Plant

The Paducah Gaseous Diffusion Plant is located 15 miles westof Paducah, Kentucky.

The site occupies 750 acres, with 74 acres of process buildings, within a 3,422 acre tract of DOE-

owned property (DOE, 1991c).

3.1.16 Portsmouth Gaseous Diffusion Plant

The Portsmouth Gaseous Diffusion Plant is located 20 miles north of Portsmouth, Ohio.

The site covers 3,700 acres, including 93 acres of process buildings (DOE, 1991c).

3.1.17 Nevada Test Site

The Nevada Test Site (NTS) occupies approximately 1,350 square miles of desert in

southwestern Nevada. The closest major polmlaflon center is Las Vegas, 65 miles southeast of

NTS (DOE, 1991c).

3.1.18 Hartford Project Site

The Hartford Site encompasses 560 square miles within the Columbia River Basin in

southeastern Washington State. This high desert area is located immediately to the northof

Richland, Kennewick, and Pasco, Washington (combined population 100,000) (DOE, 1991c).

3.1.19 Lawrence Berkeley Laboratory

Lawrence Berkeley Laboratory 0..,BL)consists of 130 acres located near urban Berkeley,

California, on land leased to DOE by the University of California The site is bordered on the north

by predominantly sinsle-family residences and on the west by multi.family residences, student

residence hails, and commercial districts (DOE, 1991c).

3.1.20 Lawrence Llvermore National Laboratory

Lawrence IAvenmx_ National Laboratory(12,NL) Main Site covers one square mile and

is located approximately four miles from the Livermoee, California, city center. Medium andhigh-

density housing within the City of Livermore, population 50,000, borders the west side of the site.

Low-density industrial and agricultural areas adjoin the ntx_ east, and south borders of the site

(DOE, 1991c).

031548040/D.93192.337m 3.5 November 23, 1993

Page 17: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

3.1.21 Lawrence Livermore National Laboratory, Site 300 . Area 854

LLNL Site 300 - Area 854 is located within the overall Site 300 tract, 15 miles east of the

LLNL Main Site. The overall Site 300 covers 11 square miles and is surrounded by low-density

agricultural land in the Diablo Range of California (DOE, 1991c).

3.1.22 Lawrence Llvermore National Laboratory, Site 300 - Areas 834 & 836

LLNL Site 300 - Areas 834 and 836 are located within the overall Site 300 tract, 15 miles

east of the LLNL Main Site. The overall Site 300 covers I 1 square miles and is surrounded by

low-density agricultural land in the Diabio Range of California (DOE, 1991c).

3.1.23 Energy Technology and Engineering Center, Santa Susanna

The Energy and Technology Engineering Center (ETEC) is located within the Santa

Susanna Field Laboratory, 30 miles northwest of downtown Los Angeles, California. The ETEC

consists of government buildings on a 90 acre site within the overall 2,700 acre Santa Susanna

Field Laboratory property (DOE, 1991c).

3.1.24 Stanford Linear Accelerator Center

The Stanford Linear Accelerator Center (SLAC) site covers 426 acres of low rolling

foothills in unincorporated San Mateo County, California. SLAC is located 25 miles south of San

Francisco and 15 miles northwest of San Jose. The eastern border is adjacent to the Stanford

Umversity campus. Medium-density shopping, residential, and professional buildings are located

north of SLAC. Low-density single family residences are located to the south of SLAC (DOE,

1988c).

3.1.25 Savannah River Plant

The Savannah River Plant is located in south central South Carolina, and is bordered on

the sottlhweatetn side by the Savannah Rivet. The closest major population centers are AJken,

South Carolina and Augusta, Georgia. The total area of the site is approximately 325 square miles

with ptoctuction facilities occupying less than5 percent of the site area(DOE, 1991c).

3.2 SEISMICITY

The hazard classification of a facility from the safety analysis determines the designated

usage category for the facility under UCRL-15910, Design and Evaluatitm Guidelines.for

i

031548040/D.93192.337m 3.6 November 23, 1993

Page 18: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Deparzment of Energy Facilities Subjected to Natural Phenomena H ,azards(Kennedy et al ., 1990).

Each usage category is assigned an annual probability of exceedance for seismic events. For major

DOE sites, UCRL-15910 (Kennedy et al., 1990) presents seismic horizontal ground accelerations

corresponding to the annual probability of exceedance.

Table 3-2 ranks the major DOE sites by respective ground accelerations for the three

standard annual probabilities of exceedatr_. A facility installed at a site appearing at the top of the

table would require less sophisticated evaluation of seismic hazards and could be more easily

designed to survive credible seismic events.

3.3 EXTREME WINDS

Extreme winds, including cyclonic storms and tornadoes, are assessed by UCRL-15910

(Kennedy et al., 1990), with annual probabilities of exceedance assigned for specific wind loads at

each DOE site. "n_esecriteria assure that facilities of a given usage category aredesigned to

withstand credible structural wind loads as well as windborne missiles.

Table 3-3 presents a ranking of major DOE sites by respective fastest-mile wind speeds

for each usage category. Sites appearing at the top of the table would require less sophisticated

design evaluation for wind hazards and could be mote easily designed to withstand credible

structural wind loads and missiles.

3.4 FLOODING

Floo_hazardcurvescorrespondingtotheannualprobabilities of ex_ in UCRL-

15910 (Kennedy eta/., 1990) have been estimated for selected DOE facilities during the DOE

natural phenomena hazard project (Saw and Murray, 1988). Facility structures, including site

drainage, founda_on design, androof design, must meet bounding design criteria for protection

against extreme precipitation and surface water intrusion during a Design Basis Flood (DBFL)

corre_ng to the usage category annual probability of exceedance.

Table 3-4 presents a ranking of flood hazard curve characteristics for those selected

major DOE sites where data are available (Saw and Murray, 1988). Sites appearing at the top of

the table would require less sophisticated design evaluation for precipitation and flooding hazards

and could be more easily designed to withstand credible floods and local precipitation.

031548040/D-93192.337m 3.7 November 23, 1993

Page 19: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Table 3-2. Annual Probability of Exceedance for Horizontal Ground Motion atDOE Sites (Kenned_¢ et al., 1990)

.. Annual Probability of Exceedance

DOE Site 2.00E-03 1.00E-03 2.00E-04I

Pinellas Plant, Florida 0.04 g 0.05 g 0.09 g

Pantex Plant 0.08 0.10 0.17la

Kansas Ci_ Plant 0.08 0.10 0.17

Portsmouth Gaseous Diffusion Plant 0.08 0.11 0.17I I

Savannah River Plant 0.08 0.11 0.19II II I I I III I III

HartfordSite 0.09 0.12 0.17I II II I

ArgonneNational _, East 0.09 0.12 0.21

Feed Maaniais PtxxhtctimCentervFernald 0.10 0.13 0.20

ArgonneNational I.atxnlo_t West 0.12 0.14 0.21

Idaho NalionalEngincerinl_l.,abccall_ 0.12 0.14 0.21

Mound_ 0.12 0.15 0.23

BrookhavenNational_ 0.12 0.15 0.25

Rodq¢ Flats Plant 0.13 0.15 .... 0.21

OakRidgeNalicmal_ , 0.15 0.19 0.32

SandiaNationall,a/ga-alo_ ,,,Allmque_ue 0.17 0.22 0.38

Los Alamos Nationa/Laborato_ 0.18 0.22 0.38

Nevada TestSite 0.21 0.27 0.48 ,.ll

IA.NL Site 300 - Areas834 and836 0.28 0.34 0.51i

LIAIL Site 300 - baea 854 0.32 0.38 0.56

Lawrmce Livemn'e _ _ 0.41 0.48 0.,68

SandiaNtlicml _ Califoma 0.41 0.48 ..... 0.68

!Paducah_ _ Plant 0.33 0.45 *

S_ I _ ,t_ _ 0.45 ,, 0.59 *

Fa,,q_T_ md r:Jn.._l_ Center 0.53 0.59 *

bmmm lkaz , o.55 ,0.64 *

• Value oot Igivea in Kennedy eta/., 1990 and mutt be specif'r.ally determined for hish hazard facilities.

031548040/D-gJ192.337m ..... 3.8 ' November 2'3, 1993 '

Page 20: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Table 3-3. Annual Probabilities of Exceedance for Design Wind and Tornado

Loads at DOE Sites !Kennedy, et aL, 1990)Low Hazard Moderate High Hazard Moderate/High

Hazard HazardWind Load Wind Load Wind Load Tornado Load

(mph) (mph_ (mph) _mphDOE Site 2.00E-02/Yr 1.00E-03/Yr 1.00E-04/Yr 2.00E.0$/Yr

j Ilili

Hartford Site 70 80 90 0

Argonne National Laboratory, West 70 83 95 0Brookhaven National !a_ 70 0 0 95Energy Technology and Engmeenng I 70 0 0 95CenterIdaho National Engineering 70 84 95 0

_Iev_zdaTest Site 72 87 100 0

Kan._a.sCity Plaat 72 93 107 0Los Atamos National !_alx_ratory 77 93 107 0 .......Portsmouth Gaseous Diffusion 70 0 0 110Plant

Iawrence Berkeley l.a_ 72 ,, 95 112 0Stanford Line__"Acce_Aemtr,_ Center 72 95 112 0

Oak Ridge Naaonal L_ 70 , 0 0 113Lawrence Livetmote National 72 96 113 0

........Sandia Natxmal I.,abtmaarie_ 72 96 113 0Califolmm , ,Lawrence Livetmore National 80 104 125 0

Lahotato_26Site 300 ,, ,Pautcx P_nt 78 0 0 132Sandia National _ ' 78 0 0 132

MoundI_ 73 ,, 0 0 136Savannah River Plant 78 , 0 0 137Feed Materials Production Center, 70 0 0 139

Ferrmld ,,Argon_ National I ___) F_ 70 0 , 0 142

Padu_c'a__C,a-qxms Diffmion Phmt 70 ,,, 0 ,,, 0 144I III

Pinella_ Plantt ,,Florida.... 93 130 150 0

Rocky l='tl_ plant 109 138 161 0 ,,

031548040/D.93192.337m 3.9 November23, 1993

Page 21: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

"" 3-4 Mean Flood tlazard Elevations and A_iooo llaZaro r.nc' .............. z_'z....... "---- 'feet _ and Annual Probability ofFlood Elevation Anove Minimum _nuc i,ncva_.,,.. _- ,Exceedance

I)()E Site Minimum I.OOE-O6/y I.OOF-O5/y I.OOF-O4/y _--_-:O2-/y----I.-_F_-0-i/y

Site

Elevation (ft)

Sandia Nalio___'_dl..abor;____n_iAes_A/___-_n{I-ue N/A N/A N/A N/A N/A _ N/A N/A_........

i lanford Site (N Rcactt_') 450 * -2 -25 * * * .......

Mound i.aboranwy 710 * 2 -I -4 .... -8 * _.

Pmcllas Plant 18.7 * 16 6 -I -8 * .......

Nandia National l_-:.__hora_!_rie---srCalifornia 640 6 5 4 2.. t ) *

l+os Almnos Nation',d i _h)ralo_ (TA-41) 6aar_0 '_ 3 I * *

htocky ia.,,_ pn;,,.,,J 5950 8 6 4 _ *

800 _ _Kansas ('it Plant _ #3154,_J40/1)-++-1+2+J7., Noveml,ev+lj.i_,_4 " +_t'kt

• l:i_Ld level unavmlable from flood hazard curves.

N/A indicates flood was not credible.

i OJl__48040/D-9Ji92.J.}Tm J-lO November 23, 1993

Page 22: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

3.5 TRANSPORTATION AND UTILITIES

Each of the major DOE sites discussed in this section contains sufficient industrial

infrastructure to support a FlIP facility. Most important are routes appropriate to transport

construction materials, system components, mixed waste, and consumables such as diesel fuel.

The manufacturing firm currently fabricating PHP systems maintains a 10-ton capacity bridge

crane, which corresponds to the gross weight of the current plasma hearth test process system.

Therefore, transportation routes to and from the demonstration site that can accommodate a 10-ton

truck net weight should be sufficient to carry the largest single components of the system.

Sufficient water supplies must be provided for process water, fire protection, and drinking water.

The site must have suitable provision for stormwater and sewage. Fire protection, sewer, and

stormwater systems for the demonstration facility must be designed consistent with DOE design

criteria for non-reactor nuclear facilities (DOE, 1989a).

System electrical demands are likely to exceed one megawatt during plasma torch

operation. High voltage electrical distribution may be necessary to supply system operational

needs. Diesel generators may be employed to supply backup power. Transportation systems and

site civil engineering must account for fuel tl'a_[x)t'tation and tank storage needs ff diesel generation

is used.

031548040/D.93192.337m 3-11 November 23, 1993

Page 23: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

4.0 FACILITY DESCRIPTION AND OPERATIONS

4.1 LOCATION AND DESCRIPTION

4.1.1 Site Location

The location for installation of the PHP facility has not been determined. The process

itself is not affected by the location, although environmental characteristics of potential sites can

have a significant impact on the design and construction of such a facility. The following

subsection details some of the facility design characteristics which will be important to a future

PHP facility and impact site selection.

4.1.2 General Building Requirements

The PHP facility will be required to comply with general building requirements contained

in DOE Order 6430. IA (DOE, 1989a). Major requirementsinclude the following:

• A building capable of holding the PHP and associated offgas treatmentsystems.The dimensions of the building should be at least 50 feet by 100 feet.

• A building foundation capable of holding a weight of at least 65,000 pounds,

• An automatic fire suppresalon system, as the contents of the building will bevalued at over $1 million The fire su_on system should be of the wet standpipe design since the building will require climate control. A dry stand pipesystem is used only in buildings which are not climate controlled with thepossibility of water freezing in the pipes. The fire supp_ssion system must meetNational Fire Protection Association (NFPA) 13 Standards for Ordinary Hazards(Group 1 for Low HazardFacility and Group 3 fo[ Moderate Hazard Facility).The fire alarm system must be comp_ble with the system currently in place atthe DOE facility where the PHP is located.

• A domestic water supply of sufficient cap_ty to provide for the cooling waterrequirements of the PHP and the domestic sanitation needs of building occupants.The domestic water supply system will be a separate system from that used bythe fire suppression system.

• A Ixu:k-upelectrical system to maintain operation of the PHP in case of powerfailure. The back-up will allow the PHP to either remain m operation or goflmmgh a controlled shut down,

• Real time radiation air monitoring equipment for both the general work area andthe PHP exhaust stack

• Primary and secondary containment systems for any hazardous or mixed wastewhich may spill inside the building.

_'--'-- November 23, 1993

Page 24: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

4.1.3 Building Design Requirements

Building design and structural requirements will depend on whether the operation is

classified as low or moderate hazard as defined in DOE 6430.1A (DOE 1989a). Structural and

design requirements are based, in part, on earthquake (seismic) activity, wind loading (to include

hurricanes and tornadoes), and flooding potential. Design guidelines are contained in UCRL-

15910 (Kennedy et al., 1990).

The performancegoalannualprobabilityofexceedanceforlowhazardandmoderate

hazardfacilitiesformajorstructuraldamageorfacilitycollapsethatwouldendangerpersonnel

withinthefacilityareasfollows:

• Low Hazard: annualprobabilityof5 X 10-4forfacilitydamagetotheextent thatthefacilitycannotperformitsfunction

• Moderate Hazard: annual probability of 10-4 for facility damage to theextent that the facility c'mnot perform its function.

Design criteria for low and moderate hazard facilities must meet the annual probability of

exceedance for earthquake, wind loading, and flooding as described in Table 4-1 below:

Table 4-1. Annual ProlmblHt_ of Exceedance

DESIGN ITEM LOW HAZARD MODERATE HAZARDIIII II

Earthquake 10-3 10-3

Wind Loading 2 X I0"2 lX 10"3

To_adoes Not Applicable 2 X 10-5

Flooding 5 X 10 4 10-4

DOE site specific design information for wind loading, flooding, and seismic activity is included

in UCRL-15910 (Kennedy et aL, 1990).

4.2 GF.,NERAL DESCRIPTION OF OPERATIONS

4.2.1 System Des:dpUon

The future pilot plant for the PHP is expected to be similar to a current test configuration

designedby SAICandconstructedbyRetechattheirdemonstrationfacilityin Ukiah,California,and has been used as a basis for this PHA. However, the pilot plant would be equipped with

0315_.93.192.337m 4.2 November 23,1993

Page 25: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

If

|,,,

additional safety and process systems and be amenable to continuous feed rather than the current

batch feed process,

The PHP system consists of a bulk material feeder, a pnmary chamber with a collection

crucible, a secondary chamber, and exhaust gas pollution control systems (Figure 4-1). The

primary chamber contains the plasma hearth. The material for treatment is fed into the primary

chamber. Types of mixed waste containers which can be fed into the current demonstration PHP

are detailed in Table 4-2. This current demonstration chamber is a refractory-lined steel vessel

and is approximately 100 cubic feet in size. A collection crucible is located at the bottom of the

primary chamber. The molten material from the process is collected in the crucible. The primary

chamber is equipped with a water spray nozzle at the top of the vessel that serves to remove

process heat and thus slow the combustion reaction if the combustion process proceeds too

rapidly.

Table 4-2. T_¢pesof Mixed Waste Containers ,

DOT # USAGEI

White or yellow 55-gallon drums (_polylined) 6D-2SL Liquidwaste; corrosives

White or yellow 55-gallon drums (unlined) 17E Liquid waste_no corrosives

55-gallon steel drums 17H Softsor solids

30-gaUonsteel drums 17C , Soils or solids

30-gaUonpolyethylenedrum 34 Liquid waste; oils, solvents_corrosives

Fiber boxes 2IC Solids

5-gallon lard cans N/A Liquid waste;oils, solventsr corrosives

5-:¢allonpolyethylene containers (carbolcs) N/A Liquid waste; oils, solvents, corrosives

The primary chamber operates at approximately 2000°F. Volatilized/combusted products

of the primary reaction are drawn from the primary chamber as offgas and are fed into a

secondary chamber where combustion is completed. Excess air is introduced into the chamber

with the process offgas. To accomplish combustion, the temperature must be maintained above

1,400°F to assure ignition of the offgas. This is accomplished by a supplemental gas-fired

burner.

The exhaust gas is then cooled to approximately 450OF before entering the air pollution

control system which may include particulate bag filters (bag house), high efficiency particulate

air (HEPA) filters, cascade water wash systems, charcoal filters, and other commercial filtration

materials.

03154804t_.93.192.337ra 4-3 November 23, 1993

Page 26: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

PHP PROTOTYPE DESIGN

Figure 4-1. PIIP Prot.type Design

031_-g3-192.3JTm 4-4 Nove._-_ger 2 _. 1¢9J

Page 27: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Both the primary and the secondary chambers are kept under a slight negative pressure by

the exhaust fans. A water cooling jacket he_ps maintain vessel integrity and seals and keeps the

exterior chamber temperatures at approximately 130OF.

4.2.2 Process DescriptionI

The noncurrent-carrying end of the plasma arc electrode is coated with a vacuum grease

and the current-carrying electrode thread is treated with an application of Copper Cote ® . (These

materials are used as an aid to light-off procedures.) Mild steel is placed inside the crucible at the

bottom of the primary chamber to provide a conductive surface on which the torch arc can be

initiated. Compacted waste containing drums or containers (Table 4-2), are loaded into the

feeder. The primary chamber feeder door and all access ports are secured. Primary and back-up

power sources are checked.

Start-up of the system is begun. Plant cooling water and cooling water loops on the

primary and secondary combustion chambers are started. Hydraulic systems, draft and exhaust

fans, and compressed gases required for torch operation are started. Primary chamber pressure is

allowed to stabilize at a pressure of approximately -2 to -3 inches water gauge.

The natural gas afterburner in the secondary chamber is lit. When the temperature

entering the baghouse from the secondary chamber reaches 300°F, the water quench system is

started. Start-up of the natural gas atLarburner and quench system is coordinated to prevent

overheating of the baghouse which will deteriorate if gas temperatures exceed 500OF. To prevent

bag wetting the quench water is not started until the offgas entering the baghouse is much hotter

than the dew point.

The torch is adc transferred plasma arc which uses nitrogen or compressed air as the

plasma gas and is rateA at power levels up to 1200 kW. When the chamber has reached operating

temperature, material is fed into the primary chamber. A hydraulic ram is used to feed the

material in through the side of the primary chamber. The torch "flame" contacts the material and

it is "drip-melted" into the crucible. Any volatile organics are vaporized. Non-volatile organics

are converted through a combination of pyrolysis and partial combustion. This process is

continued until the crucible is full of molten material. The torch is periodically rotated to a

position directly over the crucible to allow even heating and mixing of the contents.

During the melting process, gases move out of the primary chamber and into the secondary

chamber. Combustion of organic materials is not complete in the primary chamber. Excess air is

031548040/D-93-192.337m 4.5 November 23, 1993

Page 28: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

injected into the secondarychamber to complete combustion. The gases then flow into a gas

cooling and treatment system.

Currently, when the crucible is full of molten materials, a water-cooled plug in the side of

the crucible is withdrawn. The molten material is then allowed to flow out of the tap hole into a

mold. After cooling, the mold is removed from the bottom of the primary combustion chamber.

The solid mass in the mold can then be sampled or disposed. In the future, the crucible will

probably be designed to support a continuous product removal system.

The system air pollution control equipment typically includes exhaust gas chillers in the

form of atomized water spray to cool the gases to approximately 450OF, particulate filters

including roughing baghouse, and polishing HEPA and scrublxrs. Dual filtration systems will

probably be employed to allow one system to be taken off line for repair or replacement.

When the operation is complete and the crucible emptied, the torch is turned off. The

primary chamber is allowed to cool for approximately 10 minutes, then the afterburner in the

secondary chzmber and the hydraulic systems are turned off. When the baghouse inlet

temperature has fallen to 300°F, the water quench system is turned off. The induced draft fans

are shut off when the baghouse inlet temperature falls below 200OF. Water cooling systems are

shut off when the water temperature is within 8OFof the water supply temperature.

4.2.3 Required Support Equipment

Utility requirements include electricity, water, and natural gas. Compressed gas

requirements may include argon, helium, nitrogen, compressed air, and several calibration gases

(200 ppm carbon monoxide in mtrogen, 2000 ppm nitric oxide in nitrogen, 10%carbon dioxide in

nitrogen, and 14%oxygen in nitrogen). The argon, helium, and nitrogen are supplied at pressures

of 100 psia, the compressed air is supplied at a pressure of 60 psia, and the calibration gases are

supplied at under 10 psia. The gases may be changed based on the material to be melted and the

plasma gas required for maximum process efficiency.

The current PHP requires a 1,600 amp, 480 volts, 3-phase power supply. A plant cooling

water supply is necessary. Five 3cfm of natural gas is needed for the afterburner.

0315_-93-192.337m 4-6 November 23, 1993

Page 29: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

4.3 DESIGN REVIEW

4.3.1 Safety Significant Structures

No safety significant structures have yet been identified for the PHP. Proper application

of administrative control procedures should prevent the release of radioactive material in the

event of a malfunction within the PHP facility. Structures that could be important to safety,

dependent on the inventories of radioactive and hazardous materials in the facility, could include

the facility structure (containment), ventilation system, off-gas system, monitoring systems, and

process control systems.

4.3.2 Structures and Containers

As the location of the PHP has not been determined, information on a preliminary

building design is not available. Containers which may be used to store waste stream feed stocks

are detailed in Table 4-2. Containers used to store reagents and radioactive materials and

pressure vessels shall conform to current American National Standards Institute (ANSI)

specifications.

031548tMtVD-93-192.337m 4.7 November 23, 1993

Page 30: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

5.0 HAZARDS ANALYSIS

This hazards analysis for the PHP follows the requirements of DOE Order 5480.23 (DOE

1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order

5481. IB (DOE, 1986), and the guidance provided in DOE Standards DOE-STD- 1027-92 (DOE,

1992b). Consideration is given to the proposed regulations published as 10 CFR 830 (DOE, 1993)

and DOE Safety Guide SG 830.110 (DOE, 1991b). A description of the method used in

identifying hazards, analyzing events, determining consequences, and assessing risk is presented in

Section 5.1. Postulated maximum inventories of hazardous and radioactive materials are discussed

in Section 5.2 and their use in establishing the preliminary facility hazard classification is described.

The basic hazards associated with energy sources and hazardous and radioactive materials which

may be present in a PHP facility and the bounding accident scenarios are discussed and analyzed in

Section 5.3. The consequences of these accident scenarios and their use in verifying the

preliminary facility hazard classification are discussed in Section 5.4.

5.1 HAZARDS ANALYSIS METHOD

The method used to perform the hazards analysis involves the use of a list of energy

sources and materials to identify the hazards and is outlined in Figure 5-1. A team of analysts

interviewed project personnel, reviewed supporting documentation, and performed a walkthrough

of the PHP demonstration facility in Ukiah, California. Records of the characterization of DOE and

industry mixed wastes were reviewed to determine the types and quantities of hazardous and

radioactive materials that may be treated in a PHP facility.

Hazards are identified using the "hazardous energy" concept in which potential accidents or

abnormal events are distinguished as flows of unwanted energy between a source and a receptor. A

hazard source listing specific to a PHP facility was developed and is presented in Table 5-1.

Potential hazards from energy sources, materials, and natural phenomena are characterized

by causes, available preventive features, possible methods of detection, available mitigative

features, and potential consequences. Preventive features are those aspects of the facility or process

which reduce the probability of accident occurrence. Mitigative features are those aspects of the

facility or process which reduce the level of consequence of accidents. The results of this stage of

the analysis are provided in Table 5-2. Events which would result in potentially serious on- or

offsite consequences are identified. The analyses include events initiated by natural phenomena,

human error, vehicular accident, explosions, and equipment failures, that could result in adverse

031548040/19-93-192.337m 5-1 November 23. 1993

Page 31: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Review operations I

Identifyhazards

Determine _estunate)inventoriesof hazardousand

radioactivematerial

4, ,

Estimate consequences 1of credible hazards

4,Performaccident analyses ofhazardousevents having the

greatest onsite and offsiteconsequences

4,

Verify hazardclassification

Estimatefrequency [of hazardousevents

I Establishcontrols or IDetermine risk associated make design changeswith significanthazardous

events

1,

acceptable _cepmble0315450#O,_gJ.19¢,337m

Figure 5-1. Hazard Analysis Process

031548040/D-93-192.337m 5-2 November 23, 1993

I

Page 32: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Table 5-1. Potential Hazard Sourcesiiii iiiiiii l i i i i

Electric Sources Chemical Sources

High voltage and current sources Corrosive materials

Transfom_ers Flammable materials

Batteries Toxic materials

Static electricity Reactive materials

Motion Sources Carcinogenic materials

Shears, sharp edges, pinch points, machinery Oxygen deficiency

Vehicles/forklifts & trucks

Mass in motion Electrical

Gravit__-Mass Source Plasma torch

Falling Natural gas

Falling objects Friction

Lilting Chemical reactions

Tripping. slipping Spontaneous combustion

Eart_uakes Cold Sources

Pressure Sources Cryogemc materials

Chemical reactiom Ice. snow. wind. rain

Noise p.adiantSources

Confined gases Radioactive materials

Extreme wind Ionizing radiation

R/' fields

Infrared sources

Ultraviolet

Plasma beam

031548040'/D.93-192.337m 5-3 " November 23, 1993 ....

Page 33: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

"Fable 5-2 Hazards Characterization for the Plasma Hearth Process

Preventive Features Miti, afire Features

Hazard Event Causes Design ministrative Method of Design ninistrative Potential RiskDetection _act I)eterminati*Jn

:-ire Ignition of Approved Facdity safety Personnel Automatic fire Facihzy _alety I':tclllly damage:con_busttbles; combustible prt,cedures_ t,bservatit_n sprinkler l_rt_ccdur¢_; l_.t.,,=mcl mlury; ! .,pv_

l_rsonnel error; material storage t)uahty Assurance sm_,ke or heat systems: fire enlpl_,yee l_,tent|.d rclea._eelectrical fault, containers; l_lan; empi¢_yee delech_rs, exl|nguzshers: training, t_l h.t/altlt,u_ and (',ql_et_iU¢ll___"

facility designed training; I,_cal tire i-;.itht,_.ltllVC Moderateto exceed UBC; workplace fire department: tlt|alct|,ti_, t,, the

electrical system |nspectlons: exterior fire c_v_r,,nmenI.

compliance with _gnitlon source hydrants. I.t,wlimitation.

I lalarth_u_ Perst,nnel error; Approved Facility safety i'erst_nnel Ven[il;.lllOll ;Jtltl l;dcihly _alety i:,_clhly [-_cr.,.,t,linel

Vlalerlal.', conlalnel failure; hazardous material procedures: t_bservall_n; Lbt'lgas treatment I,rt,ccdu re_, CXl'_.ut¢ I_, IklL_tlcralc

I.ixl_..,Ul-e fire: system sit,rage personnel change L,f l_rt,ce.',_ sysleiliS_ drain hz_/artlt_u_,leakage; chemical conlainers; IX)E training; Quahty _ystem Indicators: systems; fl|;.|lt:ll,il:',, t_'t'll_,¢tlUC!lc_

t'eaci_on; 6430. IA/ASME Assurance Plan: ventilatit_n t_r secondary i_,teut_al telea.,,e I._,"

mechanical (7ode process wt_rkplace air building all Colildinments; _1 ha/arth,us

_mpacl. vessels and samphng; s_gns lnon_tt_ring, pr_lect_ve m,ttertals It, theequipment; and postings, t:lothlng, c_tv irt_tin|enl. I._,w'

ventilation and

of fgas treatmenttSlefllS.

l_nllmg Personnel error: Approved Facility salety Perstmnel Venlllatit_n and Facd_ty safety I:ac_hly I_elst_nuc 1Rad_atlt_n container failure; radioactive procedures; observation; t_flgas treatment prt_cetlures, eXl_sur¢ I,, Ik|,,,Icr._tc

l._xi_,sure fire: system material storage personnel change ,,1 process systems; dram i.ltll_t_AC|lVeleakage; chemical containers; I_)17, training: Quahly system Inthcatt,rs; systems; m._tcr_al. (",,___.At..quct_,.¢reaction; 643().IA/ASME Assurance Plan: ventdallon and sect_ndary i_,lcnl_al reica.,,e I,,winechanlcal (?ode process signs and building a_r ct_ntainments t,I i-adlt,acllve

m_pact, vessels and pt_sttngs, nlonltortng protective material It_ Ihe

equipment; indication; area ch_thlng, euv iit,nlilCUt. I._,_'shielding; rn_t_ ttorventilation and _nd _catton.

of fgas treatment

systems;workplace a_r

sampling: arearadiatit,n

m o n it t, r i n.111111__ _.

031548040/D-93- ! 92.337m 5-4 November 23. 1993

I

Page 34: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Table 5-2 Hazards Characterization for the Plasma Hearth Process

_ Per..,,mlcl mlury,

_,dtag¢ Personnel error; Enclosures for Facility safety Perst_nne! ('lrcutt breakers, l:acdtty safelyllazard equipment fadure, high voltage procedures; detectaon; pr_Pcedures. CtlUq*mcnl Mr,aerate

equipment; NEC employee electrical system dalli;.tg¢, i;a_.lllty

compliance; training; fault lndicalltJn; damagecircuit breakers; protective shoes circuit breaker I,-w

grounded conduits; and mats; Quality trip; delectlt_il td

process system Assurance Plan; electrical fire.electrical signs, tags, and I.ow

indicators_ _. Pel.,,t,tm¢l inlury;Industrial llazards Forklift Machinery m_ts Facility safety Perst,nnel None ndentdied. Facdity safely

([nass-ili-nll)tIOl|) tq_ratton; roll-up applicable ANSI pn_cedures; observallt)n. I_nbcedures; equiptnent I.,,w tt_ Mt_dcral¢doors; crane standards; Quality Assurance employc:-" damage: facihty

t_peratlon; machine guarding; Plan; employee training, damage (",ql.,,eti_UCllK_rotating hand rails; load- training; Mt_leratc h, I.t,w

machinery; fall rated floor; preventivefrom henght; seismic res:raints; mamlenance;

falling t_b]ect, audible and visual ft_rklift and crane lowcrane alarms; operator

audible and visual certifications;

forklift alarms, signs and

postings;

personal

protectiveequipment(harness, hard

hats).

Natural Earthquake; wind; Facihty designed Facility safety Personnel None identified. Facility salety Per.,,t,nnel m lury:Phent_mena tornado; th)od. It) ! IB(" and [X)E procedures; t_bsel-vatlt_li; pr,cedures: etlUipfllCill I-_tll¢lncly I ,,w I,,

{)431).1A criteria. Quality Assur;.mce Rept_rt t_l perstbnnel dalnage, laclhty Mr,aeratePlan; persLJnnel inclement trallling, damage: [_teuttal

tra In Ill g. weather, release t _I { "tql.'-.etltlCIl_.ha/atilt _U._ dlld _11 Jd¢l ale It

radlt_aCtlVe Negligible

illalerlal h_ Ihc

cnvirt_l|lnenl.

_lble t,, i.,,_.'.

031548040/D-O3-192.337m .$-5 November 23, 1993

Page 35: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

03154BO40ID-9_-I92.J37m _-6 Ho_,,md_r 2_. 19_

Page 36: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

on- and offsite consequences due to a fire, explosion, or other mechanism. A qualitative estimate

of the probability of occurrence of each hazard is provided together

with an appropriate qualitative estimate of the severity of the events. These are combined to provide

a qualitative risk level for such a facility. These levels are based on the method provided by

Hallinan (1988) and are comparable to the criteria used in other qualitative hazard analysis methods,

as detailed in Pacific Northwest Laboratory Manual PNL-MA-44, Safe_ Analysis; LA- 10294-MS

(Elder et. al., 1986); and in the Technical Guidance for Hazards Analysis (EPA, FEMA, & DOT,

1987). These levels are detailed in Tables 5-3 and 5-4. The risk levels are determined by

application of the Risk Matrix, provided in Figure 5-2.

T lble 5-3. Probabllit_, Levels (Hallinan, 1988).Ill IlllllI

Probability Level [ Estimate Range........................................I of Occurrence

.................Cate-R_o'r-_...............[.....sym-bo-i-............ Description Rate per Yearii'h H , "'lI_ ' ' '"

_ble A Probabilityof occurrenceis so small thata < 10-6reasonablescenariois notconceivable.These eventsare notconsideredm designor accidentanalysis.

ExtremelyLow B Probabilityof occurrenceis extremely > l0 -6 and< 10-4unlikelyor event is notexpected to occurduringthelifeofthefacility'oroperation.

Low C Probabilityofoccurrenceisunlikely,or >10-4 _d <I0"2event is notexpectedto occur butmayoccur during the life of thefacility orop_ff_Jon.

Moderate D Event is likely tooccur duringthe facility > 10.2 and <10"toroperationlifetime.

High E Eventis likely to occur several times > i0- lduringthe facilityor operationlifetime, , ,,

Table 5-4. Consequence Levels (Hallinan, 1988). , .......Consequence

level a Category Maximum consequenceslllll I IIIII I 7_

1 High Seriousimpacton-site or off-site. May cause deathor loss of the.... facili_/opcration. Majorimpacton the environmenL , ,

2 Moderate Majorimpacton-site and/orminorimpactoff-site. Maycausesevere injuryor severe occupationalillness to personnelor major

, damage to a facility/operationor minor impact to the environment.C.apableof returninlgto operation.

3 Low Minoron-sitewith no off-site impact. May causeminor injuryorm_mot occupationalillness, or minor impact on the env'.mmment.

4 ExtremelyLow Will notresultin a significantinjury,occupational illness, orimpacton theenvironment.

m i iiiii ii

a Worker consequence levels addressed in this table are for workers outside the immediate area in which anaccident occurs.

o315480dO/D-93-192.337m 5.7 November 23, 1993

Page 37: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

(_g6l 'ueu!lleH) x!alei_ _lS!_! 'Z'ff aan_!A

olq!6!16ONfHs!Etelqe_deoov

LMol

e|eJepo_

_ls!_ elqe_deooeUlq { q6!H

Page 38: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

I_

5.2 INVENTORIES

Radioa,xive MateriaJ

InaccordancewiththeguidanceofDOE-STD-I027.92(DOE, 1992b),apreLinunary

a._sment of factlity hazard requires the identification of the inventory of radioacUve material and a

comvanson to the Threshold Quantities provided in the Standard.

A wide range of potential radioisotopes may be found in mixed waste but most exist at low

concentrations. Mixed waste containing fissile transtwamc isotopes may be treated in the facility.

although it is expected that these materials will meet the "less than 100 nCl/g" standard forhandling

as low.level wastes in accordance with DOE Order 5820.2A (DOE, 1988b) aixL therefore, there

wtll be no possibility of a nuclear criticality at the facility. Should enriched uranium or fissile

transuramc wastes be processed at a PHP facility, inventory limits in accordance with the standards

of ANSI/ANS-8.15-1981 (ANSI, 1981) and ANSI/ANS-.8.1-1983 (ANSI, 1983) shall be

established so that nuclear criticality will not be possible. Facility maximum inventory limits shall

be established in facility safety procedmes for all classes of radioisotopes to support maintenance of

the facility hazard classification eventually selected.

The inventory determination is performed by emmatmg the total quantity of each class ofJ

radionuclide allowable in the facility mixed waste inventory based on the DOE-STD- 1027-92, Table

A. 1, Threshold Quantifies. The sum of the ratios of the total inventory of each radionuclide to the

Table A. 1 thresholds are then calculated. Representative and conservative radioisotopes are chosen

in the broad categories of activ_on and fission products, iodines, natural actinides, and

transuranics. These choices reflect both the lowest or one of the lowest Threshold Quantifies in the

DOE Standardand isotopes typically found in mixed waste. The results are provided for a PHP

facility which is _ as an Exempt facility (that is, a facility which has radiological hazards, but

does not meet the criteria for consideration as a "nuclear" facility and is exempt from the

requirements of DOE 5480.23), a Category 3 facility, or a Category 2 facility, in accordance with

the guidance of DOE-STD- 1027-92. The ultimate classification depends on the inventories of

radioactive materials in the wastes being processed. The maximum inventory for an Exempt facility

is estimated in Table _;-$. The maximum inventory for a Category 3 facility is estimated in

Table 5-6. A facility which would have an inventory in excess of the Category 3 estimated limits

of Table 5-6 should be considered Category 2.

031348040/D.O'3-192.337m ..... 5.9 Novcmb¢r 23, 1903

Page 39: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Table 5.5 Maximum Radionuclide Inventory for an Exempt (Below Category 3)Facility

-- IIIIIII I | I ,.

Nuclide" Maximum Category 3 Inventory toInventory (ca) b Threshold Quantity Threshold

,,,,,, , , , , , , ,, I Cl)C Quantit_ Ratio d

....Tn,Uum(,3H) ....... i00 .... l,O00 O.l -1_C 4 420 ......0.0 i

....ActlvauonProducts 28 ......... 280 0.1 '

(+°Co,) ,,,Fission Products(9°St/Y) 1.6 16 0.1"Iodines(f251) 0.03 .....0.36 O.I

'" i i i i ,iii , ,

_on= (.23_? ..... o.o,. o.t _ +o.t0ranium (,238LF_ 0.4 4.2 O. i

r_._,¢_<,_gp_ 0.05..... 0.52 + 'io._Sum of Ratios 0.8'

a The nuclidesmdicacedareexampleschosenu representativeofaparUcularclus ofnuclides.

b The maximum mventoryquanuuespostulatedarethemixm2um loUdquanUli_ofthoseclassesofilotopeswhichwould beallowedtnloa PHP fac_tyand mcludeallwas_i,m-proc_s matenlds,and processby-products.

c The ThresholdQuamiUm arealmdicat_m DOE-,STD.I027.92(DOE 1992c).d The rauosofthemixmnum mventoryquan_tiestotheCate$ory3 ThresholdQuantitiesaresummed, m

accordancewlththe8mdancem DOE-STD-1297.92 and arefoundtobe lessthanl.O.Th_ demomm'ateschatthe potenual hazard from the maxunum mvenmry of radioactive malarial will not be sufficient to warrantclasstficauon as Category 3.

Table 5-6 Maximum Radionucllde lnventol for a 3 Facilit

.... Nuclide' ...... Maximum " CaW'gory 3 Inventory to .....

Inventory (Ci) b Threshold Quantity Threshold

,,, , (CI_i ¢ Quantity Ratio d

Tnuum CH) ...... 30,000 300,000 0.1|4C 14,000 1,400,000 .... 0.01

Acu_auoo_xl.,__30_ 19.ooo' tgo,0oo .... o.i 'n_io(P_u,-___ 2._ 2zooo o.,lading.it;51),. 240 ......2,40o .... o.tThorium _!32Th) , 1.8 18 O.1

_238LD t 24 240 ........ 0.1UrammL f_ _ I I IIII II I I I ii ITransuramcs_ _) 5.6 56 o.l.Sum .9f Ratios ,. O. 8

• The nuclides indicated are examples chosen as representative of a particular class of nuclides.b The maximum inventory qumtmes postulated ate the maximum total quant/t_ of those classes of isotopes

which would be allowed into a P[-IPfactlity and include all wules, m-proc_s matenaht, and ix_cess by-products.

c The "l'mmhold(_incilimm amindicated inDOE-STD-I027.92 (DOE 1992c).

d The rsUosof the maxanum mvenwry quanuti_ to the Cate|ory 2 Threshold Quantities are summed, maccordance wlch the 8uidance m DOE-STD-1297.92, and are found to be lessthan 1.0. This demonstrates thatthe potenual hazard from the maxtmum inventory of radioactive material wtll not be sufficient to warrantclasstficauon as Category 2.

031548040/D.O3.192.337m ...... 5.16 ........ Novel, 23. 1993

Page 40: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

The sum of the ratios of the total inventory of each radionuclide to the DOE.STD- 1027-92.

Table A. 1, Threshold Quantities is calculated in the Tables to be less than one in order to provide a

marginof safety and preclude approach to any technical safety limit. It should be noted that the

PHP facility should not, at any time, be expected to contain a significant fraction of the maximum

tnventones. This will maintain a margin of safety, maintain the conservatism of this analysis, and

assure that there will be no significant potential for the occurrence of an Unreviewed Safety

Question as detailed in DOE Order 5480.21 (DOE, 1991d).

Hazardous Material

The preliminary assessment of facility hazard is performed in accordance with the

requirements of DOE Order 5481.1B (DOE, 1986) by examining the range of hazardous materials

found in mixed waste and the process reagents and by-products. The hazard classification system

contained in DOE Order 5481.1B for facilities containing hazardous (chemical) materials is not

provided with specific guidance on the evaluation of hazards and consequences as is contained in

DOE-STD- 1027-92 (DOE, 1992b) for radioactivematerials. The Orderprovides general, qualitative

classifications for DOE hazardous facilities similar but not identical to those in DOE Order 5480.23

and DOE-STD- 1027-92:

• Low hazard - those which present minor onsite and negligible offsite impacts

• Moderate hazard - those which present considerable potential onsite impacts, but at mostminor offsite

• High hazard - _ with the potential for onsite or offsite i_ to large numbersof persons or major impacts on the environment.

Hazardous materials, for the praise of this PHA, are considered to be those chemicals which

could present a significant hazard to on- and offsite personnel if tt_y were released in sufficient

quantity and are those materials which have been designated by the Department of Labor (DOL),

Occupational Safety and Health Administr_on (OSHA), as highly hazardous in 29 CFR 1910.119

(DOL 1993) and by the Environmental Protection Agency (EPA) as extremely hazardous

substances In 40 CFR 355 (EPA 1993),

The total quanlJty of a specific hazardous material in mixed wastes which could be treated

by the PHP are estimated below. The maximum amounts of treatment reagents proposed for use in

the various facility systems and the maximum amounts of in-process hazardous by-products are

estimated. The primary hazardous constituents are identified. These are co_ed to the referenced

industry standards.

031548040/D-93-192.337m 5.11 November 23, 1993

Page 41: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

The hazardous constituents and quantities of dxed waste generated and stored at the

various DOE facilities have not been fully characterized. The range of hazardous constituents

which may be incorporated in waste which may be brought into a PHP facility will likely include all

the EPA waste codes except the "K" code (Musgrave, 1993). Waste codes D, F, P, and U

represent the following waste categories:

D Codes: Hazardous wastes that show toxicity characteristic, and are subject to LandDisposal Restrictions (LDR) - including D004-D043

F Codes: Hazardous wastes from non-specificsources- including F001. F039

P Codes: Hazardous wastes from discarded commercial chemical products, off-specification species, container residues and spill residues thereof - includingU001-U359 (40 CFR 261.33)

U Codes: Hazardous wastes from discarded commercial chemical products, off-specification species, container residues, and spill residues thereof -including P023.PI22 (40 CFR 261.33).

Thompson (1992) has identified mixed waste generated and stored by DOE facilities, using

data derived from the following three sources:

• Waste Management Information System

• Integrated Database

• National Report on Prohibited Wastes.

Thompson used the data to categorize DOE mixed waste m five major treatment groups and

assigned treatment line/waste codes to these five groups. Pertinent data for these groups includes

the information summarized m Table 5.7.

Table 5-7. DOE Mixed Waste Comp,osition b_, ['_'_eWaste Code Waste Description Density Mass Rate Volume Rate

k_/m 3 kg/yr m3/yr

100 A_Jus li_fids 1,009 104r910 100

2oo _ tiq,ms .......... 882 52,89o 6o

300 Wet soli,,tt 1,276 957,230 750 _

400 Ho_m_ofieneousdrysolid . 1,181 88_570 75

500 Het_rogemousdrysolid* ..... 1,336 308,560 .2.50I TOTALS $1724 115121250 11160

i i II III

* This represents the average of the small and large heterogeneous dry solids.

031548040/D.93.192.337m 5.12 November 23, 1993

Page 42: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Specafic components of the five groups which may be contaminated with hazardous

constituents from some or all of the EPA waste codes are listed below

• Aqueous waste may contain the following:- aqueous tiqtuds- heavy metal solutions- salt solutions

slurriestrace organics

• Orgamc liquids may contain t/_ following:organic liqtuds and sludgessolventsscintillation cocktailsmercury-contaminated liquidsPCB-contammated liquids

• Wet solids may contain the following:- adsortmd/absorbed liqtads- sludges- resins- cemented sludges

• Homogeneous solids may consist of the following:- dry homogeneous solids- grouts- ashesandpmntchips

concreteorasphaltbricks, soils, and saltspyro_cs

• Hemrogeneousdry solidsmayconsistof the following:- equipment- gloveboxes- leaded gloves and aprons- construcUon debris- generalmetalsandmetallic equipugnt- wood- drysolidswhich can be sorted- fflusrs- glass

comlmstiblematerialsmi_Um_ous waste combmanons.

Bechtel Corporation (1992) used the same grouping (aqueous liquids, organic liquids, wet

solids, homogetmous dry solids, and heterogeneous dry solids) of mixed waste in their study on

mixed waste to be treatedby the Mixed Waste Tream_nt Project (MWTP).

"_)3154SCMO/D.93.192.337m 5-13 Nov¢mb¢r 23. 1993

Page 43: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

From a list of 125 waste descriptions compiled from the National Database on DOE Mixed

Waste, the wastes were organized by Bechtel into the following rune major classes:

Class Waste Description

I000 Aqueous liquids and slurries

2000 Organic liquids

3000 Solid process residues

5000 Debriswastes

6000 Special wastes

7000 Inherently hazardous wastes

8000 Unknown

9000 Treated wastes

Examples of waste belonging to each class are provided in "Waste Stream Defimtion"

(Mayberry, 1993). Hazardous characteristics of these waste streams include ignitability,

corrosivity, reactivi_, and toxicity and are exemplified by non-halogenated solvents, acids and

bases, cyanides, and halogenated/heavy metals, respectively. From _, standardized surrogate

waste streams are being developed for testing under the MWIP. These surrogate streams are

shown in Table 5-8.

Eleven mixed waste surrogates were selected for the PHP test program and represent 18 of

the 125 waste categories (Mayber_ 1993) currentlyunder review by the MWTP and include liquid,

sludge, and solid matrices. The primary contaminants ate halogenated and non-halogenatedl

solvents, heavy metals, and polychlorinated biphenyis (PCBs).

Five of these eleven mixed waste surrog_s were selected as standard wastes for treatment

by PHP (Table 5-8) are detailed in Table 5-9. These five waste streams are ash; abso_

aqueous/organic liquids; high organic content sludge; cemented sludges, ashes, solids; and

heterogeneous debris and were selected asrelxesentlng the most hazardous streams. Specific

hazaraom chemical constituents associated with these waste streams are provided in Table 5-9.

These waste streams were selected as being mptesentalave of the mixed waste streams which will be

treated by a PHP facility. The hazardsassociated with these are amlyzed in Section 5.3.

031548040/D.93.192.337m ......... 5.14 November 23, 1993

Page 44: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Table 5-8. Mixed Waste Categories Selected as the Standardized Surrogates forTreatment b Plasma Hearth Process

....... POTENTIAL TYPICALITEM CODE WASTE PERCENTS WASTE HAZARDS HAZARDOUS

NO. NAME DESCRIPTION Hazard EPA Codes CONSTITUENTSClass

I|I IIII IIIll I II

I 311l Ash 0.06% Bottomand flyash and Toxicity FOO I-FOO3 Halogenatedandresiduefrom FOO5 non-halogenatedincinerationof DOO4-DOI I solvents;heavyradioactivewaste metals

2 3l13 Absorbed 0.04% Veru_culiteclayor Toxicity FOOi-FOO3 Halogenatedand

3 114 aqueous and diatomaceous earth FO05 non-halogenatedorganic material contaminated D(X)4.D011 solvents: heavyliquids with aqueous and metals

organicliquids ,.,3 3115 Ion No estimatesInorganlcmaterialused Toxicity DOO4-DOI I Heavy metals:non-

exchange are available to remove ions from F Senes halogenatedmedia liquids solvents

4 3122 High 0.31% Hzlogenated or non- Toxicity FOOI-FOO4 Halogenated and"organic halogenatedsludges DOOS-DOO9 non-halogenatedcontent with>1% organics solvents; heavysludges metals

5 3140 Cemented 10.70% Sludges mixed with Toxicity FOOI-FOO3 Halogenated andsludges, solidifying Meats such FOOS-FOO9 non-halogenatedashes, and as cement D006-D(0)9 solvents; heavysolids metals

6 321 l Activated No estimates Spent carbon used in the Toxicity F a_i D Hal0genat_ andcarbon are available removal of organics Series non-halogenated

from gases and liquids Ignitability DOOI solvents; heavymetals; ignitablesolids

7 51 I0 Metallic 0.04% Gener_ metallicitems Toxicity FOOl Halogenated

5130 equipment, f_om p¢oce_or DOO6-DO(O solvents,heavy5140 components maintenanceactivities; metals

,and scrap; lead from gloveboxeslead and and soldering; cadmiumcadmium components excluding

containing cadmium batteriescomponents

8 5210 Concrete; No estimates Concrete from buildings Toxicity DOO9 Mercury; PCBs5220 glass, are available or roadways, laboratory5230 ceramic _ and _ used PCBs TSCA b

crucibles; as _ucibles orbnclr_ refractories

9 5310 Plastic; 0:09% Ikmelexor Plexiglau_ Toxicity FOOI-FOO5 Halogenatedand5320 rubber; plmtic_;structural D(X_-DOI I non-halogenated5330 wood; _ timbers;boxes,pellets, solvents:heavy

cloth and papa" or cloth used metalsasPPE r,,

lO 5311 Leaded No estimates Rubbermalenalswitha Toxicity DO08 Lead

gloves snd are available high fraction of lead oraL_'ons leadcompounds

l I 5400 Heterogeneo 3.00% Mixtures ofmetals and Toxicity F andD Halogenatedandus debris non-metals, Series aon-halogenated

combustibles, soils, and solvents; heavy

process residue metals,,, |, i ii

aEstimamdquantity rel_.iveto the totalquantityin the 125 waste me,amJ olmuned from _e National Databaseon DOEMixed Waste.

bpCBs areregulatedunderTox/c SubstanceCoet_ Act (TSCA) andaresubjectto [.,ted _ Reatrictions(LDRs).

0315._8040/D-93.!92.337_ 5-15 November23,1993

Page 45: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Table 5-9 Hazardous Material Content of Surro ate Waste StreamsWaste Stream Code No. Chemical Maximum

Quantity

, , ,', (kill/drumAsh 3111 Carbc,a 0.19

Tnchloroethylene 0 17Tetrachlomethene O.22Acetone 0.08

Methylethylketone 0.I0Barium O.09Cadmium O.07Chronmum O.0 3Lelid 0.14

Mercury O. 13Selemum O.05Silver 0.07

Absorbed Aqueous/Organic Liquids 3113 Water 0.753114 Tnchloroethylene 1.01

Tetrachloroethene 1.29Acetone 0.45

Methylethylketone 0.55Arsenic 0.06Bmum 0.11Chromium 0.04

0.16Mercury O. 15Silver 0.08

High OrganicContentSludae 3122 BariumhydmxL.ule 0.15Calcium nitratetetrahydrate 5.80Cadmium nitrate tetrahydrate O.27Chromium []nitratenonahydrate 0.35Nickelnitratehexahydrate 0.52Lead IIniu'ate 0.29Zincoxide 0.07Water O. 76

Chloridesalts(u Cl') 0.31

Sulfatesalts(m SO42") 0.85

Tnchloroethylene 2.32Tetrachloroethen, 2.97Acetone 1.03Cresols* 1.91Bmum O. 12Cadmium O. I0C'hmnuum 0.05

0.18

Mercm_ , O. 18Cemented Siudaa,Ashes,Solids 3140 Aluminum hydroxide O.17

Calcium carbonate 4.26Ironoxide(hematite) I.36Pouumium nitrate O, 86

Masnetium nitratehexahydrate 21.81Sodium bicarbonate 5.73

Sodiumphosphatemonobasic 1.82Calcium sulfate

Silicondioxide(silica) 1.53Water O, 84Trichloroethylene O, 56Teu'achloroetbene O,72Acetone 0.25

Methylethylketone 0.31

LSpent cyanide ,(amCN') ........ O. 12

031548040/D.93-192.337m 5-16 November 23, 1993

Page 46: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Table 5.9 Hazardous Material Content of Surrogate Waste Streams (Cont.)Waste Stream"' Code Chemical Maximum

No. Quantity

,, ,,,,,,, (k_/drumCemented Sludges, Ashes. Sohds Cadtmum 0.24(Cont.)

Chromium 0.1 1Lead 044

, , Mercu_ ............ 0 43Heterogeneous Debris 5400 Polyethylene 1 49

Polyvmyi ch!onde (PVC) 3 29Tnchloroethylene 0 23Tetr_:hlomethene O.30Acetone 0.I0Cresols • 0 19

Methyl ethyl ketone 0, 13Pentachlorophenol 0.47Arsenic 0 07Barium 0.89Chromium O.05L=_ 0.18

Mercm7 O.IgSelenium 0.07Silver 0.10i i iii

" Of the matenaJslizt_ m the surrogate waste su'eaunm=,only crezolsare consideredhtghly h_z;u'doussubsumce=,n 40 CFR 355.

Thecalculationsofthemaximum quantitiesofeachchemicalineachwastestreamwere

performedbasedonthetotalweightsofeachofthedrums,on thechemicalconcentrationsin

percentage,andon themolecularweightofeachchemical.The tareweightofthedrum was

estimatedtobc 18.lkg andthewastestreamestimatesrangedfrom90.7to408.2kg forabsorbed

aqucous/organicliquidsandcementedsludges,respectively.Theproductofthesethreefactors

expressedinkilograms,yieldedthequantitiesoftheImzardouschemicalsinthesefivewaste

streams.Theremainingmassinthesewasteswascomposedofinertmaterialsincludingbottom

ash, fly ash,vermiculite,cUatomaceous,and cement These quantities wereusedto estimate tm

hazard from wastes being treated by the PHP.

The quamlticsofhazardousbyproductsproducedbythePHP couldalsobe important to

thesafetyoftheprocess.The followingareprimarybyproductsoftreatmentofmixedwastes:

• From Organic Wastes- Carbondioxide(CO2)- Waer vapor(H20))- Hydrochloric acid (HCI)- Hydrofluoric acid (HF)- Hydro_omic acid (HBr)

u31548046/D.93.192.337m 5-17 November 23, 1993

.................................................................................................................... _........ _ _,, _,,>,_ ........ _ ...... ,._._.._

Page 47: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

• From Inorganic WasteOxides of nitrogen (NO x)Oxides of sulfur (SOx)

- Oxides of carbon (COx)Hydrochloric acid (HCI)Hydrofluoric acid (HI:)

- Metals (Be, Cd, Hg, etc.)

Gillins (1993)determined the mass flows of reagents, metals, inerts, plasma gases, and

by-product gases through a plasma hearth system. This estimate showed mass flows of 128 kg/wk

of NOx with rio NOx controls, 8.5 kg/wk SO2 with 90% scrubber efficiency, and 0.14 kg/wk HCI

with 99% scrubber efficiency. Bag house and HEA filters reduced the metals, and inert

particulate effluents to 0.0001 kg/wk and 0.0002 kg/wk respectively.

The "Imtial Alternative MWTP Flowsheet" memo (Gillms, 1993) provides the breakdown, by

element, of the different waste categories reportedin the Functional and Operation Requirement

(F&OR) documents (Thompson, 1992) and the MWTP Process Systems and Facilities Design

Study and Cost Eat_mte for LLNL (Bechtel, 1992).

A wide range of hazardous materials ale found in mixed waste but most exist only at low

concentrations as demonstrated in Table 5-9. The Threshold Quantities, contained in 29 CFR

1910.119, are those amounts of specific hazardous materials which, ff they are contained in a

process stream, tank, or container, require specific safety procedures, hazard analyses, and

emergency action plans under OSHA regula_ons. The Threshold Planning Quantities, contained in

40 CFR 355, are those amounts of specific hazardous materialswhich, if they are contained in a

facility, require specific emergency plans underEPA regulations. The Threshold Quantities in both

regulations typically indicate amounts between 100 and 10,000 pounds as the limit for each of the

materials. Of the hazardous materials in Table 5-9 only cresols are also on the 40 CFR 355 highly

hazardous material list (although if cadmium were m an oxide form it would also be included).

The Tlweshold Quat_ty of cresol is 1,000 pounds; the Thresl_id Quantity of HCl is 500

pounds; the _ld Quantity of nitric oxide (considering all NOx as mtric oxide) is 100 pounds;

and the Tlmmt_ld Quantity of SO x (considering all SOx as sulfur dioxide) is 500 pounds.

Assuming a maximum inventory of approximately 100 drums of waste and considering the

entire inventory of cresol, sulfur, and chlorine in those drums, _ would be an insufficient

quantity to approach the Threshold Quantities. Based on this initial inventory screening, a PHP

facility would therefore be considered a low hazard facility as only negligible offsite impact appears

possible.

0315481MO/D.93. i 92,337m 5-1_ November 23, 1993

Page 48: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

It is noted that, this preliminary, assessment should not be considered exhausuve as many

different types of hazardous contaminants may be found in mixed wastes considered for treatment

by the PHP. However, most mixed waste contains hazardous materials as only a small percentage

of the total mass of the waste. It is expected that a PHP facility is not likely, at any time, to contain

any significant fraction of a Threshold Quantity. of any specific hazardous material.

The quanUties of hazardous materials typically found in mixed wastes, as indicated above,

indicate that a PHP facility would present a hazard only to personnel in the facility and would,

therefore, be a Low Hazard facility in accordance with the requirements of DOE Order 5481. lB.

Should the future PHP facility treat waste streams with larger quantities of highly hazardous

materials, such that considerable hazard to on,site personnel could exist, the facility classification

would be Moderate Hazard. Should the future PHP facility treat waste streams with quantities

equal to or in excess of the 29 and 40 CFR Threshold Quantities, the facility could present a hazard

to large numbers of on- and offsite personnel and would be considered a High Hazard facility.

Facility maximum inventory limits shall be established in facility safety procedures for all hazardous

materials brought into the facility to support maintenance of the facility hazard classification

eventually selected. The consequences of potential accidents involving the identified hazardous

materials are addressed further in Section 5.3.

!

5.3 BOUNDING ANALYSES OF POTENTIAL ACCIDENTS

This hazards analysis characterizes potential hazardous conditions present in a PHP facility

in terms of energy sources, hazardous and radioactive mamnals, and natural phenomena. A

summary of potential hazardous events is presented in Table 5-2 and ir_ludes events involving

container failure, personnel error, fire, uncontrolled cbemical reaction, vehicle accidents, and

hazardous and radioactive material releases. Natural phenomena including seismic activity,

lightning, rain, and extreme wind, that could affect facility operations, are identified. It is noted

that there will be no criticality hazard in a PHP facility; although some waste contaminated with

transuranic isotopes may be treated at the facility, it is expecaed that such waste will be limited, as

detailed in Section 5.2, at least to the criteria established in DOE-STD-1027-92 (DOE, 1992b),

ANSUANS-8,15-1981 (ANSI, 1981), and ANSI/ANS-8.1-1983 (ANSI, 1983).

The hazards inherent to a PHP facility are assessed in this Section in three broad categories:

operational and equipment hazards; radiologjcal hazm'ds; and hazardous material hazards. Tt_

potential accident scenarios involve only credible events, as defined m DOE Order 6430.1A (DOE,

1989a), which have an estimated probability of occurrence of 10-6 or greater. T_y provide details

on the postulated sequence of events, an estimate of the likali_ of the event, and estimates of

031548040/D.93.192,337m 5-19 November 23, 1993

Page 49: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

i

consequences. Where appropriate, credit is taken for preventive features of the facility design, that

is, those controls that keep an event from happening by reducing the event frequency, Passive

design features that will remain intact during an accident (for example, building walls) are

considered in the accidem scenarios. Active design features (for example, building ventilation) are

considered in accident scenarios only if they increase the potential accident consequences. No

credit is taken formitigative features, that is, those controls that reduce the consequence level of an

event.

Conservative atmosplznctranslxx_methods are used to estimate the on- andoffsite

concentrations of hazardous and radioactive materials following release. Airborne concentrations of

radioactive materials were calculated using HOTSPOT (Homann, 1991). Airborne concentrations

of hazardous materials were calculated using airborm dispersion, x/Q, values calculated using the

method of Hanna et aL (1982). Appendix A contains the calculations from the computer-based

model.

In the following analyses, only radioactive and hazardous materialreleases were identified

ashavingthepote_altoimpactoffsite membersofthepublicortheen,,ironmenLIndustrlaland

operationalaccidentsinvolvingthePHP couldcrediblyresultinsevere,injuryordeathofaworker

in the facility, but no potential effects outside the facility were identifiedother than the potential

release of radioactive and hazardous materials. TIz,se events could be initiated by a number of

credible causes. Therefore, a bounding estimate is performed to verify the hazard classifications

which resulted from the examination of inventories. The actual cause of the postulated hazardous

and radioactive material release event is not then relevantbecause tmx'e than one credible cause may

be postulated.

For the purpose of this hazards analysis, the maximal amounts of radioactive material

whichcouldbem storagearedeterminedbasedonproposedinventorylimits.The maximum

inventoryofradioactivenmmrialsarepostulatedforthefacilityandtheeffectsofanaccident

revolvingthesematerialsareanalyzed.Theresultingdosestoon-andoffsitepersonnelare

comparedtothedoseequivalentcriteriaintheDOE-STD-1027-92(DOE, 1992b)andDOE Order

5400.5(DOE, 1990)toverifyfacilityclassificationforradiologicalconsequences.The maximum

inventoryofhazardousmaterialscouldnotbepostulatedforthefacilitybuttheeffectsofaccidents

involvingtheassumedinventoryof100drums,f_m Section5.2,areanalyzed.Exposuresofon-

and offsite personnel are assessed with respect to the limits provided by various industrial stapdards

including those of American Conference of Governmental Industrial Hygienists (ACGIM),

American Industrial Hygiene Association (AIHA), and National Institute for Occupational Safety

and Health (NIOSI-D (ACGIH 1990; AIHA 1989; NIOSH 1990).

031548040/D.93.192.337m ' 5-20 ...... November 23, 1993

Page 50: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

,i i

Accidents are analyzed and maximum source terms are deterrruned in accordance with

acceptedinaustryguidanceincluding A Guide to Radiological Accident ConsideratUm_ for Sitin¢

and Design of DOE Nonreactor Nuclear Facilities (Elder et al., 1986), Nuclear Fuel Cycle Factlit_

Accident Analysis Handbook (Ayer et al,, 1988), and DOE-STD. 1027-92 (DOE, 1992b).

Accident effects within the facility are estimated at 30 m from the source tn accordance w_th

the guidance of DOE-STD- 1027-92 (DOE, 1992b). The exposure of the maximally exposed onslte

receptor outside the facility is calculated at 100 m in accordance with the guidance of DOE-STD-

IO27-92. The exposure to offslte receptors is calculated to the maximally exposed individual at 300

m in accordance with the guidance of DOE-STD- 1027-92. In all cases, the meteorological

parameters assume "D" class stability, 4.5 m/s wind speed, ground level releases, and non-buoyant

plumes. The accident scenarios assume that site personnel and members of the public will be at the

on- and offsite location with tie highest airborne concentration of radioactive and hazardous

material for tie entire accident duration. This assumption provides conservative estimates of the

maximum possible exposure of site personnel and members of the public.

5.3.1 Operational and Equipment Assessment

This section provides a qualitative analysis of potential PHP operational and equipment

accidents to identify those features which are ingx)ttant to safety. No operational events or

equipment failures were identified which could effect personnel outside the facility other than

through release of hazardous and radioactive material. Potential accidents involving the release of

radioactive and hazardous materials are analyzed in subsections 5.3.2 and 5.3.3. Information on

the potential hazards associated with the PHP are taken from the Process and Facility Safety

Addendum to the Treatability Study Test Plan for Plasma Arc Treatment of Rocky Flats Compacted

Waste (Geimer et al., 1992). The probability estimates of industrial accidents were developed from

a database of DOE accidents and industrial safety statistics developed by the National Safety

Council. (1990).

The plasma torch is provided with a high voltage, high current power supply. The various

other PHP systems and components are provided with standardelectrical power at lower current

and voltage. Component failures and personnel errors can result in equipment damage and

potential personnel injury or death. Although the PHP is a new application of the plasma torch

technology, this is not a new technology and the probability and consequences of electrical

accidents is not expected to be different from other similar industrial applications. The probability

of moderate and high consequence events (severe injury or death or loss of facility operation) is

0315.t8040/D-93-192.337m 5.21 November 23, 1993

Page 51: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Ii i i,,, i,iii i j i iim ii i i! ill , i llll| ]

/!

expected to be extremely low (10"alo 10-6). The probability of low consequence events (rmnor

injury or equipment damage) is expected to be moderate to low ( 10-tto 10-4).

Comoressed Gases

Compressed gases are used in the FlIP as torch and process feed materials and calibration

gases for irtstrumentauort These are discussed in Section 4. All compressed gases are inert or

inert with a small percentage of carbon monoxide, mmc oxide, carbon dioxide, or oxygen.

Compressed gas used in the PHP is considered to pose similar hazards to those from routine

industrial gas use. Gases could pose an asphyxiation hazard if allowed to accumulate in a confined

space by a leak or improper alignment. Compressed gas cylinders also pose a missile hazard if

ruptured. All compressed gas use is performed in compliance with OSHA regulations and

Compressed Gas Association standards. The probability of moderate and high consequence events

{severe injury or death) is expected to be extremely low (10-4to 10-6). The probability of low

consequence events (minor injury or equipment damage) is expected to be low (10 .2 to 10-4).

The potential for fire in a PHP facility appeared to be low as waste will be contained in

DOT specification containers and process systems itr,orporate redundant fire protection features.

Fire hazards in a PHP facility are considered to be lower than fee hazards in other industrial

incineration operations. Such a facility will be constructed to DOE 6430. IA fire protection critena

appropriate to the hazard classification of the facility and to NFPA codes. The systems are

constructed of noncombustible materials. The naturalgas burner is equipped with Underwriters

Laboratory and Factory Mutual _ved safety systems to prevent the release of uncombusted

natural gas. The probability of moderate and high consequence events (severe injury or death or

facility de_on) is expected to be extremely low (10 -4 to 10"-6). The probability of low

consequence events (minor injury or equipment damage) is expected to be low (10 .2 to 104).

The potent_ for explosion in the PHP system is credible due to the wide range of

chemicals that may be present in the waste and the water used to cool the system. The potential for

such an event is reduced by the inherent operational mode of the PHP at reduced pressure and in a

predominantly inert atmosphere. The potential for explosion in the facility appeared to be low as

waste will be contained in DOT specification containers and the natural gas portion of the process

system incorporates explosion prevention feantres. Explosion hazards in a PHP facility are

considered to pose lesser hazards than those from other industrial incineration operations. Such a

031548040/'D-93.192.337m 5.22 November 23, 1993

Page 52: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

........ , i i ii i iiiiiiiiiT ii iii i,iiriiiii ii I,iiii, I

facilitywillbeconstructedtoDOE 6430.IA criteriaappropriatetothehazardclassificationofthe

facility.Explosionrelieffeaturesmay beincorporatedintoPHP systems.The probabilityof

moderateandhighconsequenceevents(severeinjuryordeathorfacilitydestruction)isexpectedto

be extremely low (10 -4 to 10"6). The probability of low consequence e" ,nts (minor injury or

equipment damage) is expected to be low (10"2to 10-4).

_stnal Safety Hazards

The potential for routine industrial hazards, (such as bum, trip, fall, liftin8, and rotating

equipment hazards) appeared to be comparable to or lower thanother similar industrial facilities.

The PHP is a mechanically simple process with few moving parts. Motor driven mechanisms are

enclosed or guarded to meet OSHA regulations. The probability of moderate and high consequence

events (severe injury or death) is expected to be low (I0 "2 to 10"4). The probability of low

consequence events (minor injury or equipment damage) is expeaed to be moderate (I0 "t to 10-z).

Hazardous Cl,emlcal arzl RadiationExnosure

A PHP facility will contain radioactive and hazardous material at low concentrations on

otherwise inert material in waste which is packaged in DOT specification containers. It will not

routinely be necessary to open these containers. Therefore, direct contact of workers with these

hazardous and radioactive constituents will be _uent. The possibility of spills will be present

and appropriate spill response pcoced_res will be necessary. Worker radiation exposures will be

controlled in accordance with DOE Order 5480,11 (DOE, 1989b) requirementsand minimized in

accordancewithDOE aslowasreasonably achievable (ALARA) policy.Workerhazardous

chemicalexposureswillbecontrolledinaccordancewithDOE Order5480.10(DOE, 1985)

requirements. The probabilityof moderate andhigh consequence events (severe injury or death) is

expected to be extremely low (10 .4 to 10-6). The IX'Obabilityof low consequence events (minor

exposures) is expected to be _ (10 "t to 10-2).

5.3.2 Radiolmlical Assessment

The ndlologlcalassessmentcalculatesdosestothemaximallyexposedindividualsinterms

of50-yr,wholebody,committedeffectivedoseequivalent(CEDE).CEDEs aredeterminedin

accordancewiththehaemationalCommissionon RadiologicalProtection(ICRP)Publication30

methodology(ICRP,1979)andDOE Orders5400.5(DOE ,1990)and5480.11(DOE, 1989b).

CalculatedCEDEs arenotreflectiveofthosewhichwouldactuallybereceivedby an

individualduringanaccident,butareconservativeestimatesofthedoseto a workerandtoa

O315480d'O/D.9.;t-1921337m ....... 5.2J ............... November 23, 1993

Page 53: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

nn|l - -- iii .... I II I f If lit I ilu ii

memberof the generalpublicunderaccidentconditions.Theseestimates are usedto verifyfaclhty

hazard classification.The durationof exposureis assumedto be equal to the durationof the

release. (The actualdurationof any worst-caseaccident is, therefore,notrelevantto the dose

calculationas the sourceterm will be directlyproportionalto the receptorintake which is in turn

directly proportionalto the CEDE.)

Sealed radioactivesources and checksources may be used in thePHP facility. Sealed

sources and checksources areco_nructedand distributedin accordancewith USNRCrequirements

in I0 CFR 30 through34 (NRC, 1991)and ANSI standards(ANSI, 1977) to pose mimmal

hazards. Specificallylicensed sealed sourcesareconstructedto withstandaccidentenvironments.

The analyses of this section assume any significantsealedsourcewill withstandaccident conditions

and they are excluded from the inventoryof nmtc_alatriskin accordancewith DOE-STD-I027-92J

guidance.

The on- andoffsReCEDEswere calculatedat 30 m, I00 m, and 300 m. Representative

and limiting isotopes arechosen for thedose calcul_ons asoglxesentativeof those whicham found

in mixed wastes. The limitsspecified in DOE.STD-1027-93(DOE, 1992b)ate an on,siteCEDE of

l reinor more at I00 m as theCategory2 criteriaand 10mm or more at 30 m over a 24 hourperiod

as the Category3 criteria.

Any numberof accidentsarepossiblein thePHPfacilityandwill resultin a rangeof

consequences: spills of con[ainersof waste, leaksfromtreatmentsystems, firesinvolving limited

quantities of combustible waste, leaksfrom the processsystems,andsmall explosions which

wouldbe containedby thebuildingstructure,inorderto envelopetheconsequencesof all the

possible scenarios,a generalizedreleaseof radio,-tire materialis postulatedtoocourwithinthe

building. Thisworst-caseaccidentforthePHPfacilitycouldbe a localizedfire,explosion,or

pressurizedspraywhich is e,ununedto revolvethemaximumbuildinginventoryof radioactive

material. Thepotenaatlycontaminatedemuent fromthefireleaksfromthebuildingthrougha

door,the ventilationsystem, oran openingin the betiding side or roof and is releasedto the

environment.

The mateflal-at-rlskis defined by thefacility inventoryas detailed in subsection5.2, above.

releasefractionsareas recommendedin DOE-STD-1027-92(DOE, 1992b). No credit is talon

forplume rise,although someof the w,odents could resultin a buoyantrelease, which would

reducethe resultanton- andoffsiteCEDEs. Theresultsfromthecomputer-basedHOTSPOT

model(Homann,1991)are presentedin AppendixA.

The maximumpotentialonsite CEDEare presentedin Tables $-10 and 5-11.

03 !'548040/D.93.192,"33 7ta ' 5.24 ' Noves_r 23, 190:1

Page 54: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Table 5-10. Radioactive Material Category 3 Release Factors, Source Terms, andDoses

[ [ [ I

- Nuclide Release Source Dose at Dose at Dose at

Fraction Term 30m (rem) 100m (rem) 300m (rem)

,,,I, (Cll , , ,I ,Tnuum. t3a) 1.0 100 0.04 0.0047 ......000059i,tC 0.01 0.04 0.00036 0.000042 0.0003052Acuvauon Products 0.001 0.028 0.0089 0.0021 ....... 0.00013(6°Co)Fisston Products ' 0.001 0.001¢_ 0.018 0.001 0.00026

9os,/v?l_es (,t25I_ 0.5 0.025 0.0026 0.0003 0.000037rnonum {232Th) 0.001 0.00001 0.047 0.0054 0.00068U i i i a ii,

ranim _238U) 0.001 0.0004 0.2 0.024 0.003Trart_suramcs (239pu) 0.001 0.00(105 0.07 0.0082 .....0.001Total .............. 0.39 0.046 0.0056 .....

Table 5-11. Radioactive Material Category 2 Release Factors, Source Terms, andDoses

J]

Nuclide Release Source Dose st Dose at Doee atFraction Term 30m (rem) 100m 30Om (rem)

I I III I III II

Tritium_3H_) 1.0 30,000 12 1.4 0.1814C 0.01 140 ...... 1.3 0.]5, 0.018

-AcuvationProducts 0.00l .... 19 12 1.4 0.18

_6°Co) .......Fission Products 0.001 2.2 12 1.4 0.018

lod_irms{1251) 0.5 130 12 1.5 0.18_no-ri_ (232Th), 0.001 0.0018 8.4 0.,98 = 0.12

Uranium (238U) 0.001 0.024 12 1.4 0.18Tran__uranics_7,39pu! , 0.1301 0.0056 7.9 , 0191 0.11Total 78 ..... 9.1 0.99

5.3.3 Hazardous Material Assessment

The _ material accident scxmmos calculate expoar,,s to oasite personnel and

me_ of the public. Calculated airborne coac,enltattoas of hazardous materials are not reflective

of those which would actually be expetieaced by an individual dating an accident, but are

conservative estimates of the theoretical maximum exposures of a worker and of a member of tl_

general public.Theseestimatesareusedtoverifyfacilityhazardclassification.

The onsiteairlxx'neconc,entrationsofhazardousmaterialswerecalculatedat30m and I00

m and the off-site concentrations were calculated at 300 m. These maximum

concentrations were then compered to the various industrial and governmental standards provided

by OSHA, EPA, AIHA, ACGIH, and NIOSH. The OSHA, ACGIH, and NIOSH set standards

031548040/D.93-192.337m ' 5.25 November 23. 1993

Page 55: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

i, illll i

for controlling exposures of worker to hazardous materials, thus these standards are not dJrectJv

applicable to exposuresof members of the public. The AIHA sets standards for public exposures

called Emergency Response Planrung Guides (ERt_s). Very few ERPG concentration values

have been set by AIHA, thus these are of only limited utility. The currently identified highly

hazardous materials from 29 CFR 1910. 119 and 40 CFR 355 together with the more numerous

AIHA, ACGIH, and NIOSH standards are provided for reference in tabular form in Appendix B.

The defimtions of industrial hygiene and emergency preparedness terms from AIHA, ACGIH,

NIOSH, and OSHA standards are contained in Appendix C.

The unique hazardous materials that may be part of the mixed waste streams treated by the

PHP cannot be defined at this time. Surrogate materials for a few waste streams for the

demonstration of the PHP were catalogued m Section 2. These materials are considered

representative and are used to assess consequences of accidents involving stored waste. As noted

previously, hazardous materials are typically _ conlamtnants in mixed waste streams, such that

this approach is considered representative.Theprocessby-products,detailed in Section 5.2, are

used to assess the consequences from these sources.

The conclusion from subsection 5.2 is verified by summing the total inventory of

hazardous materials in 100 mixed waste drums and the maximum quantities of process by-products

resulting from a weeks activity of the PHP, applying appropriate release and dispersion factors

(Eider, et al,, 1986; Ayer, 1988), and calculating the resultanton- and offsite aiflxrae

concentrations by application of the aplxoptiate x/Q values, 0.017 s/m 3 at 30 m, 0.0016 s/m 3 at

100 m, and 0.0002 s/m 3 at 300 m.

The hazardous by-products of the PI-[P(NO x, SOx, and HCI) are subject to leakage due to

equipment faiha'e, leakage due to personnel error,and damage to the system and release of the

material due to fires, uncontrolled chemical reactions, vehicular accidents, and falls of heavy

objects. The off-gas system is asam_ to fail and the materials arepostulated to be released at the

normal flow-rate of the system, 1,000 scfm.

To boundthepossibleconsequencesofaccidentsinvolvingmixedwastecontainers,a fire

involving the entire 100 drum waste inventory was postulated. The fire is assumed to burn for 1

hour and to consume the entire waste inventory. A release fraction of 0.01 is applied to all solids

and metals, a release fraction of 0.001 is applied to all combustible organic liquids, and a release

fraction of 1 is applied to tewachlotoethene, as it is a non-combustible liquid and is expected to be

driven off by the heat of the fire before it decomposes.

031548040/D.93-192.337m 5.26 November 23. 1993

Page 56: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Dunng normal operation, the PHI' converts the hazardous organic constituents of rmxed

waste to carbon _oxide and water, thus reducing their hazardous potential. Metals and inert

materials are converted to slag and remain in the process v_sel. Some volatile metals are camed

over :nto the secondary chamber, are oxidized upon contact wire all', condensed in the quench, and

areremovedfromtheoff-gasstreamm thebaghouse.Halogensareconvertedtotheir

complementary,acidandneutralizedandremovedbythescrubber.Leaksorequipmentfailuresin

theprocesssystemscouldreleaseacids,gases,orparticulatemetaloxidesintothefacility,butno

sigmficant release mechamsm from tl_ facility could be identified. Thus, no accidents were

identified which could increase the release fractions of hazardous materials over those used in the

analysis. Spills of mixed waste are possible, but would have consequences only within the facility

and would pose lesser hazards to personnel outside the facility than those analyzed.

No plume rise is postulated in the scenarios although releases of heated gas or val3ornix1

fires would result in sigmficaat plume rise and lower down-wind concentrations. If plume rise was

taken tnto account, the on- and offsite consequences would be less than those estimated.

The results of the waste fire scenario are presented in Table 5-12. The results of the off-

gas system failure are detailed in Table 5-13.

Table 5.12. Waste Fire Accident ResultsII II I II IJ

Chemical Amount Release Source Concentration Concentration Concentration(kll) Fraction Term in aq/m 3 st in mg/m 3 at in mg/m 3 at

(11) 3Om lO0m 300mII II I I

Tnc_13lotoe__[_leae_ 429 0.001 429 2.0 0.19 0.024Tewu"h__U_ ),Ler__ 528 1 528,C_, 2500 230 29

t_t_, ,,_, n a E--4 8.5 E-5 1.1 E-5i &j& _.t, tqkl & &_P& P.UAcyame ,a, 0.

Methyl Ethyl Ketone 109 0.001 0.109 5. l E-3 4.8 E-5 6. l E-6Barimn 134 O.01 1.34 6.3 E-3 6.0 E-4 7.4 E-5C_rnmm 54 0.01 0.54 2.6 E-3 2.4 E-4 3.0 E-5Chrom-m_ 36 0.01 0.36 1.7E-3 1.6 F-4 2.0 E-5I ,_d 131 0.01 1.31 6.2 E-3 5.8 E-4 7.3 E-5M,ev:s_ny 107 0.01 1.07 5.1 E-3 4.8 E-4 5.9 E-5Silver 25 0.01 0.25 1.2 E-3 1.1 E-4 1.4 E-5Sele_)mw 12 0.01 0.12 5.7 E-4 5.3 E-5 6.7 E,-6_ 13 0.01 0.13 6.1 E-4 ,,5.8 E-5 7.2 E-6N__kel [2 0.01 , 0.12 5.7 E-4 5.3 E-5 6.7 E-6Zinc 6 0.01 0.06 2.8E.4 2.7E-5 3.3E-6Cresol 210 0.001 O2!. 9.9 E-4 9.3 E-5 1.2 E-5

031548040/D-93.192.337m 5-27 Novend_tr23, 1993

Page 57: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Table 5.13. Off-Gas S_,stem Failure Accident I

Chemical Source Concentration Concentration ConcentrationTerm at 30m in at 100m in at 300m in

in mg/m 3 mg/m 3 mg/m 3kg/wk

Ill Ill Illlll

NOx,,,tasNO) ..... 128 15 , 14 , 0.18SOx (as SO2) 85 10 . 94 0.12

,HCI , ' 14 1.7 iJ.'15 0019

5.4 CONSEQUENCE ANALYSIS AND PRELIMINARY HAZARD

CLASSIFICATION

The consequences of the accident scenarios compete hypothetical exposures and effects to

DOE requirements (DOE, 1992b) and _.epted itm'ustry standards(ACGIH, 1990; AIHA, 1989;

NIOSH, 1990). Qualitative esUmates of the probability of accidents and their maximum e_

consequences are provided. The lxobability estimates axebased on engineering judgment and

industrial data. In addition, the design bases _fied in UCRL-15910 (Kennedy et aL, 1990) for

external phenomena such as earthquakes, extreme winds, and rainare considered in determining the

probability of such events. The probability and consequence of each eventare evaluated to

establish hazard-specific probability and consequence levels.

5.4.1 Consequences of Radiological Assessments

For an Exempt facility, the maximum potential onsite CEDEs will be less than the Category

3 values calculated in Section 5.3. These are the following: 0.39 rein at 30 m, 46 rarem at 100 m,

and 5.6 re.reinat 300 m. The doses associated with a PHP facility operated as Category 3 would be

between these values and the Category 2 threshold values calculated in Section 5.3. These are the

following: up to 78 rein at 30 m, 9.1 rein at 100 m, and 0.99 rein at 300 m. The onsRe dose

equivalent at 30 m would be more than the DOE standardof 10 rein for a Category 3 facility so that

mitigative measures would be indicated to reduce the exposure or to limit the inventory ff the facility

were to be operated as Category 3. The onsite dose equivalent at 100 m is more than the DOE

standard of 1 tern for a Category 2 facility. The offsite dose is minimal in comparison to current

NRC offsite accidental dose standards (NRC, 1993).

5.4.2 Consequences of Hazardous Material Assessments

The results of the Section 5.3 accident analyses indicate that maximal releases of hazardous

materials from stored waste and the process systems could have impacts only within the facility.

0315,_80dO/D.93.192.337m 5.28 November 23, 1993

Page 58: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

No slgmficant effects were identified to on.site individuals outside the facility, to offsite members of

the public, or the environment.

5.4.3 Conclusions

The radioiogical assessments indicate that the PHP facility may be an Exempt (non-

nuclear), a Category. 3, or a Category 2 facility based on the maximum inventory of radioactive

material selected. It will have minimal impacts to offsite personnel and the envtronment in all cases,

The calculated impacts would result in no sigmficant injury or risk of illness and only minor impact

to the environment. The probability of occurrence of the worst-case accidents are estimated to be

low (10 "2to 104/y).

The hazardous materials assessment indicates that a PHI:)facility would be low hazard with

respect to hazardous materials. Itwould have mimmal impacts to offsite personnel and the

environment. The probability of occurrence of the worst.case accident is estimated to be low (IO 2

to 10-'*/y).

031548040/D-93-192.337m 5.29 November 23, 1993

Page 59: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

6.0 REFERENCES

American Conference of Governmental Industrial Hygienist (1990), Threshold Limit Values andBiological Exposure Indices for 1990-1991, American Conference of GovernmentalIndustrial Hygiemsts, Cincinnati, OH.

American Industrial Hygiene Association (1989), Emergency. Response Planning Guidelines,American Industrial Hygiene Association, Akron. OH.

American National Standards Institute (1977), Sealed Radioactive Sources, Classification,American National Standards Institute, Inc., ANSI N542-1977.

American National Standards Institute (1981), American National Standard for Nuclear CriticalityControl of Special Actinide Elements, American Nuclear Society, Standards CommitteeWork Group ANS-8.15, ANSI/ANS-8.15-1981.

American National Standards Institute (1983), Nuclear Criticality Safety in Operations withFissionable Materials Outside Reactors, American Nuclear Society, Subcommittee ANS-8,ANSI/ANS-8.1-1983.

Ayer, J.E., A.T. Clark, P. Loysen, M.Y. Ballinger, J. Mishima, W.C. Zarski, W.S. Gregory, andB.D. Nichols (1988), Nuclear Fuel Cycle Facility Accident Analysis Handbook, U.S.Nuclear Regulatory Commission, Washington, D.C., NUREG-1320.

Bechtel Corporation (1992), Mixed Waste Treatment Project Process Systems and Facilities:Design Study and Cost Estimates for L/2VL, September, 1992.

Blond, R. (1991), Facility Safety Survey Gu/dance Document, DOE, Defense Programs SafetySurvey, Washington, D.C.

Department of Energy (1985), Contractor Industrial Hygiene Program, DOE, Washington, DC,DOE 5480.10.

Department of Energy (1986), Safety Analysis and Review System, DOE, Washington, DC, DOE5481.1B.

Department of Energy (1988a), Environmental Survey Preliminary Report, Stanford LinearAccelerator Laboratory, DOE, Washington, DC, DOF_3EH/OEV-38-P.

Department of Energy (1988b), Radioactive Waste Management, DOE, Washington, D.C., DOE5820.2A.

Deparlmcnt of Et_gy (1988c), External Dose Conversion Factors for Calculation of Dose to thePub/k:, DOE, Washington, D.C., DOE/EH-(K)70.

I_ of Energy (1988d), Internal Dose Conversion Factors for Calculations of Dose to thePub/k:, DOE, Washington, D.C., DOE/EH_I.

Department of Energy (1989a), General Design Criteria, DOE, Washington, DC, DOE Order6430.1A.

Department of Energy (1989b), gadiaaon Protection for Occupational Workers, DOE, Washington,D.C., DOE 5480.11 Change 1.

Department of Energy (1990), Radiation Protection of the Public and the Environment, DOE,Washington, DC, DOE 5400.5.

Page 60: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Department of Energy (DOE, 1991a), Safe_ Analysis Report, December 9, 1991, DOE,Washington, DC., 10 CFR 830.110.

Department of Energy ( 199lb), Guidelines for the Preparation of Safety Analysis Reports for DOENuclear Facilities and Nonfacili_, Nuclear Operations, DOE, Washington" DC, SG830.110, July 1991.

Department of Energy (1991c), Environmental Restoration and Waste Management Five-Year Plan,DOE, Washington, DC, FYP DOEIS-0089P.

Deparunent of Energy (199 ld), Unreviewed Safety Questions, DOE, Washington, DC, DOE Order5480.21.

Department of Energy (1992a), Nuclear Safety Analysis Reports, DOE, Washington, DC, DOEOrder 5480.23.

Department of Energy (1992b), DOE Standard- Hazard Categorization and Accident AnalysisTechniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,DOE, Washington, DC, DOE-STD-1027-92.

Department of Energy (1992c), Technical Safety Requirements, DOE, Waslmagton, DC, DOEOrder 5480.22.

Department of Energy (1993), Title 10, "Nuclear Safety Management," Code of FederalRegulations: Energy, DOE, Washington, DC, proposed rule, 10 CFR 830.

Deparunent of Energy (1993b), Natural Phenomena Hazards Mitigation, Washington, DC, DOEOrder 5480.28.

Department of Latx)r (1993), "Process Safety Management of Highly Hazardous Chemicals," Title29, Code of Federal Regulations, Washington, DC.

Elder, J.C., J.M. Graf, J.M. Dewart, T.E. Buhl, W.J. Wenzel, L.J. Walker, and A.K. Stoker(1986), A Guide to Radiological Accident Considerations for Siting and Design of DOENonreactor Nuctear Fac///ties, Los Alamos National La_ratory, Los Alamos, NewMexico, UC-41, LA-10294..MS.

Environmental Protection Agency (1987), Technical Guidance for Hazards Analysis, WastmagtonDC.

Environmental Protection Agency (1993), Protection of Environment, Title 40, Code of FederalRegulations,WaslangtonDC.

EnvironmentalPmteatoeAgency,FederalEnergyManagementAgency, and Department ofTUn, (1987),Technical Guidance for Hazards Analyses, Emergency Planning for

Hazardous Substances, EPA, Washington, D.C.

Geimer, R. (1993) SAIC Contact Report: Ray Geimer, SAIC Idaho Falls; with Peter Yimbo andMary Aycock, April 16, 1993.

GilUns, R. (1993), Memorandum: From: R. Gillins, SAIC Idaho Falls; To: Distribution, ImtialAlternative MWTP Flow Sheet, April 2, 1993.

HalUnan, E. (1988), "Supplement 6.06, Safety Analysis Guide," Health and Safety Manual, M-010, Lawrence Livermore National Laboratory, Livermore, CA.

Hanna, et al. (1982),

0'31548040/D.93.192.337m 6.2 November 23, 1993

Page 61: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Homann, S. (1991), HOTSPOT Health Physics Code, Homann Associates, Inc., Fremont, CA.

International Commission on Radiological Protection (1979), l.,imitsfor Intakes of Radion_'lidesby Workers, ICRP Publication 30, New York, NY.

Kennedy, R.P., S.A. Short, J.R. McDonald, M.W. McCann, R.C. Murray, and J.R. Hill (1990),Design and Evaluation Guidelines for Department o/Energy Facilities Subjected to NaturalPhenomena Hazards, Lawrence l_.ivermoreNational Laboratory, Livermore, CA, UCRL-15910.

Mayberry, J. (1993), Memorandum: "Standardized Surrogate Waste Streams," From: JohnMayberry; To: Distribution, February 23, 1993.

Musgrave, B. (1993), SAIC Contact Report: Peter Yimbo, SAIC Pleasanton; With: BurdonMusgrave, LLNL, April 14, 1993.

National Institute forOccupational Safety and Health (1990), NIOSH Pocket Guide to ChemicalHazards, NIOSH, Department of Health and Human Services, Cincinnati, OH.

National Safety Council (1990), Accident Facts, Chicago, IL.

Nuclear Regulatory Commission (1993), Energy, Title 10, Code o/Federal Regulations,Washington, DC.

Retech, Inc. (1992), Plasma Centrifugal Furnace, Applications Analysis Report EPAI5401AS-91/007, USEPA, Office of Research and Development, Washington, DC.

Savy, J. and R. Murray (1988), Natural Phenomena Modeling Project: Flood Hazard Models forDepartment of Energy Sites, Lawrence Idvermore National _ory, l..ivermote, CA,UCRL-53851.

Science Applications International Corporation (1988), Hazard and Operability Review (HAZOP)of the Centrifugal Plasma Reactor Technology For Treatment o/Hazardous Waste,Revision 1, under EPA Contract 68-03-3845, San Diego, CA.

Science Applications International Corporation (1992a), Technology Evaluation Report ofRETECH's Plasma Centrifugal Furnace, Volume 1, under EPA Contract 68-.CO.LD4...8.

Science Applications International Corporation (1992b) Process and Facility Safety Addendum tothe Treatability Study Test Plan for Plasma Arc Treatment of Rocky Flats CompactedWaste, July 199'2, SAIC 9211165.

Thompson, T.K. (1992), Mixed Waste Treatment Project: Functional and OperaatmalRequirements for an Integrated Facility.

031548040/D.93-192.337m 6.3 November 23, 1993

Page 62: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

APPENDIX A

HOTSPOT CALCULATIONS

_J31543u4o/D.93.1_2.337J4 A November 30. f?_3

Page 63: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HCTSPCT 5 5 3ENE,_AL PLL_EEADIO._I'CLIDE: H-3 Ir_ala_ion Class i D

Halftife 12 350 yearsSOLACE TERM : I.OE*02 CiRELEASE FRACTION : I.OE+O0

FILTER EFFICIENCY: 0.000000 %EFFECTIVE RELEASE HEIGHT 1.00 m

WIND SPEED (h- 2 m) 5.5 m/sSTABILITY CLASS D DEPOSITION VELOCITY : 1.00 cm/s

RECEPTOR HEIGHT I 0 m I_rVERSION LAYER HEIGHT : 5000.0 mSAMPLE TIME I0.000 rain.'t_XIEJMDOSE DISTANCE < O.i0 km MAXIML._ CEDE : > 4.7E-03 rein

Pl_e ]enzeri'1ne

D - 0 I0 km D - O.20 km D - 0.50 km

DEP - 1,5E+03 uCi/m'2 DEP- 4.0E+O2 uC£/m'2 DEP- 7.3E+O1 uCt/m'2CHI - i BE-Of (Ci-s)/m^3 CHI- 4.0E-02 (Ci-s)/m_3 CHI- 7.3E-03 (C£-s)/m'3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:.... . ............... ... ...... . ..... ............. .... ... ........ ..°.........

SKIN 4.7E-03 rem SKIN i 3E-O3 rem SKIN 2.3E-04 remTHYROID 5.7E-03 rein THYROID I 3E-O3 rein THYROID 2.3E-04 ramLUNG a.7E-O3 rem LUNG I 3E-03 rein LUNG 2,3E-04 remSURFACE BONE 4 7E-03 rem SURFACE BONE I 3E-O3 rein SURFACE BONE 2.3E-04 remLIVER 4 7E-03 rein LIVER i 3E-03 tea LIVER 2.3E-04 teaSPLEEN 4 7E-O3 rein SPLEEN 1 3E-O3 tea SPLEEN 2.3E-04 teaGONADS _ 7E-03 rein GONADS i 3E-03 tea GONADS 2.3E-O4 re,,EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 4 7E-O3 tea EQUIVALENT 1.3E-O3 tea EQUIVALENT 2.3E-0_ tea

Plume Centerline

D - i O0 km D - 2.00 km D - 5.00 km

DEP - 2.2E+01 uCi/mA2 DEP - 6.9E+O0 uCt/m^2 DEP - 1.7E+OO uCi/m_2

CHI - 2.2E-03 (Ci-s)/m^3 CHI- 6.9E-OA (CI-s)/mA3 CHI- 1.7E-OA (Ci-s)/m_3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:

......... . ......... . ....... o..°.oo.oo-o.oo .... °..° °°..°°.° ...... .°.... .....

SKIN 6 9E-05 tea SKIN 2.2E-05 rem SKIN 5.3E-06 remTHYROID 6 9E-O5 tea THYROID 2.2E-O5 rem THYROID 5.3E-06 remLUNG 6 9E-05 re,, LUNG 2.2E-05 tea LIING 5.3E-06 teaSURFACE BONE 6 9E-05 tea SURFACE BONE 2.2E-05 tea SURFACE BONE 5.3E-06 re,,LIVER 6 9E-05 tea LIVER 2.2E-O5 tea LIVER 5.3E-O6 re,,

SPLEEN 6 9E-05 tea SPLEEN 2.2E-05 tea SPLEEN 5.3E-C_ teaGONADS 6 9E-05 tea GONADS 2.2E-O5 re,, GONADS 5.3E-06 remEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 6.9E-05 tea EQUIVALENT 2.2E-05 rein EQUIVALENT 5.3E-06 rein

Plume Cen_erline

D - i0.00 km D - 20.00 km D - 50.00 km

DEP - 6.3E-O1 uCi/m*2 DEP - 2.4E-01 uCi/m^2 DEP - 7.0E.02 uCl/mA2

CHI- 6.3E-05 (Ci-s)/n_3 CHI- 2.4E-05 (Ci-s)/a^3 CHI = 7,OE-O6 (Ci-s)/m_3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:......................... ........-.--------------- .........--.-------------

SKIN 2.0E-06 re= SKIN 7.6E-O7 re= SKIN 2.2E-O7 remTHYROID 2.0E-06 re== THYROID 7.6E-07 tea THYROID 2.2E-07 teaLUNG 2.0E-06 tea LUNG 7.6E-07 re== LUNG 2.2E-O7 rein

Page 64: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

.:.F.--:-! 5.::,:" _" ;E-',_ :'era S"_-k'E 5CNE " 6E.._" ."era SL"RFA_.E ='",..,:..... 2 E. :eraL:'.'ER 2.0E-O6 rein LIVER 7 6E-O? rein LIVER 2 2E._" =era

' N - SPLEEN 2.2E-'D7 reinSP,EE. 20E 06 rein SPLEEN 7 6E-07 rein

'3CNADS 20E-O6 rem GONADS 7 6E.O7 rem GONADS 2 2E-O7 rem

EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

,_C,,A_._.NT 20E 06 rein EQUIVALENT 7 6E-07 rein EQUIVALENT 2 2E-07 rein

Page 65: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HOTSPOT _ 5 GENERAL PLL.'MERADIO.N_'C',.IDE C-14 I_al.a_ion Class • DHa_.fLife 5 7E+O] Years

SOURCE TERM . a 0E.02 Ci

RELEASE FRACTION . 1.0E+00FILTER EFFICIENCY. 0.000000 %

EFFECTIVE RELEASE HEIGHT 1.00 m

WIND SPEED (h - 2 m) _, 5 m/sSTABILITY CLASS D DEPOSITION VELOCITY 1.00 cm/sRECEPTOR HEIGHT 1 0 m IN'VERSION LAYER HEIGHT • 5000.0 m5A._PLE _ME l0 000 mln_._<I_JM DOSE DISTA,NCE < 0.I0 km MAXIML_ CEDE > 4 2E-05 rein

PL._me Cencer_.ine

D - 0 I0 km D - 0.20 km D - 0.50 km

DEP - 5.9E-O1 uCi/m_2 DEP - 1.6E-OI uCi/mA2 DEP- 2.9E-02 uC[/a_2CHI = 5.9E-05 (Ci-s)/mA3 CHI- 1.6E-05 (C[-s)/m_3 CHI- 2.9E.06 (Ci-s)/m'3

50-YR DOSE COMMITMENT" 50-YR DOSE COMMITMENT' 50-YR DOSE COMMITMENT"................. . .°... .... .... .... °°..°.........° °°°°...°..°......°..°°°..

THYROID _.2E-05 rem THYROID I.IE-05 rem THYROID 2.0E-06 teaLL_G 4.2E-O5 rein LUNG I.IE-O5 ran LUNG 2.0E-06 reinSURFACE BONE 4 2E-O5 rein SURFACE BONE I.IE-05 re", SURFACE BONE 2.0E-06 re",RED RARROW 4.2E-05 rem RED MARROW I.IE-05 rem RED MARROW 2.0E-06 teaGONADS 4.2E-05 rein GONADS I.IE-05 rein GONADS 2.0E-06 re,,EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 4.2E-05 re,, EQUIVALENT I.IE-05 re,, EQUIVALENT 2.0E-06 re,,

Plume Cencerline

D - I OO km D - 2.00 km D - 5.00 km

DEP - 8.7E-03 uCi/m'2 DEF - 2.8E-03 uCi/m'2 DEF - 6,7E-04 uCi/m_2CHI- 8,7E-O7 (C£-s)/m_3 CHI- 2.8E-07 (Ct-s)/m_3 CHI- 6.7E-08 (C1-s)/.,_3

50.YR DOSE COMMITMENT 50-YR DOSE COMMITMENT' 50.YR DOSE COMMITMENT"... ......... °°°..°°..°..° .....................---- .....-.......-...........

THYROID 6.1E-07 rem THYROID 1.9E-07 rem THYROID 4.7E-08 remLUNG 6.1E-07 re,, LUNG 1.9E-07 re,, LUNG 4.7E-08 re,,

SURFACE BONE 6.1E-07 re,, SURFACE [tONE 1.9E-07 re,, SURFACE BONE 4.7E-08 re,,RED ,MARROW 6.IE-07 re-, RED MARROW 1.9E-07 rem RED MARROW 4.7E-08 re,,GONADS 6.IE-O7 re,, GONADS 1.9E-07 rein GONADS 4.7E-08 reinEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 6.IE-O7 re,, EQUIVALENT i.9E-07 rem EQUIVALENT 4.7E-08 re,,

Plume Centerl :Lne

D - lO.OO ta, D - 20.00 km D - 50.00 kmDEP - 2.5E-O4 uCl./,,"2 DEF - 9.6E-O5 uC£/,-"2 DEP - 2.8E-O5 uCt./,,"2CHI- 2.5E-O8 (C1.-s)/m^3 CHI- 9.6E-09 (C£-s)/m_3 CHl- 2.8E-O9 (C£-s)/m'3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT"

THYROID 1.8£-08 rem THYROID 6.7E-09 rem THYROID 2.0E-09 remLUNG 1.8E-08 rein LUNG 6.7E-09 rein LUNG 2.0E-09 re,,

SURFACE [tONE 1.8E-08 rein SURFACE BONE 6.7E-09 rein SURFACE BONE 2.0E-09 re,,RED MARROW 1.8E-08 rem RED MARROW 6.7E-O9 rem RED MARROW 2.0E-09 remGONADS 1.8E-08 re,, GONADS 6.7E-09 rein GONADS 2.0E-09 reinEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

Page 66: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,
Page 67: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HOTSPOT 5 5 GENERAL PLL,'HER_IONt'CL'DE CO.60 InhaLation C]-ass Y

HaifL/fe 5.27],yearsSOURCETERM 2.8E,02 CiRELEASE F_,ACTION ' 1.0E)O0FILTER EFFICIENCY 0.000000 t

EFFECTIVE RELEASE HEIGHT ],00 mU:ND SPEED (h - 2 m) _.5 m/sSTABILITY CLASS D DEPOSITION VELOCITY • ],.00 cm/sRECEPTORHEIGHT t 0 m INVERSION LAYER HEIGHT • 5000.0 mSA,_PLE T:HE L0.000 men,_..L_:YiI,'MDOSE DISTANCE < O. 10 icm MAXI,_fL_ CEDE ' > 2.1E-O3 rein

Pl,Ame =en:er'._ne

D - 0.iO ks, D - 0.20 km D - O.50 kmDEP - _ 2E.Ol uC//m'2 DEP- l.iE-Ol uCi/m'2 DEP- 2.OE-O2 uCi/m'2

CHI - 4.2E-05 (Ci.s)/m'3 CHI- l.],E-05 (CL-s)lm'3 CHX- 2.0E.06 (Cl.-s)/m']

50-YR DOSE COM_ITMLNT' 50.YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT'.o.o..o.. o...o...o.....o. ......o...o e...e..,...., o Q .............------.---..

L_C 1,8E-02 rem LUNG 4.8E-03 feb LUNG 8,8E-04 febEFFECTIVE DOSE EFFECTXVE DOSE EFFECTIVE DOSE

EQUIVALENT 2.1E-03 rein EQUXVALENT 5.6E-04 rein EQUIVALENT 1.0E-04 re,,

Plume Cen_erl£ne

D - l.OO km D - 2.00 km D - 5.00 kmDEP - 6,1E-03 uCi/a'2 DEP ,- 1.9E-O3 uCi/l'2 DEP - 4,7E.04 uCi/a'2

CHI- 6.1E-07 (Cl-s)/m'3 CHI- 1.9E-07 (Ct-s)/m'3 CHI- 4.TE.OO (Ct-s)/m'3

50-YR DOSE COMMITMENT" 50.YR DOSE COMMITMENT: 50.YR DOSE COMMITMENT:.....°°.°°......°°.°..._. ....................-.--- ................-........

L_IG 2.6E-04 tea LUNG 8.4E-05 re,, LUNG 2.0E-05 reinEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 3.0E-05 feb EQUIVALENT 9.7E-06 re,, EQUIVALENT 2.4E-06 feb

Ptume Cen_erl£ne

D - tO.O0 km D - 20.00 kn O - 50.00 km

DEP - 1.8E-04 uCi/m'2 DEP - 6,7E-05 uCi/m'2 DEP - 2.OE-O5 uCl/m*2CHI - 1.8E-08 (Ct-s)/m'3 CMI ,, 6.7E-09 (CJ,-s)/m'3 CMI- 2.0E-09 (C¢-s)/B'3

50-YR DOSE COMMITMENT: 50-YltDOSE COMMITMENT: 50.YR DOSE COMMITMENT:......................... ..........-.-...-.---.--- .........-..--...--------

LUNG 7.6E-O6 ten IJ_IG 2.9E-06 re- LUNG 8.5E-07 remEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSEEQUIVALENT 8.8E-O7 rem EQUIVALglCr 3.3E-07 tea EQUIVALENT 9.8E-08 rem

Page 68: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

p,A,_:;_%'CL'DE SR-90 [rd_al.at:ion Class YHalfLLfe 29 120 years

S_L'RCE TERM 1.6E-03 C_RE'EASE FRACTION ' l.OE+OOF'LTER EFFICIENCY 0 0OOCO0 iEFFE_.TI';EP.EL=-ASEHEIGHT I OO m,':._D SPEED (h - 2 m) _ 5 m:'sSTABILITY CLASS D DEPOSITION VELOCITY I O0 cm/s

RECEPTOR HEIGHT [ 0 s I}_VERSION LAYER HEIGHT 5000 0 mSAMPLE T:HE tO.O00 ,.in._._,,.'_fM DCSE D'STANCE < 0 LO km ._XI_JM CEDE . > 1.OE-O3 rein i

? _ ._T,e ." e F, = e ." _. ;. r.e

D - 3 L0 km O - 0 20 km D - 0.50 kmDEP - 2 _E-O2 uCi/m'2 DEP - 6 4E.O3 uCi/m'2 DEP - 1.2E-O3 uCi/m'2_HI- 2 _E-06 (Ci-s)/m'3 CHI- 6 4E-07 (CL-s)/m'3 CHI- ]..2E-07 (Ci-s)/m'3

50-_ DOSE CO_ITMENT' 50-YR DOSE COMMITMENT' 50-YR DOSE COMMITMENT'..... ...... . ... ....... ... ..° .°....o..-- -------°-'' .........- -° -- ----- "''" °"

,",,' . LUNG 2 3E-03 rein LUNG 4,3E-04 re,,_,_,,,G 8 7E-03 re,. -EFFECTI'/EDOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT I_OE-03 :e., EQUIVALENT 2.8E-04 rein EQUIVALENT 5.1E-05 re-,

Plume Centerllne

D - 1.00 fun O - 2.00 kn D - 5.00 kmDEP - 3 5E-04 uCi/m'2 DEP - I.IE-O4 uCl/u'2 DEP- 2.7E-O5 uC_/m'2CHI - 3 5E-O8 (C/-s)/,,'3 CHI - I.IE-08 (Ci-s)/m'3 CHI- 2.7E-O9 (Ci-s)/m'3

50-YR DOSE COMMITMENT' 50-YR DOSE COMMITMENT" 50-YR DOSE COMMITMENT:.................-.-.----

........ .°..° .°......---- ........-..-----------'''

LS_G 1.3E-04 tea LUNG 4.0E-O5 tea LLtNG 9.9E-06 teaEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSEEQUIVALENT I 5E-05 rem E<UIVALENT 4.8E-06 rem EQUIVALENT 1.2E-06 rem

Plume Centerline

D - lO.OO ki D - 20.00 kn D - 50.00 loaDEP - ]..OE-05 UC_L/B'2 DEP - 3.8E-O6 uC£/m'2 DEP - 1.1E-06 uCl/a'2CHI - 10E-09 (Ci-s)/ut'3 CHI- 3.8E-10 (Ci-s)/ut^3 CHI- L.LE-IO (Ci-s)/m'3

50-YR DOSE COMMITMENT: 50-YR DOSE'COMMITHENT: 50-YR DOSE COMMITMENT".. .......... ..°......---- .......-...----------'''' ....---.---------''''''''

LUNG 3.7E-06 re-, LUNG 1.4E-06 rem LUNG 4.1E-07 re-,EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSEEQUIVALENT 4.3E-07 re- EQUIVALENT I.7E-07 re-, EQUIVALENT 4.8E-08 tel

Page 69: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HOTSPOT 5 5 GENERAL PLUMER_DIO._L'CLIDE 1-125 In.halation Class : DHaLELLfe 60 182 day',

SOURCETERM : 2,5E-O2 CiRELEASE FRACTION : 1.0E+OOFILTER EFFICIENCY' O,OOO000 %EFFECTIVE RELEASE HEIGHT !00 m

:'IND SPEED (h - 2 m) 4 5 m/sSTABILITY CLASS D DEPOSITION VELOCITY : 1.00 c,,/sRECEPTOR HEIGHT 10 m IN'VERSION LAYER HEIGHT : 5000.0 ,,S.A.MPLET!HE I0 000 min._._(:_.._DOSE DISTANCE < 0 i0 km MAXIHL_I CEDE : > 3.0E.04 rein

P1,,u_e Cenceriine

D - O lO km D - 0 20 km D - 0.50 km

DEP - 3 7E.OI uCL/m'2 DEP- 9.9E-02 uCi/m'2 DEP- 1.8E-02 uC_./m'2

CHI- ] 7E-05 (Ci-s)/='3 CHI- 9.9E-06 (Ci-=)/m'3 CHI- 1.8E-06 (Ci-s)/ul'3

50.YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50.YR DOSE COMMITMENT:....... . ..... . .... ... ....... .... .... ..°°°.°° ....... .......°....... ....... ..

THYROID I.OE-02 rem THYROID 2.7E-O3 rem THYROID 4.9E-O4 re-,EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 3.0E-04 rein EQUIVALENT 7.9E-05 re-, EQUIVALENT i.5E-05 tea

Plume Cen=erl ine

D - 1.00 km D - 2.00 km D - 5.00 kmDEP - 5.AE-03 uCi/m'2 DEP - 1.7E-03 uCl/m'2 DEP- 4.2E-04 uCi/m'2CHI - 5._E-07 (Ci-s)/m'3 CHI- 1.7E-07 (Ci-I)/m'3 CHY- _.2E-08 (Ci-s)/-*3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50.YR DOSE COMMITMENT:................ --............° .... °.°°°....°.°°.° °0.°°° °° °..°..-- ..-°.°- - -

THYROID 1.5E-04 re,, THYROID 4.7E-05 tea THYROID i.IE-O5 remEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT _.3E-06 rem EQUIVALENT 1.4E-O6 re-, EQUIVALENT 3.4E-O7 re-,

Plume Cencer],ine

D - 10.O0 km D - 20.00 km D - 50.00 ka

DEP - i 6E-OA uCi/m'2 DEP - 6.0E-05 uCi/m'2 DEP - 1.7E-05 uCi/m'2CHI - 1.6E-08 (Ci-s)/m'3 CHI- 6.0E-09 (Ci-s)/m'3 CHI- 1.7E-09 (Ci.i)/m'3

50-YR DOSE COMMITMENT: 50-YR DOSE'COMMITMENT: 50-YR DOSE COMMITMENT:.... .............--..---- ..........--..----------- ...---.------------------

THYROID 4.2E-06 ten THYILOID 1.6E-06 re- THYROID a. 7E.07 re,,EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 1.3E-07 rim EQUIVAX_ 4.8E-O8 rim EqUIVALD_ 1.4E-08 re,,

Page 70: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HOTSPOT 5 5 GENERAL PLL'HER_31OR%'CLIDE : TH-232 Inhalation Class YHalfLife ' I.4E_!0 Years

SOLACE TER._I : 1.0E-05 C1RELEASE FRACTION : I.0E+00FILTER EFFICIENCY: 0.000000

EFFECTIVE RELEASE HEIGHT 1.00 m

_'INDSPEED (h - 2 m) 4.5 m/sSTABILITY CLASS D DEPOSITION VELOCITY • l.O0 cm/sRECEPTOR HEIGHT i 0 m I_VVERSION LAYER HEIGHT : =000,0 m

SA.MPLETIME I0 000 min._-_J.l._DOSE DISTANCE < O.I0 km MAXIMUM CEDE : > 5.5E-03 reinPI._meCente_ine

D - 0_i0 k.m b - 0,20 km D - 0.50 ionDEP - 1.5E-04 uC_/m'2 DEP - 40E-05 uC£/m'2 DEP- 7.3E-06 uCL/m'2CHI - 1.5E-08 (Cl-s)/m_3 CHI - 4.0E-09 (Cl-s)/m'3 CHI - 7.3E-I0 (C[-s)/m'3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:................ . ................ .... _.... .... . ........ .. .... ... .... _...°o.

LL_G 1.7E-02 rein LUNG 4,6E-03 rein LUNG 8.5E-04 remSURFACE BONE 9.4E-02 tea SURFACE BONE 2.5E-02 rem SURFACE BONE 4.6E-03 remRED MARROW 7,4E-03 rem RED MARROW 2.0E-03 rem RED MARROW 3.6E-O4 remEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 5.4E-03 rea EQUIVALENT 1.5E-03 rem EQUIVALENT 2.7E-04 re8

Plume Centerllne

D - l..O0 km D - 2.00 km D - 5.00 km

DEP - 2.2E-06 uC£/aA2 DEP - 6.9E-07 uCi/a'2 DEP - 1.7E-07 uC£/a^2CHI - 2.2E-I0 (Ci-s)/aA3 CHI- 6.9E-II (Ct-s)/R'3 CHI- 1.7E-If (Cl-s)/m_3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:..... ........°........... ...............-..--...-- .........................

LUNG 2.5E-04 ram LUNG 8.0E-05 re-, LI_NG 2.0E-05 teaSURFACE BONE ]..4E-03 rein SURFACE _ONE 4.4E-04 ram SURFACE BONE I.IE-04 reinRED MARROW I.IE-04 tea RED MARROW 3.4E-05 ram RED MARROW 8.4E-06 remEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 8.0E-05 rein EQUIVALENT 2.5E-05 tel EQUIVALENT 6.2E-06 rem

Plume Cencerline

D - i0.00 km D - 20.0C _ D - 50.00 km

DEP - 6.3E-08 uCi/m*2 DEP - 2.4E-08 uC1./m*2 DEP - 7.0E-09 uC_./a'2CHI- 6.3£-12 (Ci-s)/n'3 CHI- 2.4E-12 (Ci-s)/m'3 CHI- 7.0E-13 (CL-s)/m^3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:......................... ...........-..----------- ........--..°-..-- .... ..o

LUNG 7.3E-06 re-, LUNG 2.8E-06 ram LUNG 8.1E-07 re,,SURFACE BONE 4.0E-05 ram SURFACE BONE 1.5E-05 reu SURFACE BONE 4.AE-06 re,RED MARROW 3.IE-06 re- RED MARROW 1.2E-06 tea RED MARROW 3.5E-07 reinEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 2.3E-06 re-, EQUIVALENT 8.8E-07 re-, EQUIVALENT 2.6E-07 re-,

Page 71: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HCTSPOT 5 5 CENEP_AL PLUMEP.AD!ON_JCLIDE: U-218 Inhalacion Class : YHalfLife : _.5E+09 Years

SOURCE TERM : 4.0E-04 CiRELEASE FRACTION : 1.0E+O0

FILTER EFFICIENCY: 0.0OOOO0 %EFFECTIVE RELEASE HEIGHT : 1.00 m

','INDSPEED (h - 2 m) ' 4.5 m/sSTABILITY CLASS : D DEPOSITION VELOCITY : i O0 cm/sRECEPTOR HEIGHT : 1.0 m INVERSION LAYER HEIGHT : 5000.0 s_A,MPLETIME : iO.000 mln_,XI_,_ DOSE DISTANCE : < 0.I0 km MAXIMUM CEDE : > 0.02_ re,,

Plu_ne¢encerline

D - 0 I0 ks D - 0.20 km D - 0,50 km

DEP - 5 9E-03 uCi/m_2 DEP - 1.6E-03 uCl/m^2 DEP- 2.9E-04 uCi/m_2CHI- 5.9E-07 (C[-s)/m_3 CHI- 1.6E-O7 (Ci-s)/m_3 CHI- 2.9E-O8 (Ci-s)/m'3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:................................. .............-... .... ...... . ............ °.

LL_G 2.0E-OI rzm LUNG 5.3E-02 rein LUNG 9.7E-03 rein

EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 2.4E-O2 re,, EQUIVALENT 6.4E-03 rein EQUIVALENT 1.2E-O3 rein

Plume Centerl lne

D - 1.00 ks D - 2.00 km D - 5.00 km

DEP - 8.7E-O5 uCl/m^2 DEP - 2.8E-O5 uCl/m'2 DEP - 6.7E-06 uCl/mA2CHI - 8 7E-09 (Ci-s)/m_3 CHI- 2.8E-09 (Ci-s)/m^3 CHI- 6.7E-I0 (Ci-s)/m'3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:...° ........... . ..... °... ......................... .........................

LUNG 2.9E-03 rein LUNG 9.2E-O& rest LUNG 2.2E-04 rent

EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 3.5E-04 re,, EQUIVALENT i.IE-04 re,, EQUIVALENT 2.7E-05 rem

Plume Centerline

O - i0,00 ks D - 20,00 km D - 50,00 km

DEP - 2.5E-06 uCi/mA2 DEP - 9.6E-O7 uC£/mA2 DEP- 2.8E-07 uCi/mA2

CHI - 2.SE-lO (Ci-s)/m^3 O4I- 9.6E-II (Cl-s)/mA3 CHI- 2.8E-II (Ci-s)/mA3

50-YR DOSE COMMITMENT: 50-YR DOSE'COMMITMENT: 50-YR DOSE COMMITMENT:....... ........°......,,.. ................-..--.--- .................--.----.

LUNG 8.4E-05 re-, LUNG 3.2E-O5 re,, LUNG 9.3E-06 reinEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT I.OE-05 re,, EQUIVALENT 3.8E-06 re-, EQUIVALENT i.IF-06 rem

Page 72: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HOTSPOT 5.5 GENERAL PLUMERADIONL'CLIDE • PU-239 Inhalation Class ' YHalfLife " 2.4E+04 Years

SOURCE TERM • 5.0E-05 CiRELEASE FRACTION ' I.OE+OOFILTER EFFICIENCY: 0.000000 %

EFFECTIVE RELEASE HEIGHT ' 1.00 m

WIND SPEED (h - 2 m) ' 4 5 ='sSTABILITY CLASS • D POSITION VELOCITY • 1.00 cm/sRECEPTOR HEIGHT ' 1.0 z I_;VERSION LAYER HEIGHT • 5000.0 m

SAMPLE TIME • I0.000 mln.'5LEI.MI.'MDOSE DISTANCE ' < 0.i0 km MAXIMUM CEDE ' > 8.2E-03 remPlume Centerline

D - 0.!0 km D - 0.20 km D - 0.50 km

DEP - 7 AE-04 uCi/mA2 DEP - 2.0E-O_ uCi/m_2 DEP- 3.7E-05 uC//mA2CHI- 7.4E-08 (Ci-s)/m'3 CHI- 2.0E-08 (C£-s)/mA3 CHI- 3.7E-09 (Ci-s)/m^3

50-YR DOSE COMMITMENT' 50-YR DOSE COMMITMENT' 50-YR DOSE COMMITMENT:.......................... ..... .... .... ..... ... ...... .. .... .....°_ .........

LVNG 3.0E-O2 rein LUNG 7.9E-03 rein LUNG 1.5E-03 reinSURFACE BONE 8.7E-02 rein SURFACE BONE 2.3E-O2 rein SUP,FACE BONE 4.3E-03 reinRED MARROW 6.9E-03 rem RED MARROW 1.9E-03 re-, RED MARROW 3.4E-04 re,,LIVER 1.9E-O2 rein LIVER 5.2E-O3 rein LIVER 9.5E-04 reinEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 8.2E-03 rein EQUIVALENT 2.2E-03 re,, EQUIVALENT 4.OE-04 rein

Plume Centerllne

D - _.00 km D - 2.00 lut D - 5.00 km

DEP - I.IE-05 uC£/=^2 DEP - 3.5E-06 uCi/mA2 DEP - 8.4E-07 uC£/uA2CHI - I.IE-09 <Ci-s)/m^3 CHI- 3.5E-I0 (Ci-s)/m^3 CHI- 8.4E-II (C£-s)/u*3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT"............. 0........... ................--...---- ......................-..

LUNG 4.3E-O4 re,, LUNG 1.4E-O4 rein LUNG 3.4E-05 re,,SURFACE BONE 1.3E-03 rein SURFACE BONE 4.0E-04 re,, SURFACE BONE 9.8E-05 re"RED MARROW I.OE-04 re,, RED MARROW 3.2E-05 re,, RED MARROW 7.8E-06 re,,

LIVER 2.8E-04 reu LIVER 9.OE-05 re,, LIVER 2.2E-05 re,,EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT i.2E-O4 re-, EQUIVALENT 3.8E-05 re,, EQUIVALENT 9.2E-06 re,,

Plume Centerl£ne

D - i0.00 km D - 20.00 km D - 50.00 km

DEP - 3.1E-07 uCi/n*2 DEP - 1.2E-07 uCi/iA2 DEP- 3.5E-08 uC£/'A2CHI- 3.IE-II (CI-I)/uA3 CHI- 1.2E-II (Ci-s)/n^3 CHI- 3.5E-12 (Ci-s)/m_3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT' 50-YR DOSE COMMITMENT'......................... ....-..------------------ .....--------------------

LUNG 1.3E-O5 ten LUNG 4.8E-06 re,, LUNG 1.4E-06 reinSURFACE BONE 3,7E-05 re,,, SURFACE BONE 1,4E-05 ten SURFACE BONE 4.1E-06 re,,RED _IROW 2.9E-06 rein, RED MARROW I.IE-06 ten RED MARROW 3.3E-07 re,,LIVER 8.2E-O6 ten LIVER 3.IE-O6 re-, LIVER 9.IE-O7 re-,

' EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 3.4E-06 rein EQUIVALENT 1.3E-06 re-, EQUIVALENT 3.8E-07 rein

Page 73: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

!

HOTSPO_ 5,5 GENERAL PLUMERADIO._CLIDE : H-3 Inhalation Class : D

HalfLife : 12. 350 yearsSOURCETERM : 3.0E+O4 CiRELEASE FRACTION : 1.0E+OOFILTER EFFICIENCY: 0.000000 %EFFECTIVE RELEASE HEIGHT iO0 m

','INDSPEED (h - 2 m) a 5 m/sSTABILITY CLASS D DEPOSITION VELOCITY : i O0 cm/sRECEPTOR HEIGHT 1.0 m INVERSION LAYER HEIGHT 5000.0 mS;LMPLETIME i0 000 min._.%/<:._-MDOSE DISTANCE < 0.i0 km MAXIMUM CEDE : > 1.4 rein

Plume Cen_erline

D - 0.i0 km b - 0.20 km D - 0 50 km

DEP - _.5E_05 uCi/m_2 DEP - 1.2E+05 uCi/m_2 DEP- 2.2E+O4 uCi/m'2CH! - 4.5E+01 (C[-s)/m'] CHI- 1.2E+OI (Ct-s)/m_3 CHI- 2.2E+00 (Ci-s)/m_3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:............................. o ............ .... ...... . ............... . ......

SKIN I 4E.O0 rem SKIN 3.8E-Of rem SKIN 6 9E-02 rem

THYROID 1 4E+O0 rein THYROID 3.8E-01 rein THYROID 6 9E-02 reinLS,_G i 4E+O0 rein LUNG 3.8E-01 rein LUNG 6 9E-02 reinSL_RFACE BONE I 4E+O0 ram SURFACE BONE 3.8E-01 feb SURFACE BONE 6 9E-02 ramLIVER i 4E+O0 ram LIVER 3.8E-01 ram LIVER 6 9E-02 teaSPLEEN 1 4E+OO ram SPLEEN 3.8E-O1 rem SPLEEN 6 9E-02 tomGONADS i 4E+O0 ram GONADS 3.8E-01 ram GONADS 6 9E-02 telEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT I.4E+OO rem EQUIVALENT 3.BE-Of tea EQUIVALENT 6.9E-02 tom

Pl _LmeCencerllne

P - 1.00 km O - 2,00 km D - 5.00 km

DEP - 6.5E+03 uCi/m'2 DEP - 2.1E+O3 uCi/m^2 DEP - 5.0E+O2 uCi/m^2CHI- 6 5E-Of (C£-s)/m^3 CHI- 2.1E-Of (Ci-s)/IA3 CHI- 5.0E-02 (Ci-s)/m_3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:................... ...... ...'................... ..... ........0.... .... . .....

SKIN 2.1E-02 re,, SKIN 6.6E-03 rem SKIN 1.6E-03 tea

THYROID 2 IE-02 re,, THYROID 6 6E-03 re,, THYROID 1.6E-03 re,,LUNG 2 IE-02 tea LUNG 6 6E-03 tea LUNG 1.6E-03 teaSURFACE BONE 2 iE-02 tom SURFACE BONE 6 6E-03 tea SURFACE BONE 1.6E-03 teaLIVER 2 IE-02 tea LIVER 6 6E-03 tea LIVER 1.6E-03 teaSPLEEN 2 IE-02 rein,SPLEEN 6 6E-03 re,, SPLEEN 1.6E-03 teaGONADS 2 IE-02 re-, GONADS 6 6E-03 re,, GONADS 1.6E-O3 ram

EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 2.1E-02 rem EQUIVALENT 6.6E-03 re,, EQUIVALENT 1.6E-03 rem

Plume Cen_erline

D - I0.00 km D - 20 00 km D - 50.00 km

DEP - 1.9E+02 uCi/mA2 DEP - 7.2E+01 uCi/m^2 DEP - 2.1E+Ol uCi/mA2CHI- I 9E-02 (Ci-s)/m_3 CHl- 7.2E-03 (Cl-s)/m^3 CHI- 2.1E-O3 (Cl-s)/m_3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:................---------o.. ...... ............---- ......-..---.------------

SKIN 6.0E-04 tea SKIN 2.3E-0_ tea SKIN 6.6E-05 reinTHYROID 6.0E-04 tea THYROID 2.3E-04 tea THYROID 6.6E-05 tea

Page 74: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

3L'RFACE BONE 6.OE-O_ rein SL_RFACE BONE 2 3E-O_ _em SL_FACE BONE 6 ;_E-,_5 reinL['/ER 6.0E-O_ rein LIVER 2 3E-O_ rein LIVER 6 6E-05 reinSPLEEN 6.0E-O4 rein SPLEEN 2 3E-O4 re.. SPLELN 6 6E-05 rein

GONADS 6.0E-O4 rein GONADS 2 3E.OK rein GONADS 6 6E-05 rein

EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 6.0E-04 rein EQUIVALENT 2 3E-04 rein EQUIVALF.NT 6 6E-05 rein

Page 75: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HOTSPOT 5.5 GENERAL PLL_MERADIONUCLIDE : C-14 Inhalation Class : DHalfLife : 5.7E+03 Years

SOURCE TERM : 1.4E+02 C£RELEASE FRACTION : 1.0E+O0

FILTER EFFICIENCY: 0.000000 %EFFECTIVE RELEASE HEIGHT 1.00 m

'_INDSPEED (h - 2 m) 4.5 m/'sSTABILITY CLASS D DEPOSITION VELOCITY : l.O0 cm/sRECEPTOR HEIGHT 1.0 m INVERSION LAYER HEIGHT : 5000.0 mSAMPLE TIME I0.000 min

.M.'-_,I.ML,'MDOSE DISTANCE < O.i0 km MAXIML_ CEDE '.> O.146 reinPlume Center line

D - 0 l0 km D - 0.20 km D - 0.50 km

DEP - 2.1E+03 uCi/m^2 DEP - 5.6E+02 uCi/m'2 DEF- I.OE+02 uCi/m'2CHI- 2.1E-Of (Ci-s)/m*3 CHI- 5,6E-02 (Ci-s)/m^3 CHI- I.OE-02 (Ci-s)/m*3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT'.......... . ...... .°. ..... . ....°... ..... .°. ......... ..°.°.. .... °..°. .... °....

THYROID I.SE-OI rein THYROID 3.9E-02 tea THYROID 7.1E-03 teaLUNG I.SE-OI re,, LUNG 3.9E-02 tea LUNG 7.1E-03 reinSURFACE BONE I.SE-OI rem SURFACE BONE 3.9E-02 rem SURFACE BONE 7.1E-03 remRED HARROW i.5E-Of rem RED MARROW 3.9E-02 rem RED MARROW 7.IE-O3 remGONADS i.5E-OI rein GONADS 3.9E-02 rem GONADS 7.IE-03 reinEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT I.5E-Of tea EQUIVALENT 3.9E-02 re-, EQUIVALENT 7.IE-03 rem

Plume Centerline

D - l.O0 km D - 2.00 km D - 5.00 km

DEP - 3.0E+OI uCi/m^2 DEP - 9.7E+O0 uCi/m'2 DEP - 2.4E+OO uCi/m'2CHI - 30E-03 (Ci-s)/m'3 CHI- 9.7E-O4 (CL-s)/m'3 CHI- 2.4E-04 (Ci-s)/m'3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:............. ............ ......................... .................... .....

THYROID 2.1E-03 rein THYROID 6.8E-04 rein,THYROID 1.6E-04 reinLUNG 2.1E-03 rem LUNG 6.8E-04 rein LUNG 1.6E-04 rein

SURFACE BONE 2.1E-03 re,, SURFACE BONE 6.8E-04 re,- SURFACE BONE 1.6E-04 febRED HARROW 2.1E-03 rem RED MARROW 6.8E-04 re-, RED MARROW 1.6E-04 remGONADS 2.1E-03 rein,GONADS 6.8E-04 reu GONADS 1.6E-04 rein

EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 2.IE-03 feb EQUIVALENT" 6.8E-04 rein EQUIVALENT 1.6E-04 rein

Plume Centerltne

O - tO.OO km D - 20.00 km D - 50.00 km

DEP - 8.8E-01 uCL/m'2 DEP - 3.&E-01 uC£/m'2 DEP- 9.8E-02 uC£/m^2CHI- 8.8E-05 (CL-8)/m'3 CHI- 3.4E-05 (Cl-s)/m'3 CHI- 9.8E-06 (Ci-s)/m^3

50.YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:......................... ......................... ...........-....---------

THYROID 6.1E-05 rem THYROID 2.3E-05 rem THYROID 6.8E-06 remLUNG 6.1E-05 re-, LUNG 2.3E-05 ten LUNG 6.8E-06 re,,SURFACE BONE 6.1E-05 feb SURFACE BONE 2.3E-05 re-, SURFACE BONE 6.8E-06 remRED HARROW 6.].E-05rem RED MARROW 2.3E-05 re,, RED MARROW 6.8E-06 remGONADS 6.].E-05 rein GONADS 2.3E-05 rein GONADS 6.8E-06 reinEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

I

Page 76: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,
Page 77: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HCTSPOT 5 5 GENERAL PLUMERADIO_Vt'CLIDE CO-60 Inhala=i'-Class ' Y

HaifLife ' 5.271 yearsSOURCE TERM ' 1.9E*Ol CiRELEASE FRACTION • I,OE+OOFILTER EFFICIENCY' O.0OOOOO %EFFECTIVE RELEASE HEIGHT 1,00 m

_;INDSPEED (h - 2 m) 5 5 m/sSTABILITY CLASS D DEPOSITION VELOCITY • i OO cm/sRECEPTOR HEIGHT l.O m I,VVERSION LAYER HEIGHT 5000.0

SAMPLE TIME i0 000 rain_,XI._M DOSE DISTANCE < 0.i0 km HAXIML_ CEDE ' > 1.4 reinPlume Cen_erline

D - 0 iO km D - 0,2'0km D - 0 50 kmDEP - 2.8E+02 uCi/m_2 DEP - 7.6E+O1 uCi/mA2 DEP - i 4E+OI uCi/m'2CHI - 2.8E-02 (C£-s)/m_3 CHI- 7.6E-O3 (Ci-s)/mA3 CHI- I._E-03 (C[-S)l'm'3

50-YR DOSE COMMITMENT' 50-YR DOSE COMMITMENT' 50-YR DOSE COMMITMENT"................ .... ............ ... .......... ... .... .... .... . ..... .° .......

LUNG 1,2E+OI tea LUNG 3.3E.OO tea LUNG 6.0E-Of remEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 1.4E+O0 rem EQUIVALENT 3.8E-01 rem EQUIVALENT 6.9E-02 re,,

Plume Centerline

D - 1.00 km D - 2.00 km D - 5.00 kmDEP - 4.1E+O0 uCi/mA2 DEP - 1.3E+O0 uCI/IA2 DEP - 3.2E-O1 uCi/m^2

CHI- 4.1E-04 (Ci-s)/m*3 CHI- 1.3E-O4 (Ci-S)/l'3 CHI- 3.2E-05 (Ci-s)/m^3

50-YR DOSE COMMITMENT" 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:................ o.° ........... °........°....°..... o°°.°.°°°°.° ...... .°°..°°

LUNG I.SE-OI rein LUNG 5.7E-02 rem LUNG 1.4E-02 tea

EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 2. IE-02 tea EQUIVALENT 6.6E-O3 re-, EQUIVALENT 1.6E-O3 rem

Plume Centerline

D - i0.00 km D - 20.00 kI D - 50.00 kmDEP - 1.2E-OI uCi/I^2 DEP - 4.6E-O2 uCl/I^2 DEP - 1,3E-02 uCilI^2CHI- 1.2E-05 (Ci-$)/I^3 CHI- 4.6E-06 (Ci-s)/a^3 CHI- 1.3E-06 (Ci-s)/m^3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:°° ........ o°°.°.........° .........-.......---.-.,.- ........-....-.---..-.---

LUNG 5.2E-03 tel LUNG 2.0E-03 reI LInG 5.7E-04 remEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 6.OE-04 tom EQUIVALENT 2,3E-04 ram EQUIVALENT 6.6E-05 rem

Page 78: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HCTSPCT 5 5 GENERAL PLL_E.%.-_D'"_.,,._-..... DE SR.90 Inhai.acion rlass_ YHal. fLLfe 29.t20 years

SOLACE TERM ' 2.2E+OO CL

RELEASE FRACTION I.OE.OOFILTER EFFICIENCY. 0.OOOOOO %EFFECTIVE RELEASE HEIGHT iO0 m

','INDSPEED (h - 2 m) 4 5 m/sSTABILITY CLASS D DEPOSITION VELOCITY ' I O0 cm/sRECEPTOR HEIGHT 1.0 m I_ERSION LAYER HEIGHT 5000.0 mSAMPLE TIME I0000 rain."._C<I_._DOSE DISTANCE < O.I0 km MAXIMVM CEDE ' > i._ rein

Pl'._me Centerline

9 - 0.IO km D - 0.20 km D - 0 50 km

DEP - 3,3E+0_ uCi/m'2 DEP - 8.7E+OO uCi/m*2 DEP - 1.6E+OO uCt/m'2CHI - 3.3E-03 (Ci-s)/m'3 CHI - 8.7E-O4 (Ci-s)/m*3 CHI- 1.6E-O4 (C[-s)/m'3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT' 50-YR DOSE COMMITMENT"..................... . ......... . .... .. .... . ......... ....... ..... .... ..... ..

LL,_G i.2E+OI rein LUNG 3.2E+OO re,, LUNG 5.9E-Of reinEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT I.4E+OO rein EQUIVALENT 3.8E-Ol rein EQUIVALENT 7.OK- 02 rein,

Plume Cencerline

D - I.OO km D - 2,OO km D - 5,OO km

DEP - 4.8E-01 uCi/m^2 DEP - 1.5E-OI uCi/m_2 DEP - 3.7E-02 uCi/m'2CHI- _.8E-05 (Ci-s)/m*3 CHI .' 1.5E-05 (Ci-s)/m^3 CHI- 3.7E-O6 (Ci-s)/m*3

50.YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT' 50-YR DOSE COMMITMENT:.............. ........... .................-..... .... ............. .... ......

LUNG 1.8E-OI tea LUNG 5.6E-O2 re,* LUNG 1.4E-02 remEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 2.IE-O2 rem EQUIVALENT 6.6E-O3 re,, EQUIVALENT i.6E-03 rem

Plume Cen=erl ine

D - IO,OO km D - 20.00 km D - 50.00 km

DEP - 1.4E-O2 uCi/m^2 DEF - 5,3E-O3 uCi/m_2 DEP - 1.5E-O3 uCi/m'2CHI- 1,4E-06 (Ci-s)/m*3 CHI- 5.3E-07 (C£-s)/m'3 Cldl- 1.5E-O7 (C£-s)/m*3

50-YR DOSE COMMITMENT" 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT'.............. ........°.. .......................-. .....................-...

LUNG 5.IE-O3 tom lIRqG 1.9E-03 rein LUNG 5.6E-04 reinEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 6,0E-04 rein EQUIVALENT 2.3E-04 rein EQUIVALENT 6.7E-O5 rein

Page 79: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HOTSPOT 5 _ GENERAL PLL,_IE,RAD:ON_.'CLIDE 1-125 Inhala_Lon Class DHa[fgLfe ' 60,182 daysSOL_RCETERM ' 1.3E+O2 C_RELEASE FRACTION ' I.OE+OOFILTER EFFICIENCY 0.0OOOO0 lEFFECTIVE RELEASE HEIGHT l.OO m

'_'INDSPEED (h - 2 m) a 5 m/sSTABILITY CLASS D DEPOSITION VELOCITY ' i O0 ¢m/sRECEPTOR HEIGHT 1.0 m I,_VERSION LAYER HEIGHT • 5000.0 mSA_MPLETIME I0 000 rain._-_-'<'_JMDOSE DISTANCE < 0 I0 km ,_tAXI_ CEDE ' > I.5 rein

P' _,,e :er.:e:li,_e

D - O i0 km D - 0.20 km D - 0.50 km

DEP - I 9E+O3 uC[/m'2 DEP - 5.OE+O2 uC[/mA2 DEP- 9.IE+OI uC[/mA2CHI- i 9E-Of (Ci-s)/mA3 CHI- 5.0E-O2 (C[-s)/m_3 CHI- 9.1E-O3 (Ci-s)/m_3

50-YR DOSE COMLMITMENT: 50-YR DOSE COMMITMENT' 50-YR DOSE COMMITMENT'......................................... .. .......... ......° ...............

T_I_ROID 5.0E+OI rein THYROID I.DE+OI rein THYROID 2.5E+00 reinEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT I.SE+OO rem EQUIVALENT 4.0E-Q1 ram EQUIVALENT 7.3E-02 rem

Plume Centerline

O - i O0 km D - 2.00 km D - 5.00 kmDEP - 2.7E+O1 uCi/m_2 DEP - 8.6E+OO uCt/mA2 DEP - 2.1E+OO uCi/m_2

CHI - 2.7E-O3 (C[-s)/m_3 CHI- 8.6E-04 (Ci-s)/m*3 CMI- 2.1E-04 (Ci-s)/m^3

50-YR DOSE COMMITMENT' 50-YR DOSE COMMITMENT' 50-YR DOSE COMMITMENT:................... °...°. .°°.° ...... ....°.......°. ............-........-.-.

THYROID 7.3E-01 ram THYROID 2.3E-01 tea THYROID 5.7E-02 ramEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 2.2E-O2 ram EQUIVALENT 6.9E-O3 ram EQUIVALENT 1.7E-03 ram

Plume Cencerllne

D - I0.00 km D - 20.00 km D - 50.00 km

DEP- 7.8E-O1 uCt/_,^2 DEP - 3.0E-Of uCl/m_2 DEP- 8,7E-O2 uCi/m^2

CHI- 7.8E-O5 (C_-s)/m*3 CHI- 3.0E-O5 (C[-s)/m_3 CMI- 8.7E-O6 (Ci-s)/m'3

50-YR DOSE COMMITMENT: 50-YR DOSE'COMMITMENT' 50-YR DOSE COMMITMENT'........ .°°..° .... ....... ...............-...-.---- ...........---.-..--. ....

THYROID 2.1E-O2 rem, THYROID 8.1E-03 rem THYROID 2.4E-03 remEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 6.3E-04 ram EQUIVALENT 2.4E-04 rein EQUIVALENT 7.0E-05 re_,

Page 80: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

_OTSPOT 5 5 GENERAL PLL_ERADIONI;CLIDE • TH-232 Inhalation Class YHalfL_fe i _E+IO Years

SOURCE TERM ' 1.8E-03 CL

RELEASE FRACTION ' l.OE+OOFILTER EFFICIENCY'. 0 000000EFFECTIVE RELEASE HEIGHT IO0 m

'_'INDSPEED (h - 2 m) 4 5 m/sSTABILITY CLASS D DEPOSITION VELOCIT'[ I O0 cm/s

RECEPTOR HEIGHT 1.0 m INVERSION LAYER HEIGHT 5000.0 mSAMPLE TIME i0.000 rain_Kl_JM DOSE DISTANCE < 0 i0 km MAXIML_ CEDE ' > 0.981 rein

Pl,_e Centerline

D - 0 IO km D - 0.20 km D - 0 50 km

DEP- 2.7E-02 uCi/m'2 DEP- 7.2E-O3 uCi/m'2 DEP- 1.3E-03 uCi/m'2CHI- 2 7E-06 (CI-s)/a'3 CHI- 7.2E-O7 (Cl-s)/m_3 CHI- 1.3E-07 (Ci-s)/m'3

50-YR DOSE COMMITMENT 50-YR DOSE COMMITMENT" 50-YR DOSE COMMITMENT'.. ........ . .............. ...°.°°.°...°....°.°-°.°. .........................

LUNG 3.1E+00 rein LUNG 8.3E-01 tea LUNG I.SE-01 reinSURFACE BONE 1.7E+OI tea SURFACE BONE 4.5E+OO tea SURFACE BONE 8.3E-Of teaRED MARROW i.3E+OO rem RED MARROW 3.6E-O1 rem RED MARROW 6.6E-02 remEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 9,8E-O1 rein EQUIVALENT 2.6E-01 rem EQUIVALENT 4.8E.02 tea

Plume Centerline

D - 1.00 km O - 2.00 kz D - 5.00 kmDEP - 3 9E-04 uCilm^2 DEP - 1.2E-O4 uCilmA2 DEF - 3.0E-05 uCi/mA2CHI- 3 9E-08 (Ci-s)/m_3 CHI- i.2E-08 (Ci-s)/a'3 CHI- 3.0E-09 (Ci-s)/m'3

50-YR DOSE COMMITMENT' 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:......... .°.............. .....................---- ..................... ....

LUNG 4.6E-02 tea LUNG 1.4E-02 tea LUNG 3.5E-03 reinSURFACE BONE 2.5E-01 tea SURFACE BONE 7.9E-O2 tea SURFACE BONE 1.9E-02 teaRED MARROW 2.0E-02 tea RED MARROW 6.2E-O3 re-, RED MARROW 1.5E-03 re-,EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 1.4E-02 rea EQUIVALENT 4.6E-03 re-, EQUIVALENT I.IE-03 tea

Plume CenCerllne

' D - 10.00 k:m D - 20.00 kn D - 50,00 k:mDEP - I.IE-05 uCi/B_2 DEP - 4.3E-06 uCi/n_2 DEP - 1.3E-06 uCl/m_2CHI - I.IE-09 (CI-s)/nA3 CEIl- &.3E-IO (Ci-s)/m_3 CHI- 1.3E-lO (Ci-s)/a_3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT'. ....... .°................ ......-....--.----.------ ............-.------- ....

LUNG 1.3E-O3 rein LUNG 5.0E-04 tea LUNG 1.5E-04 re.,SURFACE BONE 7.1E-O3 tea SURFACE BONE 2.7E-03 ten SURFACE BONE 8.0E-OA remRED MARROW 5.6E-O4 re-, RED MARROW 2.2E-04 rem RED MARROW 6.3E-05 tea

EFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 4.IE-04 reu F._UIVIU.F.I_r i.6E.04 reu EQUIVALENT 4.6E-05 re-,

Page 81: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

,_CTSPOT 5 5 GE._;ER.a_LPLL_ER.a_DIO,_CL:DE U.238 Ir_alaclon C_ass YHalfLLfe _.5E+09 Years

SOURCETERM : 2.4E.02 CLRELEASE FRACTION : ]..OE+O0FILTER EFFICI LNCY: O, 000000EFFECTIVE RELEASE HEIGHT I O0 m

_'INDSPEED (h - 2 m) _ 5 m/sSTABILITY CLASS b DEPOSITION VELOCITY : i O0 cm/sRECEPTOR HEIGHT 1.0 m INVERSION LAYER HEIGHT 5000.0 mSAMPLE TIME I0,000 mln_..XI._,'MDOSE DISTANCE < 0.i0 k= MAXIML_ CEDE : > 1,4 rein

Pl'._e,]en:erline

D - 0 I0 k_ D - 0.20 km D - 0 50 km

DEP - 3 6E-Of uCi/m_2 DEP- 9,5E-02 uCi/m'2 DEP- 1.8E-02 uCi/m'2CHI - 3.6E-05 (C_-s)/m'3 CHI- 9.5E-06 (C[-s)/m'3 CHI- 1.8E-06 (C£-s)/m'3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:..................,....... o.........°....°...°°.... ...o...°...o..°.°.°...° °.

LL_G 1.2E+OI rein LUNG 3.2E+00 tea LUNG 5.8E-01 reinEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSEEQUIVALENT i 4E+OO rem EQUIVALENT 3,8E-O1 rem EQUIVALENT 7.0E-02 rem

Plume Centerllne

D - l.O0 km D - 2.00 km D - 5.00 k_m

DEP - 5.2E-03 uCi/m'2 DEP - 1.7E-03 uCi/m'2 DEP - 4.0E-04 uCi/m'2CHI- 5 2E-07 (Ci-s)/m'3 CHI- 1.7E-O7 (Cl-s)/m'3 CHI- 4.0E-08 (Ci-s)/m'3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:°..° .... .°°°°.°.°..°..... ......................... .........................

Lbq_G 1.7E-Ol rem LUNG 5.5£-02 re-, LUNG 1.3E-02 telEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 2.1E-02 rem EQUIVALENT 6.6E-03 res EQUIVALENT 1.6E-03 feb

Plume Centerline

D - I0.00 km D - 20.00 km D - 50.00 fan

DEP - 1.5E-04 uCi/m^2 DEP - 5.7E-05 uCi/m'2 DEP - 1.7E-05 uCi/m'2CHI - 1.5E-08 (Ci-s)/m'3 CHI - 5.7E-09 (Ci-s)/m'3 CHI - 1.7E-09 (Ci-s)/m^3

50-YR DOSE COMMITMENT: 50-YR DOSE'COMMITMENT: 50-YR DOSE COMMITMENT:.... °°° .... °°°........... .......................-- ..................-...-..

LUNG 5.0E-03 res _ 1.9E-03 re-, LUNG 5.6E-04 teaEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSEEQUIVALENT 6.0E-04 rob EQUIVAlENT 2.3E-04 re-, EQUIVALENT 6.7E-05 re TM

Page 82: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HCTSPCT 5 5 GENERAL PLL_E_IQ_JCL:DE PU-239 l_ala:_on Class YHalfLife 2 _,E+Ow Years

SOL_,CETERM : 5,6E.03 CLRELEASE FRACTION : 1.0E.00FILTER EFFICIENCY: 0.000000 %

EFFECTIVE RELEASE HEIGHT 1.00 m

WIND SPEED (h - 2 m) _.5 m/$STABILITY CLASS D DEPOSITION VELOCITY 1.00 cm/sRECEPTOR HEIGHT 1.0 m INVERSION LAYER HEIGHT : 5000.0 m

SAMPLE TIME t0.000 min._(I._L._DOSE DISTANCE < O.I0 km .wtAXl_ CEDE : > 0,916 reinPl,.u_eCen_erline

O - 0.iO km D - 0 20 la_ D - 0.50 km

DEP - 8.3E-02 uCi/m'2 DEP - 2.2E-02 uCi/mA2 DEP - _.IE-03 uCt/m'2

CHI- 8,3E-06 (Ci-s)/m_3 CHI- 2,2E-06 (Ci-s)/m'3 CHI- _,I.E-O7 (C£-s)/m'3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMF.NT:....,......,......,....,, °°.......,.°°..,°°°...°.. .°.°..........°..,...°..°

LUNG 3 3E+O0 rein LUNG 8.9E-01 rein LUNG 1.6E-Of reinSURFACE BONE 9 7E+O0 rem SURFACE BONE 2.6E+00 rem SURFACE BONE 4,8E-Ol remRED MARROW 7 BE-Of rein RED MARROW 2,IE-OI rein RED MARROW 3,8E-02 reinLIVER 2 2E+OO tea LIVER 5.8E-O1 rem LIVER I.IE-OI rlmEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 9 IE-OI tea EQUIVALENT 2.4E-01 rlm EQUIVALENT 4.5E-O2 tea

Plume Centerline

D - t.OO km D - 2.00 lab D - 5.00 labDEP - 1,2E-03 uCi/m'2 DEP - 3.9E-04 uCi/m_2 DEF - 9.4E-05 uCi/mA2CHI- 1.2E.07 (Ci-a)/m^3 CHI- 3.9E-05 (Ci-s)/m_3 CHI- 9.4E-O9 (Ct-s)/m'3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:....°. ..... °°°°°°.°....°. ......,....,....,........ .,...,.......,,..........

LUNG 4.9E-02 rlm LUNG 1.5E-02 tea LUNG 3.8E-03 rumSURFACE BONE 1.4E-OI rum SURFACE BONE 4.5E-02 rein SURFACE BONE I.IE-02 rein

RED MARROW I.IE-02 rum RED MARROW 3.6E.O3 rem RED MARROW 8.8E-04 remLIVER 3.2E-02 tea LIVER I.OE-02 rlm LIVER 2 _E-03 teaEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 1.3E-02 tea EQUIVALENT 4.2E-03 rum EQUIVALENT I.OE-03 rln

Plume Centerline

D - I0.00 km D - 20.00 km D - 50.00 km

DEP - 3.5E-05 uCi/m'2 DEP - 1.3E-05 uCi/m'2 DEF - 3.9E-06 uCi/m_2CHI- 3.5E-09 (CL-8)/m_3 CHI- 1.3E-09 (Ci-s)/m^3 CHI- 3.9E-_0 (C£-s)/m_3

50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT: 50-YR DOSE COMMITMENT:......................... ,........,..........-.--. ........,..,,......-..-.-

LUNG 1.4E-O3 tea LUNG 5.4E-04 ten LUNG 1.6E-04 rumSURF&CE BONE 4._E-03 tea SURFACE BONE 1.6E-03 rum SURFACE BONE _ 6E-04 tea

RED MARROW 3.3E-O4 tea RED MARROW I.3E-O4 rum RED MARROW 3.6E-05 rimLIVER 9.1E-04 tea LIVER 3.5E-04 ram LIVER I.OE-04 rlmEFFECTIVE DOSE EFFECTIVE DOSE EFFECTIVE DOSE

EQUIVALENT 3.9E-04 rem EQUIVA/2.NT i.5E-04 re,, EQUIVALENT _. 3E-05 rum

Page 83: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HCTSP"T 5 _ 3E,';ERAL PL','MER,,LD;._,_CLIDE H- 3 :nha_.acion Class . DHa;fL_.fe 12 350 '/ears

3GURCE TE_M : 1.0E4"02 CiRELEASE FRACTION : ]..0E+O0FILTER EFFICIENCY: 0.000000 %EFFECTIVE RELEASE HEIGHT i,00 m'.'INDSPEED (h - 2 m) 4 5 m/s

STABILITY CLASS D DEPOSITION VELOCITY : 1.00 cm/sRECEPTOR HEIGHT i 0 m IN'VERSION LAYER HEIGHT , 5000,0 mSAMPLE TIME iO,O00 min.'t_<i._._DOSE DISTANCE < 0,I0 km MAXIMUM CEDE , > 4.7E-03 rein

:- _ "3 k.mDEP - [ 3E_-04 uCi/m'2CHI- _.]E+00 (Ci-s)/m^35O-YR DOSE CO_tMITMENT:

aaaaaaaaaaaaaaaa_,a&a_a&aaSKIN & og-02 tea

THYROID _,.OE..02 reinLL."qG 4.0E-02 reinSL_FACE BONE &.OE-02 remLIVER 4.0E-02 reinSPLEEN 4.0E.02 re,,GONADS 4.0E-02 ramEFFECTIVE DOSE

EQL'IVALENT 4,0E-02 re,,

D- 0.30 kmDEP- 1.9E+02 uCl/m^2

CHI- 1.9E-02 (Ci-s)Im'350-YR DOSE COMMITMF.NT:

SKIN 5.9E-04 ram

THYROID 5 9E-04 ramLUNG 5 9E-04 ramSURFACE BONE 5 9E-04 ramLIVER 5 9E-04 tea

SPLEEN 5 9E-04 ramGONADS 5 9E-04 ramEFFECTIVE DOSE

EQUIVALENT 5.9E-04 ram

HOTSPOT 5.5 GENERAL PLOMERADIONUCLIDE : C-14 Inhalatlon Class : D

HalfLife : 5.7E+O3 YearsSOURCE TERM : 4.0E-02 CiRELEASE FRACTION : ]..0E+O0FILTER EFFICIENCY: 0.000000

EFFECTIVE RK_E HEIGHT : 1.00 mWIND SPEED (h - 2 m) : 4.5 m/sSTABILITY CLASS ' D DEPOSITION VELOCITY : 1.00 cm/s

RECEPTOR HEIGHT • 1.0 m INVERSION LAYER HEIGHT ' 5000.0 aSAMPL£ TIME : i0.0OO mlnMAXIMUM DOSE DISTANCE . < 0.I0 Ms MAXIMUM CEDE • > 4.2E-05 tea

Plume Cen=erline

Page 84: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HCTSPOT 5.5 GENERAL PLL_E,_AD:ON'L'CL:DE : C-t4 Inhalation Class : DHalfLife ' 5.7E+O3 Years

SOLACE TERM : 4.0E-02 CiRELEASE FRACTION : I.OE+O0FILTER EFFICIENCY: 0.000000 %

EFFECTIVE RELEASE HEIGHT 1.00 m

WIND SPEED (h - 2 m) 5.5 m/sSTABILITY CLASS D DEPOSITION VELOCITY : i,O0 cm/sRECEPTOR HEIGHT l.O m I_ERSION LAYER HEIGHT : 5000.0 mS._.MPLETIME i0.000 rain,_.<<'_CMDOSE DISTANCE < O, I0 km MAXIML_M CEDE • > 4.2E-05 rein

D - 0.03 km ,:,?,:DEP = 5 IE+O0 uCi/m*2CHI - 5.1E-04 (Ci-s)/m_350-_R DOSE CO_MITMF,NT: _ Ja_aaa_aaA_aa_AAA_A_

THYROID 3.6E-04 remLUNC 3.6E-04 remSURFACE BONE 3.6E-04 reinRED MA/_ROW 3.6E-04 remGONADS 3.6E-04 rein -_EFFECTIVE DOSE

EQUIVALENT 3,6E-04 rem

D-O 30 km

DEP- 7.4E-02 uCi/m_2CHI- 7.4E-06 (Ci-s)/m'350-YR DOSE COMMITMENT:

THYROID 5.2E-06 reinLL_G 5.2E-06 reinSURFACE BONE 5.2E-06 rem

RED MARROW 5.2E-06 reinGONADS 5.2E-06 reinEFFECTIVE DOSE

EQUIVALENT 5.2E-06 rein

HOTSPOT 5.5 GENERAL PLUMERADIONUCLIDE : SR-90 Inhala=ion Class : Y

HalfLife : 29.120 yearlSOURCE TERM : 1.6E.03 ClRELEASE FRACTION : I.OE+OOFILTER EFFICIENCY: O.0OOOOO

EFFECTIVE RELEASE HEIGHT : 1.00 m

WIND SPEED (h - 2 m) : 4.5 m/sSTABILITY CLASS : D DEPOSITION VELOCITY : 1.00 cm/sRECEPTOR HEIGHT • 1.0 m INVERSION LAYER HEIGHT : 5000.0 m

SAMPLE TIME : iO.O00 rainMAXIMUM DOSE DISTANCE : < O.iO km MAXIMUM CEDE : > I.OE-03 reinD - 0.03 km

DEP - 2.0E-01 uCi/m_2

CHI - 2.0E-05 (Ci-s)/m^350-YR DOSE COMMITMENT:

Page 85: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

EFFEST :','EDOSE

EQUIVALENT 8 gE-O3 rein

D - O3O km

DEF - 30E-03 uC[/m_2

CHI - 3.0E-07 (Ci-s)/m_350-YR DOSE COMMITMENT:

LL_4G l.lE-03 rem

EFFECTIVE DOSE

EQUIVALENT 1.3E-04 rem

Page 86: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HOTSPOT 5 5 CENEIL_L PLL_EP,_ION_CLIDE : C0-60 [nhala_£on Class : Y

HalfLife '. 5 271 yearsSOURCE TERM . 2.8E-02 Ci

RELEASE F_CTION : 1.0E+OOFILTER EFFICIENCY: O.000000EFFECTIVE RELEASE HEIGHT : 1.00 m

WIND SPEED (h - 2 m) : 4.5 m/sSTABILITY CLASS : D DEPOSITION VELOCITY : 1.00 cm/sRECEPTOR HEIGHT : 1.0 m IN'VERSION LAYER HEIGHT : 5000.0 m

SAMPLE TIME . i0,000 rain_LXIML_ DOSE DISTANCE : < 0.i0 km MA/IMIIM CEDE : > 2.1E-03 reinD-OO3km

DEP - 3.6E+00 uCl/mA2CHI - 3 6E-04 (Ci-s)/m_350-'CRDOSE COMMITMENT:

LD_NC i.5E-Of reinEFFECTIVE DOSE

EQUIVALENT i.8E-02 rem

D- 0,30 km

DEP - 5.2E-02 uCi/m^2CHI - 5.2E-06 (Ci-s)/m^350-YR DOSE COMMITMENT:

LL_NC 2.3E-O3 reinEFFECTIVE DOSE

EQUIVALENT 2.6E-O4 rein

Page 87: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

HOTSPCT 5 5 CENERAL PLL,_IERADIO_,_jCLIDE: 1-125 Inhalation Class : D

HalfLife : 60. 182 daysSOLACE TERM : 2.5E-O2 ClRELEASE FRACTION : I.OE+OOFILTER EFFICIENCY: 0.000000 %

EFFECTIVE RELEASE HEIGHT : i.00 m

WIND SPEED (h - 2 m) : _.5 m/sSTABILITY CLASS : D DEPOSITION VELOCITY : io00 cm/sRECEPTOR HEIGHT : 1,0 m INVERSION LAYER HEIGHT : 5000.0 mSAMPLE TIME : lO.O00 min,M20(I.ML,_DOSE DISTANCE : < 0.I0 km MAXIML_M CEDE : > 3,0E-04 rein

D- 0,03 km

DEP - 3 2E+O0 uCi/m'2CHI - 3.2E-04 (Ci-s)/mA350-YR DOSE COMMITMENT:

THYROID 8.6E-O2 remEFFECTIVE DOSE

EQUIVALENT 2.6E-03 rem

D - 0.30 km

DEP - 4.7E-02 uCl/m^2CHI - 4.7E-06 (C[-s)/mA350-YR DOSE COMMITMENT:

THYROID 1.3E-O3 teaEFFECTIVE DOSE

EQUIVALENT 3.7E-05 rem

HOTSPOT 5.5 GENERAL PLUMERADIONUCLIDE : TH-232 Inhalation Class : YHalfLife : 1.4E+IO Years

SOURCE TERM : I.OE-O5 CiRELEASE FRACTION : I.OE+OOFILTER EFFICIENCY: 0.000000EFFECTIVE RELEASE HEIGHT : i.OO m

WIND SPEED (h - 2 m) : 4.5 m/sSTABILITY CLASS : D DEPOSITION VELOCITY : 1.00 cm/sRECEPTOR HEIGHT : 1.0 m INVERSION LAYER HEIGHT : 5000.0 mSAMPLE TIME : IO.OOO iinMAXIMUM DOSE DISTANCE : < 0.i0 km MAXIMUM CEDE : > 5.5E-03 tea

D-003 km

DEP - 1.3E-03 uCi/m^2CHI - 1.3E-07 (Ci-s)/m^350-YR DOSE COMMITMENT:

LUNG l.SE-O1 r_m

SURFACE BONE 8.1E-Ol remRED MARROW 6.4E-02 ruEFFECTIVE DOSE

£QUIV_ 4.7E-02 rem

D - 0.30 km

DEP = 1.9E-05 uCilm_2

Page 88: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

. .C.M.-M.,ME., •

LUNG 2 2E-03 reinSL_FACE BONE I 2E-O2 reinRED ._._J_ROW 9.3 E-04 reinEFFECTIVE DOSE

EQUIVALENT 6,8E-04 rem

HOTSPOT 5,5 GENERAL PLb_E_%DI©._L'CL!DE: U-238 Inhalation Class : YHalfLife : a 5E+O9 Years

SOLACE TERM : 4.0E-OA Ci_EL:.ASE FRACTION : I.OE+O0FILTER EFFICIENCY: 0,000000 %EFFECTIVE RELEASE HEIGHT : i.O0 m

WIND SPEED (h - 2 m) : 4.5 m/sSTABILITY/CLASS : D DEPOSITION VELOCITY : l.OO cm/sRECEPTOR HEIGHT ' 1.0 m IN'VERSION LAYER HEIGHT : 5OOO.0 mSAMPLE TIME : I0,000 minM_IHL_ DOSE DISTANCE : < 0,i0 km MAXIMITM CEDE : > 0.024 remD - 0.03 _cm

DEP - 5.IE-02 uCi/m'2CHI - 5,1E-06 (C£-s)/mA350-YR DOSE COMMITMENT:

L_G 1.7E+OO remEFFECTIVE DOSE

EQUIVALENT 2.0E-Of rem

D - 0.30 k=

DEP - 7.4E-0_ uCi/m^2

CHI - 7._E-08 (Ci-s)/'m_350-YR DOSE COMMITMENT:

LUNG 2.5E-02 rea

EFFECTIVE DOSE

EQUIVALENT 3.0E-03 tea

HOTSPOT 5.5 GENERAL PIJ/MERADIONUCLIDE : FU-259 Inhalation Class : YHalfLife : 2.4E+O4 Years

SOURCE TERM : 5.0E-05 Ci

RELEASE FRACTION : I.OE+OOFILTER EFFICIENCY: 0.0OO000 %EFFECTIVE RELEASE HEIGHT : i.OO mWIND SPEED (h - 2 m) : 4.5 m/sSTABILITY CLASS : D DEPOSITION VELOCITY : 1.00 cm/sRECEPTOR HEIGHT : 1.0 m INVERSION LAYER HEIGHT : 5000.0 mSAMPLE TIME : I0.O00 mln

MAXINIJM DOSE DISTANCE : < 0.i0 km MAXIMUM CEDE : > 8.2E-03 teaD - 0.03 lulDEP - 6._E-03 uCi/m^2CHI - 6._E-07 (Ci-s)/m'350-YR DOSECOMMITMENT:

Page 89: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

_aaa_aaa_aaaaaaaaaaaaaaLL':;C, 2 6E-,]I _emSTRFACE BONE ? 4E-Of rein

RED _dR.ROW 6 0E-O2 remLI','ER i 7E-Of re_EFFECTIVE DOSE

EQUIVALENT 7 0E-02 rem

D - 0,30 k.mDEP - 9.3E-O5 uCi/m_2

CHI - 9,3E-09 (Ct-s)/m*350-TR DOSE COM2dlTMENT:aaaaaaaaa_aaa__

LUnG 3 7E-03 remSL_FACE BONE i IE-O2 remRED .MARROW 8.7E-04 remLIVER 2.4E-O3 remEFFECTIVE DOSE

EQUIVALENT 1,0E-03 rem

HOTSPOT 5.5 GENERAL PLUMEP,AI)IONUCLIDE : H-3 Inhalation Class : D

HalfLife : 12.350 yearsSOURCE TERM : 3.0E+O4 CiRELEASE FRACTION : I.OE+OO

FILTER EFFICIENCY: 0.0OOOO0 %EFFECTIVE RELEASE HEIGHT : I.OO m

WIND SPEED (h - 2 m) : 4.5 m/sSTABILITY CLASS : D DEPOSITION VELOCITY : 1.00 cm/sRECEPTOR HEIGHT : 1.0 m INVERSION LAYER HEIGHT : 5000,0 mSAMPLE TIME : lO.OOO mln

MAXIML_ DOSE DISTANCE : < O.lO km MAXIMUM CEDE : > i._ remD - 0,03 k_

DEP - 3.BE+O6 uCi/m_2CHI - 3,8E+O2 (Ci-s)/m_350-YR DOSE COMMITMENT:

SKIN 1.2E+OI remTHYROID I 2E+Ol remLL_G 1 2E+OI remSb_FACE BONE i 2E+Ol r_m

LIVER 1 2E+OI teaSPLEEN i 2E+OI remGONADS 1 2E+OI ram

EFFECTIVE DOSE

EQUIVALENT 1.2E+OI tea

D - 0.30 km

DEP - 5.6E+O4 uCilm*2CHI - 5.6E+OO (Ci-s)Im^350-YR DOSE COMMITMENT:

SKIN l,BE-Ol ramTHYROID i BE-Of teaLUNG I BE-Of tea

Sb_FACE BONE 1.8E-OI tea

Page 90: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

L.',ER L _E-OI remSPLEEN 1.8E-O! remGONADS 1.8E-Of re..EFFECTIVE DOSEEQUIVALENT 1.8E'01 rein

HOTSPOT 5,5 GENERAL PLUMERADIONUCLIDE : C-14 Inhalation Class : DHalfLife : 5,7E+03 Years

SOURCE TERM : 1.4E+02 C[RELEASE FRACTION : 1.0E+O0FILTER EFFICIENCY: 0,000000 %

EFFECTIVE RELEASE HEIGHT : 1.00 mWIND SPEED (h - 2 m) : 4.5 m/sSTABILITY CLASS : D DEPOSITION VELOCITY : 1.00 cm/sRECEPTOR HEIGHT : i.O m INVERSION LAYER HEIGHT : 5000.0 mSAMPLE TIME : lO.OL sinMAXIMI/M DOSE DISTANCE : < 0.i0 km MAXIMUM CEDE : > 0.146 rem

D - 0.03 km

DEP - 1.8E+04 uCi/m_2CHI - I.SE+O0 (Ci-s)/m^350-YR DOSE COMMITMENT:a_dda_a_d_dddJ_JdAdTHYROID 1.3E+O0 remLUNG 1.3E+OO remSURFACE BONE 1.3E+O0 remRED MARROW 1.3E+O0 remGONADS 1.3E+O0 remEFFECTIVE DOSE

EQUIVALENT 1.3E+OO rem

D - 0.30 km

DEP - 2.6E+O2 uCl/m^2CHI - 2.6E-O2 (Cl-s)Im'350-YR DOSE COMMITMENT:

THYROID 1.8E-02 remLUNG 1.8E-O2 remSURFACE BONE 1.8E-02 rem

RED MARROW 1.8E-02 remGONADS 1.8E-02 rem

' EFFECTIVE DOSE

EQUIVALENT 1.8E-O2 rem

HOTSPOT 5.5 GENERAL PI//MERAEIONUCLIDE : CO-60 Inhalation Class : Y

HalfLife : 5.271 yearsSOURCE TERM : 1.9E+OI CiRELEASE I_CTION : 1.0E+OOFILTER F..FF'ICIKNCY: 0.000000 tEFFECTIVE REI.E_E HEIGHT : l.OO m

WIND SPEED (h - 2 m) : _.5 m/sSTABILITY CLASS ' D DEPOSITION VELOCITY : 1.00 ca/s

RECEPTOR HEIGHT • l.O m INVERSION LAYER HEIGHT • 5000.0 mSAMPLE TIME : I0.000 min

Page 91: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

_.-L.<:___ DCS- _:ST.-M'_CE < O LO k_ ,_M_,;._'M CEDE > " -, reinD - J ]3 k.mDEP- 2._,E*O3 uCi/m'2CHI - 2 _E-Ol (Cl-s)/m'350-k_RDOSE COMMITMENT:

LL_G i,IE+02 remEFFECTIVE DOSE

EQUIVALENT 1.2E+01 rein

D-O 30kin

DEP - 3 5E+OI uCi/m_2iHI - 3 5E.03 (Ci-s)/m'350-'fRDOSE CO_tMITMENT:

LL_G I.5E.OO rein

EFFECTIVE DOSE

EQUIVALENT 1.8E-01 rem

HOTSPOT 5.5 GENERAL PLUMERADIONUCLIDE : SR-90 Inhalation Class : Y

HalfLife : 29.120 yearsSOURCETERM : 2.2E+OO CiRELEASE FRACTION : 1.OE+OOFILTER EFFICIENCY: O.0OOOOOEFFECTIVE RELEASE HEIGHT : 1.00 m

WIND SPEED (h - 2 m) : 4.5 m/sSTABILITY CLASS : D DEPOSITION VELOCITY : 1.00 cm/sRECEPTOR HEIGHT • 1.0 m INVERSION LAYER HEIGEr : 5000.0 m

SAMPLE TIME : 10.000 mlnMAXIMUM DOSE DISTANCE : < 0.10 km MAXIMUM CEDE : > 1.4 rein

D - 0.03 kmDEP = 2.8E+O2 uCi/m_2CHI - 2.8E-02 (Ci-s)/m_350-YR DOSE COMMITMENT:

LVNG 1.OE+O2 reinEFFECTIVE DOSE

EQUIVALENT I.2E+O1 rem

D - 0,30 km

DEP - _.IE.O0 uCi/m_2CHI - 4.1E-04 (Ci-s)/m'350-YR DOSE COMMITMENT:

LUNG 1.5E+OO reinEFFECTIVE DOSE

EQUIVALENT I.8E-Oi _em

HOTSPOT 5.5 GENERAL PLUMERADIONUCLIDE : 1-125 Inhalation Class : DHalfLife : 60. 182 days

SOURCE TERM : 1.2E+O2 ClRELEASE FRACTION : I.OE+O0

Page 92: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

FILTER EFF[CIF_NCY 0 0OCO00 %EFFECTIVE RELEASE HEIGHT 1.00 mWIND SPEED (h- 2 m) , 4,5 m/sSTABILITY CLASS • D DEPOSITION VELOCITY ' 1.00 =m/sRECEPTOR HEIGHT • I,O m INVERSION LAYER HEIGHT : 5000,0 mSAMPLE TIME : i0.000 rainMAXIMI_ DOSE DISTANCE . < 0 I0 km MAXIMUM CEDE . > 1.4 reinD - 0.03 kmDEP - 1,5E+O4 uCi/m^2

CHI- I.SE+O0 (Ci-s)/m'350-YR DOSE COMMITMENT,

THYROID 4,i£+02 rem

EFFECTIVE DOSE

EQUIVALENT i,2E+OI rem

D- 0.30 kmDEP - 2.2E+02 uCi/m^2CHI = 2,2E-02 (Ci-s)/m^350-YR DOSE COMMITMENT :_aaAaAA_A_41_AAA4_JTHYROID 6,0E+O0 reinEFFECTIVE DOSE

EQUIVALEN'r 1. BE-Of rein

HOTSPOT 5.5 GENERAL PLUMERADIONUCLIDE : TH-232 Inhala=ion Class : YHalfLife : i.4E+I0 Years

SOURCE TERM : 1.8E-03 Ci

RELEASE FRACTZON : I.OE+O0FILTER EFFICIENCY: 0.OOOOOOEFFECTIVE RELEASE HEIGHT : I.O0 m

WIND SPEED (h - 2 ,,) : 4.5 ,,/sSTABILITY CLASS : D DEPOSITION VELOCITY : 1.00 c,,/s

RECEPTOR HEIGHT " 1.0 m INVERSION LAYER HEIGHT • 5000.0 ,,SAMPLE TIME : I0.0OO mJ.nMAXIMUM DOSE DISTANCE ' < O.lO km MAXIMUM CEDE : > 0.981 reinD - 0.03 km

DEP - 2.3E-01 uCi/i_2CHI - 2.3E-05 (Ci-s)/m'350-YR DOSE COMMITMENT:_4_j_tjAtjJ4t_JtLUNG 2.7E+O]. EemSURFACE BONE I.5E+O2 re,,

RED MARROW i.].E+O].rmiEFFECTIVE DOSE

EQUIVALENT 8.4E+OO rls

D - 0.30 kaDEP - 3.3E-03 uCi/aA2CHI - 3.3E-07 (Ct-s)/m_'350-YR DOSE OI3_I_:

LUNG 3.9E-01 _,mSURFACE BONE 2.1E+OO re,,

RED MARROW l.7E-Of re,,

Page 93: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

z-FTE2-.:.= 2,;_ gEC,U:','ALENT _ 2E-¢I rein

HOTSPOT 5,5 GENERAL PLUMEKADIONIJCLIDE : U-238 Inhala¢ion Class : Y

HalfLife : 4.5E+09 YearsSOLACE TERM : 2.4E-02 C[RELEASE FRACTION : 1,0E+00

FILTER EFFICIENCY: 0,000000 %EFFECTIVE RELEASE HEIGHT 1.00 m_'IND SPEED (h - 2 m) 4.5 m/sSTABILITf CLASS D DEPOSITION VELOCITY : 1.00 cm/sRECEPTOR HEIGHT !.0 m INVERSION LAYER HEIGHT • 5000.0 m

SAMPLE TIME I0.000 rain,MA.XI._UMDOSE DISTANCE < 0,I0 km MAXIMUM CEDE : > 1.4 rein

O - 0.03 kmDEP - 3.1E+00 uCi/m'2

CHI - 3.IE-04 (Ci-s)/m_350-YR DOSE COMMITMENT:

LUNG I.OE.O2 reinEFFECTIVE DOSE

EQUIVALENT i,2E+01 rem

D - 0.30 kmDEP - 4.5E-02 uCi/m'2

CHI - 4.5E-06 (Cl-s)/m_350-YR DOSE COMMITMENT:_a_a_4_AAA_daJ_dJ_dd_J

LUNG l.SE+O0 remEFFECTIVE DOSE

EQUIVALENT 1.8E-Of rem

HOTSPOT 5,5 GENERAL PLUMERADIONUCLIDE : PU-239 Inhalation Class : YHalfLife : 2.4E+04 Years

SOURCE TERM : 5.6E-03 CiRELEASE FRACTION : I.OE+O0FILTER EFFICIENCY: O.0OOOOO qEFFECTIVE RELEASE HEIGHT ' 1.00

WIND SPEED (h - 2 m) : 4.5 m/sSTABILITY CLASS ' O DEPOSITION VELOCITY • 1.00 cm/sRECEPTOR HEIGHT ' 1.0 a INVERSION LAYER HEIGHT : 5000.0 mSAMPLE TIME : I0.0OO min

MAXIMUM DOSE DISTANCE • < O.10 km MAXIMUM CEDE : > 0,916 teaD - 0.03 MsDEP - 7.2E-O1 uCi/m'2CHI - 7.2E-O5 (Ci-s)/m'350-YR DOSE COMMITMENT:_dddWkd44jjdJddJ4dddJdddLUNG 2.9E+O1 teaSURFACE BONE 8.3E+O1 rem

RED MARROW 6.7E+00 teaLIVER 1.9E+OI remEFFECTIVE DOSE

q

Page 94: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

D - 0 30 kmDEP - i OE-02 uCi/m'2CHI - I OE-06 (C_-s)/m']

50-YR DOSE COMMITMENT:

LUNG 4.2E-O1 reinSURFACE BONE [.2E.OO remRED MARROW 9.7E-O2 rein

LIVER 2.7E-OI reinEFFE':TIVE DOSE

EQL'I'/ALENT I IE-OI rem

Page 95: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

APPENDIX B

CHEMICAL DATA

,J31548O41atD.v3-1_2.337.i B ,Vo_ember 3!J. 19_3

Page 96: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

",...EM_CA,. ZA-_

Chemical __f._ '"Cv _G- 3___ .-=C ' _'= "

:Acetaiaenycle" _._QUbCl 9 00! !_0 ....................... Z"___ _ '_.-::

Acetone .,clu_a ,35 .........._.3_8C. ..;',_.::

Acetonecyanonyarln'" ,..clued _ 30, '2 ......... I

Acetone tl_osem_ca_az_ae'" Sol_ct 0 00t , OC0

Acetomtr=le'" ;.._auJa 3 001 6" '_' _,:

Acroimn' L._qula O 00_ " ; ! 9 69 ....." _

AcrvlamIcle °" SoI_ 0 001 O03 '_ 0 __.

AcrvlOr'ltnie" L.IQU_ 0 001 4 3 _'0 .... 5

Ac'vw_cntor_ae'" L_Qu_I 05 0 9 .....

Aa_13omtr_le'" LJqu_l 0.00_ _" .....................

AlaJcart_'" Sol_ 0,001' 0 3 .....

Alclr_n'" Sol_l 0.001 0.25 _0 ' "_C

Atlyl aicolnol'" LIclu_ 0 001 48 36 _ 5 363Allyl clnlorH3e' Liquid 0,001 3 6 _54

All__.yylamme" Liquid 0.5 3 2Alkylalumlnums" LJclju_ 0,001 2

Alummun phosphide'" Solid 0.001 20

Am_noptenn'" Solid 0.001 25

Amrton'" Liquid 0.001 3.3

Aragon Oxalate" Solid 0.001 3

Ammoma, annydrous' Qas 1 _'10 35 24 355

Ammoma solutions (>44% W1)" Liquid 0.5 17 35 24 355

Ammomum perchlorate' Solid 0,001

Ammomum perrnan_anate" Solid 0,001 5

Amphetamine'" L_cluid 0.001 20

Amline'" Llqu_ 0.001 7.6 38 387

Amline. 2,4.6-tnmethyl'* L_quid 0,001 2.9

Antimony Solid 0.001 0.5 9C

Ant=monypentafluoride'" L_lUid 0.001 0,5 2,7 80

Antlmycm A'" L=quid 0.001 1,8

ANTU*" Solid 0,001 0.3 10 _00

Aroclor 1254 (PCB) L_luid 0.001 0.5 5

Arsemc Solid 0.001 0.01 0,002 _00Solid 0001' 8

, Ar.__semcpentoxiOe'" , .Arsenous oxl¢le'" Solid 0.001, 1.4

Arsenous tnclltonde'" Solid , 0.001 10

Arsme" Gas 1 1.9 _,9 4

Aztnpl_os*ettlyt'" Sotid , 0.001' 3.9

Azmphos-methyl'" Solid 0.001 2 0.7 5Barium Solid 0.001 0.5 __00

Benzene L_quid 0,001 32 28 9_50

,_,=nzenlu_tine,3..(trfft.uomrn_thyl)'" Liquid 0.001 4.4

,3=nzene, 1.(¢lltorome_yt)-4-mtro'" Solid 0.001 28

Benz_- -_'__."son¢_--"' Solid 0,001 0.27

' = ContainKl in Appendix Ato 29 CFR 1910.119, "" • ConteineO in Appendix Ato 40 CFR 355 Page

Page 97: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

-_EMICA. ]A'._

I st.ieI=.lotI_,,_3,i_,_3,i,_,_31_-"3,,-_---4.5.d_nloro-2._trftuoromet_ yt)'" Soud 000 _ ' 3 ................

Benzotncnlor_ae'" '.',Clu_O 3 3C! 3 _

BenZyt chloride" _._auid 0 00! 5 2 S 2 =.2

Benzyl cyanide" L,qu_o 3 001 4 3 __

Beryllium Solid ,3 00! 3 002 ' '

BIS 'chlorometnyl) ether BCME" Liquid 0.001 0.0047 0 25

3_s,cniorometl_yt) I_etone'" Solid 0.001 066 02 ?

__.tcscar_ate'" Solid ,3 001 20

Boron tr_cnlor_e" Gas I _,0

Boron trffluonde' Gas ! 28 ..... 282

Bromine' L_quid 0.5' 066 6 5 2 56 4 ..

Brominecnloncle" _....

l_entafluoride' L_qu_ 0.5 O.72

Bromine tnfluoride" Liquid 0.5 24 ._

Bromadlolone" Solid 0.001

Bromoform Liquid 0.001 5.2

hydroperoxide";rt_nzoate"

Cadre,urn Solid 0.001 0.005 50

Ca:lm_um ox=de" Solid 0.001 0005 4 S0

Cadmium chloride Solid 0.001 0.002 0.01

Cadmium stearate'" Solid 0,001 1 3

Calc=um arsenate" Solid 0.001 I0

Carr_hechtor'" Solid 0.0011 20

Canthandin'" Solid 0.001 4.3

;arb_A_cholchlortde'" Solid 0.001 _ 15

Cart_furan'" Solid 0.001 0.1 0.43

Carl_ondisuffide'" L_uid 0.001 31 160 15_0

;arbon tetrachlorida L_uid 0.001, 12.6 281

_nenothmn'" Liquid 0.001 6.8

Chloraane'" L_quid 0.001 0.5 50 500

Chlorfenvlnfos'" L_quid 0.001 10

Chlonne' Gas I 59 7.3 2.9 885Qu 1 0.28 0.83 28Chlonne CliOXKNI" , , ,

r_L_.,oride" Gas 1 i 2.5i

' I! 0.38 77Chlorine trfftuottde" ' Qu ¢

;hloroacetaJdehycle L_uid 0.001 69 326

L_uid ', 0.001 7

umlchlo.r___'" Solid : 0.001 7

Chtoro_*_"__t¢__'__'" Solid 0.001 1.8

Chlorc-_mzene L_uid 0.001 46 __232

Chior_,.j,,&__th_.=_._rainurn" Liquid : 0.001 2-Chloto-2, 4,-dlnitro_nzene" Solid 0.001

;hloroe(t_mol" L_uid 0.001 3.3

• = Contained in Appendix A to 29 CFR 1910.119, "" • Contained in Ar_ndlx A to 40 CFR 355 Page 2

Page 98: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

IlluIILIL--Ll111m_IIm_Illll:IIlll_

Page 99: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,
Page 100: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

I _h szcal ¢letease _'LV E_PG-3' _CC 5'-. _ :.-Chemical Y .... ___............._.....

Chioroethyl cmorotormate'" L;ClU=a 0001 20 . ,

Chloroform'" _:qu_cl 0 001 9,"8 ._E" i........... !

Chloromethane Gas _ : 030 !

Chloromemyl ett_er'" ._ClU_a _ 30! 0 005 0 25 " " 1

Chlorometnyl methyl ether" _.,qula 9.00! _ 8 3 35

ChloroprlacJone'" SohQ 9001 1

ChloroDIcrm' L_qulCl 0.001 0.67 20.5 _." 3

ChioroDicr!n ,%Metrlyl l_romtae" L_clu_a 0.001 .......

C_ oroo_crm& Metlnylchloride' L_quK:l 0.001

Cnloroxuron ,o Sol_ 0001 10

Chlorothlopnos'" L_qu_ 0.001' 7 8

Chromic chloncle" Soli(:l 0.001 0.05

Chromium Sol_ 0.001 0.5

Coloal_ Soli_ 0.001 0.05 2 20

,oloa_ caroonyl'" Solid 0.001 O.1 0.27

Colchlcme'" SoliCI 0.001 09

_l_er Solid 0.001 1

Coumapnos'" Solid 0.001 3

Coumatetralyl'" Solid 0.001 165

Cresol. o -'° Solid 0.001 22 110 1125

CrlmlOine'" Solid 0.001 1.2

CrotonalOenyOe,o Liquid 0.001 _ 145.5 40 1164

Cumene nyclroperoxlae" Liquid 0,001,

ancle Gas 1: 5 50

Cyanogen" L_uid 0.001, 21en brorr_:le" Solid 0.001' 4.4

Cyanogen cl_loncle" Gas 1: 0,75

Cyanunc fluoncle" Lk:lUid 0.001! 2.5

en ioOiOe"° Solid 0.001 180

LK:lUid 0.001 25

anunc fluonOe'* liquid 0.001 0.17

Cyclonexane Liquid . 0.001 100 35000Solid 0.001 2,tlexi.n_'l.-m-°°

• damme" Liqu¢l 0.01 41 160

Liquid 0.5 1720 110Solid 0.001 0.25 10 0.75 _00

Dec_*_orane*" b

Demeton'" i Liquid 0.001 0.11 2 20Derneton-S-me_yl" L_uid 0.001 5

,rox_@_. Liquid , 0.001, _ ,

Diallfor" Solid 0.001, 5

Oi_om_ime" C-_ t, 0.34 35I

Solid 0.001_ 5

,[:)_;_ltte • Gas _ 11, 5 46[e

• = Contained in _no'tx A to 29 CFR 1910.119, "" • Contained in Appendix A to 40 CFR 355 Page 3

Page 101: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

J State J =_¢tor J ,_c_.m3! J r_.m3_.|,_'_,_3 J m_-3 !-_g'-i

]_ChlOrOAcetylene" ._¢lu_a O301 : 3_, ....

.2-Dlcnloro0enzene _ Qulcl 3 0C_ 301 _5 .... ;."1._-O,cnloroemane L,Qu,a .300 _, 400 'C_: '_ .__" ,

1 2-Olcnloroethane ,._Clu_Cl 0 00! 4 9 _-_-""]

! ._.OE:nloroethylene C_qu_d 0 001 20 "9 i_.2-D_cmoroemylene LJqu_ O001 790 •5' 2: 1

' 2-D_chtoroDrooane LJClUEI 0001 347 508 ._4OC J

J3,s ' .]-D_cniorooropene L_qu_a 0.001 4 5

T,ans ,.3-OicnlorooroDene k,qu_d 0.001 4 5 1

/

D_cnloroethyi ether LIQUEI 0 001 2g _50 58 ' .t85

D,cntoromethylDhenylsdane'" L_qu_l 0 001' 20

Oichiorosllane'

D,cniorvos uqu,:l 0 001 0.9 20 200

O,crotoonos Liqu_l 0.001 0.25 0.9

Dlepoxyt:}utane'" Liquid 0.001 3.5

O_ethylchlorot_hosphate" Llqu_l 0.001 @

D_ethyl<:aroamazme c_trate'" Solid 0.001 3

Oiethylzmc" LiQuid 0.001

Digitoxm'" Solid 0.001 O.18

Diglyclaylether" Liquid 0.001 0.53 45 135.3

},goxm'" Solid 0.001 0.2

:)iisopropylperoxydicart)onate*

Diketene Liquid 0.001 175

Ddaluroyt perox_le"

Dimefox'" L,,_uid 0.001 I

Oimethoate -o Solid 0.001 3L'

Oimethytamme, anhyclrous* C_ 1. g.2 920 27.6 3740

Dimethyldichlorosdane" L=quid 0.001'

Dimethythyclraz_ne, 1,1 -" L_uid 0.01 ' 1.2 12 125

Oimethyl phosphorocl_londothmate'" Liquid 0.001 3.2

Dimethyl suffate'" Liquid 0.001 0.52 5 52.4

D_methylaichlorosdane'" LK:_uK:I 0.01 3

Oimethyt-p-pheny_en_eeJ_mlne" Solid 0.001i O.13)imetilian'" Solid 0.001' 25

2,4-Oimtrolmiltne" Solid 0.0011Solid _ 0,001 0.2 0.5 5Dimtrocre$ol"°

Dinoset)'" Solid I 0.001l 4.5Dinotert)'" Solid 0,001_ 25

Dioxathlon'" L._uid ! 0.001! 0,2 3.4

DIp_.__-inone'" Solid I 0,001 i 0.g

O!_r_. _'_._, octlrr_thyl" L_luid • 0.001', 0.8

Dt@uloton" Liquid 0,001 O.1 2

)tth.i_=_nino '____'" Solid 0.0011 20

D_Lo__uret'" Solid 0.001' 5

• • Contained in Appendix A to 29 CFR 19!0,119, '"• Contained in Ap_ncltx A to 40 CFR 355 Page 4

Page 102: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

] "EM _CAL. - A-._

I stateI_'a_o_I_,_,3_t_,_3_l_ _'-I_,-'-,_-:-Emetine. ::]lhyQrocrllorlQe'" SOitQ 0.00 _ " _' ..Enaosulfan'" So,ct C00' 0._ 0 8

Enctothton'" Sol)a 0 001 _"

Eflclnn'" $o1_cl ,S001 .%I 20

,Epachloronyann'" _._ClUla 0.001 _'6 38 -]6_2.EPN" Solud 0001 0 5 5 5,3

Ergocalcflerol'" Sohcl 0 001 40 ..r" ,,.,,__,g,.,am_ne tartrate'" Sot_l 0001 ;C ...............

Et'_anesu,'fony_cnlonce. 2-ChlOrO" L=ClU0d 0.001 25

Ethanol _ 2-ChCr,oro-. acetate" L,qu0d 0,001 _

EthlOn'" Llquld 0 001 ' 04 ' 3 .........

Etnoproonos" LJqu_l 0.00t 26

Ethylbenzene L_Qu_ 0.001 4.34 543 _]827

Ethylb_s (2-cmoroethyl) amine'" L_qu_ 0001 _'5

Ethyl ether Ciqu_ 0.001 1210 '520

Ethylene fluorohyonn'" L_QU_ 0.001 0.07

Ethyl mtrate" Liqul(:l 0.001

Ethylamme" Gas 1 18 7840

Ethylene dlcnlonde Liquid 0.001. 40 8 4110

Ethylene fluorohyclnn" Liquid 0.001

Ethylene oxide" Gas 0.01 1.8 140 1464

Ethylenediamme" Liquid 0.001 25 490 5000

Ethylene0m0ne" Liquid 0.001 0.88 4 179

Ethyltmocyanate'" Liquid 0.001. 0.2

Fenamnpl_os'" Solid 0.001 0.1 0.9Femtrothlon'" Liquid 0.001 3.8

Fensulfotmon'" Liquid 0.001 0.1 2

Fluenetll'" Solid 0.001 6

Ftuonne" Gas 1 3g 3.1 _42.8

Fluoroacetarncle'" Solid 0.001 5.8

Fluoroacetlc acid" Solid 0.001 0.47

Fluoroacetyl chloride" Liquid 0.001 10Fluorouracfl'" Solid 0.001 19

• Fonofoso, Liquid 0.001 0.1 1.3

FormalOehyOo" G_ 1 0,3 30,67 t 2 36,0.001 0.3 12 2.5 36.7

Forma__ld__nyOe" Liquid,

Formm_._Hehyc_c¥1nohytlr_'" Liquid i 0,001 6

Formetanate hyOrocfllortOe'" Solid _ 0.001 18

Form¢ acid Liquid 0.001 9,4 19 57 3

Formotb_on.o L_quid 0,001 0,27

_orm_=_lnlte .o Solid 0.001 7.2Fosthietan'" Liquid 0.001 4.7

Froon 113 Liquid 0.001 _ 7600 9500 35055

FL_m__._r_,a_ole.o Solid 0.001 3.3 ,

• • Contained in Appendtx Ate 29 CFR 1910.119, "" • ContainKI in Ap_r<llx Ate 40 CFR 355 Page 5

Page 103: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Furan' _._qula 0 001 ' _.

Galhum tr_chloncle'" SoltO 0 _C_ 32

HexachlorolautaOtene L._qu_d 0 001 "_2! 3_ 5........ 4

Hexachlorocyclopentad_ene'" ,._qu_d 0 001 0 I _ 0 2

Hexamethylenedlamme. N.N-d_butyl°" L_qu_d 0001 2.2

Hexacnloronapthalene Sol_d 0 001 0 2 0 2.

_exafluoracetone" Gas 1 0.68 ...

_yOrocnlor_c aclcl. AnnycJrous" LlClUld 0001 _ 5 ' 52

-yOrofluonc ac_cl.Anhydrous' Liquid 0.001 2.5 5 _._¢

Hyarazlne'" Llqulcl 0001 013 10 _ '_6 4

_ydrocyamc acud'" Gas 1' 5 5

Hydrogen t3romK::le" Gas 1 _0 ......i_-8

Hydrogen cnlor_le' Gas 1 150 t 5 ' 52

Hydrogen cyan_le. Anhydrous" L_quK:I 0.5 5 56

Hydrogen fluoride" Gas 1 43.3 1 6 24 g

Hydrogen peroxlcle (Conc • 52%)" LJquK:l O001 1,4 10 105 8

Hydrogen setemde" Gas 1 0.16 066 6 7

Hyar?_en sulfide" Gas 1 14 42 21 426Hydroqu=none'" Solid 0,001 2 20

Hydroxylamme" Solid 0.001

Iron pentacart)onyl" Liquid 0,001 0.23 08 0.45

Isobenzan'" Solid 0OO1 1

IsoOutyl n_nle'" Liquid 0,001 25

Isocyamc acsd, 3,4<lichtorphenyl ester" Solid 0,001 14 ,

Isoann'" Solid 0,001 7

Isofluorpl_ate'" Lcluid 0,001 3,6

Isophorone diisocyanate'" Solid 0,001 0.045 123

Isopropyt chloroformate'" L=quid 0.001 100

Isoproplymethylpyrazolyl climothylcart_mate'" LK_uid 0.001 5.6

Isopropylam0ne" Liquid 0,001 12 24 9840

Ketene" , Gas 1 0t86 2,6Laclon_rile "o Liquid 0,001 18

Lead Solid 0,001 0.05

Leptopt_os'" Solid 0.001 30

Lewisite'" _ Liquid ' 0.001, 4.7Lmaane'" I Solid i 0,001 0.5 100 1000

Lithium h_lride" Solid _i 0.0011 0.025 5 55Malonitrile"o Solid " 0,001 19

t

Mar_anese Solid 0,001, 1 3

Minn.=nose, trir.,4ubonytmothycyOopontatllonyr" Liquid , 0,001! 1 0.6 3

Mochlorothlmtne" Liquid 0.001_ 29

Mof_omtolan,,, L_qu¢l 0.001 gMocurtc ac_tlto" Solid 0,001 i 0.01 24

Momurt¢ ¢tflondo" Solid 0,001 30

• • Contained in/_ndix Ate 29 CFR 1910.119, "" = ContiinKI in Appendix Ate 40 CFR 355 Page 6

Page 104: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

- _EMICA,. -A-:_ 11 State ] =actor I 'r'_,m3_ I ,'_.m3, I rag' - . , -':' ; , --Mercunc oxide'" Solid ]001 '6

Mercurous mtrate Solid ,3001 0 05 3 '

Mercury. alkyl com0ounas Soi_a 000! 001 3C _ :3

Mercury.oxycyanlde Solid 0.001 0 01

Mercury. val:)or L,clu_d ,3.01 Z_ ,

Methacrolem chacetate'" L_clu_ 0.001 44

Mett_acryuc annydnae •" L_Qulcl 0.001 45

Me!_ac,wlalde_yde" _Clu_l 3 001 358

Metracry_on_nie '• LJClUid 0.001 3 j

Methacryloyt chlonae" L_Clu_l 0.001 36 . 1 '":Met_acryloyloxyethyl _socyanate" L_ClUEl 0.001' 0.27 ....

onos'" Solid 0.001 7 5

Memanesulfonyl fluoride'" LJClU_I 0.001 _4

Methyl acrylon_nle" OClUid 0.001 2.7

Methanol 0ClUid 0.001 262 328 33250

Methldath_on•" Solid 0.001 20

Methnocaro'" Solid 0.001 15 __

Methomyl'" Solid 0.001 2.5 10

Methoxyethylmercunc acetate" Solid 0.001 25

Methyl 2-ct_loroacrylate •" Liquid 0.001 5

Methylamme. anhydrous • Gas 1 6.4 19 129

Methyl bromide" Gas 1 19 780 7900

Methyl chloride" Gas 1 103 207 21000

Methyl chloroformate" l.Jguid 0.001 1.8

Methyl disufficWD Liquid 0.001 0.1

Methyl tsothlocyanate'" Solid 0.001

Methyl ethyl Ketone Lw:lUid 0.001 590, 885 9000

Methyl ethyl Ketone peroxide" L_:lUid 0.001 _ 5

Methyl fluoracetate" I.,_uid . 0.001

Methyl fluorosulfate"

Methyl hyclrazine* Liquid 0.001 0.38 0.94 96

Methyl ioclido" Liquid ' 0.001' 10

Methyl isocyanate" LJ_uid 0.5 0.047 4.7 47 4

, Methyl mem__T_aUl" Qu 1 0.98 196 79 800on" Lw:lUid 0.001 11

Methyl phoMW_oni¢___lof_lo" Solid : 0.001 1.4

thiocyanlle'* Liquid 0.001 85

vinyt ketone* L.Jquid ' 0.01, 0.07

Methylene ¢t'tlo.ftt"___ Liquid i 0.5i 174 3530 17650

Liquid 0.001 1.8

_'rwOe'" Solid 0.001' 20

;_-_ne'" Liquid 0.001 _ 1.8

Meto_.did.- Solid 0.001' 4.8

L_ClUid 0.001 4,

• • Contained in Appendix A to 29 CFR 1910.119 "" • Containe(I in Apoontlix Ato 40 CFR 355 Page 7

Page 105: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

Chem,ca, T t['i'#hys'caljRel°ase[ "LV ,l ERPG.31 .CC -Jr- S--. i - _

_exacart:)ate'* SoHcl O _01 14

Mflomycln C'" Solid O001 23 ....... !

,l:x;tenum SoHcl 0.00! 10

Monocrolopnos'" Solid 0 001 025 0 63

;tmol'" Solid 0.001 _7

Mustarcl Gas" L_ClUid 0.001

3P,thalene Solid 0 001 50 '5 250C

:_et Solid 0001 50

N_cKelcart:)onyl" LiClU_ 0.5 0. ! 2 035 4g "

N,cotlne'" LiquEI 0 001 0.5 35 35

Nicotine sulfate" Solid 0.001' 9 .j

ac_ct" bquid 0.001 5.2 26 I 0 262

N_tnc oxide' Gas 1 30 ,25

niline" Solicl 0.001 3 300

ene'" LJqu_ 0.001 5 100 '024

Nitrocyclolnexane*" Liquid 0.001 15itl_ane' LiClu_l 0.001 250 2540

Nitrogen dioxide" Liq/Gas 1 5.6 9,4 9.4 95.5

en ox_aes(NO,N204, N203)" Gas I 30 125

en tnfluori(:le" Gas 1 29 29 5900

Liquid 0.001 36 8510

_litrosoOtmett_ylamlne,• Liquid 0.001 19Nor'oorm_e'" Solid 0.001 3.8

Oleum" L_uid 0.001 1 8 3 80

Osm=umtetroxide • Soikd 0.001, 1.6 0.1 0.0047 1

un'" Solicl 0.001 8.3

Oxamyl'" Solk:l 0,001 1,7

3,3-his (cl_loromethyl)" LJquid 0.001 2

lfoton ,• Liquid 0.001 3,5

en cJ_ ie" Gas I, 0.11 I.!2

Ozone" Gas i I' 0.22 2 0.6 20

P-clichlorot)enzene Solid 0.001 431 661 6000

uat'" Solid 0.001 0.1 0.15 15

. Paracluat me_osulf=_!_='" Sotlcl 0.001! 0.5 =

Paratttlon"' LJquicl 0.001 i 0.1 2 20I

rr_hyf" ' Solid ' 0.001 = 0.34Green" Solk:l ! 0.001, ' 22

re" Liquid 0,011 0.013 , 0.8 0,039 7 9Solid 0.001i 2

Per=_,__=!¢L_'__" Liquid 0.001 4.5

Per_lon¢ =__ Liquid 0,001

yl __=n" Liquid 0.001 0.76 7,6 ,"," 3Gas 1 13 25 1582

Pi_fluoroL_,JoL__jtytene Gas 1 2.46

•. Containlv:l in Al:_:)endtxAto 29 CFR 1910.119, "" • Continecl in Ap_ndtx Ato 40 CFR 355 Page 8

Page 106: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

:_-EM_CA,...SA-_

I =hys,ca,Iae,easei"Lv I E.=_G-31 _SC ; S_'=____j__&_.-i

Peroxyacetlc aclO" _._¢lulCl 0 001 4 5 i. tPhenol" Solid 0.001 19 39 -_G:

Phenol. 2.2'-tmolO_s(4-cnloro-6-memyl)'" SoNd 0.001 _ 3 i

Phenol. 3- (1 .methylettwI).. memylcartoamate'" Sollct 0.001 ,6 ..... I

Phenoxarsme. I O.lO'-oxych'" Solid 0.001 14 1Phenyl cl_chloroars0ne'" L_quid 0.001 4

_henylhydra.z,ne nydrochlorlcle'" Solid 0.001 250

=_e,',y_m.erc:.,rv acetate" Sol_l 0.001 22

Is,_rtrane'" Sol_ 0.001 1

ttmourma'" Solid 0.001 3

Phorate'" Liquid 0.001' 0.05 0.1 0 2

Phosacetlm'" Solid 0.001 3 7

Phostolan'* Solid 0.00t 9

Phosgene" Gas 1 0.4 4 0 8 9 2Phosmet" Solid 0.001 0.54

Phospnamidon'" Liquid 0.001 0.3

Phospmne" Gas 1 28 1.4 282

=nor_ ac<l Liquid 0.001 1 3 10000

Phosphorus'" Sollcl 0.5 0.1 3

oxychlorJcle" Liquicl 0.001i 0.63 3

pentacmor_le'" Solicl ', 0.001 _ 0.85 20 200

Phospttorus pentox_e °" Solid i 0.001! 100 0.60.01; 1.1 28 2.8 285.5PhosDhorustrcrllonOe" L_uid '

chloricle" Liqu¢l I 0.001 0.6

_ne'" Sollcl 4 0.001 4.5

Physostigrrwne,salicylate (1 :I )'" Solid 0.001 2.5:rotoxm'" Solid 0.001 15

le'" L¢lu¢l 0.001' 22

_latinum (sol. _%___.) Solid 0.001Platinum metal So1¢t 0.001,

Potassium arsenite °" Soltcl : 0.001_ 14

Potassium cyan_le'" ' Soti0 i 0.001 5

Pot=__lum silver cylniOe*" ' Solid I 0.001 , 20Sotld i 0.001' 16. i

txo.m,.,.,.,.,.,.,.,.,___• ', uqu¢t o.ooll 0.03

40.1_.._.0111.0_11_ L_k_ i 0.0011 1.5 1.5

_on_n_,- i L<Iu_ i o.oot', 3.73<_o'" _lu< i o.ooll 9

0.0011 5.64,-Imlno'" Solld ,

lorofon1%.__._ LK_KI i 0.001t 10

n_ate" Liquid , 0.001 _ 107 172 8740

fie'" Liquid ' 0.001', 4.7 120 1185

oxide" L,,:,'__.,O_i 0.51 48 480 4840

Proth-:=_.-:e'" Solid 0.001 _ 1.7

• • Contained in Alx)endtx A to 29 CFR 1910.119, "" • ContainKI in Appendix Ato 40 CFR 355 Page 9

Page 107: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

r EMIt_, A,.. - A -A

Pyrene'* Sotna 3 30_ I " .. _

Pyndme. 2-methyl.5-wnyl'" :.._c;u_a 3 00! ' 9 ......

Pyndtne, 4-am_no'" Sond 3 ,,301 20 ......

Pyrx:tme.4-mtro, 1.oxtde" Sotta 0001 80 ..............

Pynmm_l'" Soha 0 001 6 2 ,

Salcomme'" SolK:I 0 001 39

Sar,n' LiClUld 0.001 0 05

Se,emous aoa'" SoI_ 0.001 250

Se_en,um r_exafluonde" Gas 1 0 16 40.....

Selemum oxycnlonde'" LlClu_ 0001 '0 ................

Semtcaroazlcle hydrocl_loncle'" Sol_ 0.001 ' _O0

S_lane _4.ammooutyt/daethoxymemyt'" LJClu_Cl 0.001 45

Sdver. metal Solid 0.001 0.1

Sdver. soluole compounds Solid 0.001 0.01

Sodium arsenate" Solid 0.001 130

Soa0um arsemte'" Solid 0001 10

Sodium azide'" Solid 0001 20 029

Sochumcacodytates'" SolK:I 0.001 4

Sod0umcyanide" Solid 0.001 5Sodtum fluoroaclate'" Solid 0.001 0.05 0.5 0.15 5

Sodium hydroxude MquK:I 0.001 2 250

Sodium selenate'" Solid 0,001 I 6

Sodium selemte'" Solid 0.001 2,3

Sodium tellurite" Solid 0,001 20

Stannane, acotoxytnp_enyl" Solid 0.001 20Stibme" Gas 1 0.51 207

rene L_ui¢l 0.001 215 425 21650

Strycnmne" Solid 0.001 0.15 0.3 3

Strycnmne sulfate" Solid 0,001 5

Sulfotep ,o Liqui¢:l 0.001 0.2 3.5

Sulfoxcle, 3-ct_loropropyl octyt" L=qu¢l 0,001 8Sulfur dioxcle" Gas t 39 26 13 266

Sulfur p4ntafluorcle" Gas I' O.I !0.6Sulfur tetrafluorlOe* Gas 1 9.2 0.44

Suffur triox.'_,de" Solid 0.5; 3

Sulfunc acl¢l'" Liqu¢l 0,001! 1 30 8 3 80

Suffunc _hy_lnae" Sol¢l _ o.oo1_

Tal_Jn'" Liquid ' 0.001 ! O.15

num" Solk:l 0.001: 0,1 20

Tellunum l_exzdluori4l" Gas 1 0.2 1 I 0

I, 1,2,2.Tetr|chlorootllmle liquid 0.001 7 _050

Tarlctdoroothytene (Porcl_loroemylene) LaquK:l 0,001 170 '.357 3445

TEPP (tetmothyt OIt_.'_=_yrofmospl_ato)"" Li_uiO 0.001 0,047 1 I 0Twt_fo='" Lclu¢l 0.001 1

• • Contained in Appendix Aid 29 CFR 1910,119, "* • Contained in ApCen(:ltxAto 40 CFR 355 Page 10

Page 108: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

lo Y,,ca,Chemical

I I i !Tetraemyi leaO'" LiClUia 0,001 0,1 4 _"_ i

Tetraethyltln" LJ(:luid 0.001 " i

Tetrafluorethylene" Gas 1 ........ ii i

Tetrattuorohyarazlne" Gas ' 29 45 .

Tetramethyl leacl" Liquid 0.001 0 45 4 J.C !tTetran_romethane'" L._auid 0.001 8 -t

i

Thallium Isol. clods.} Solid 0.001 _-"_,aihc ox_Oe Sold O001 0. I 2 1"haflous cart_onate'" Sol_l 0.001 0.1 2

Ious ct_loride'" Solid O001 0.1 2

ilous Malonate'" Solid 0.001' 2

Thallous sulfate" Solid 0.001 0.1 2

ilium sulfate" Solid 0,001 0,1 2

Th_ocarOaz_le"o Solid 0.001 100

Th_ofanox'" Solid 0.001 8.5

Th_onazln'" Liquid 0.001 3.5

Thionyl cl_loncle" Liqu¢l 0.001 ' 4.9

Liquid 0.001 1.4

Th,osemcamaziOe'" Solid 0.001. g.2

Thiourea, (2-chlorof_enyl)'" Solid 0.001 4.6

Thlourea, (2-metl_ylphenyl)" Solid 0.001 50lm tetrachloride'" _lU_ , 0.00t: 0.05 1

iene LKluid : 0.001, 377 565 76600.001' 0.036 7 0.14 ! 72.4Toluene 2.4-aiisocyanie'" LK_uid ,,

2,6-d!locyinlll'" LJclJUid 0.001= 0.9

4-dichloro__Jtane'" Liquid , 0.001 _,r4

Solid 0.001 ', I 0

Triazofos'" L,_lUid 0.001 2.8

#1cl_lor_e'" Lcluid 0.001 4.5

Tr_ct_loro(cnloromethyt) sllllne" I._uid 0.001 0.3

Trcnloro (d_hlorol_inyt) silne" LKtuid., 0.001 8

Trichloroelttylllitlne*" l.._id , 0.001 3

1,1.Trichlorc_ethlme(Methyl ¢ttloroform) Liquid 0.001 1900 2450 5550

,1,2.Trchloroethlne i L_id 0.001 55 2775

Tnchloroethylene _CE) , I..K_id 0.001 26g 1080 5460Trchloroftuoromllhlne I.Kllu¢l 0.001 5620 57100

Trx;hlorosillne" , L.K;tuid 0.001Gu , 5

Trffluorocffioro4Rt_yllme* , ,

Trictltoronllte,, , LK]uid 0.001 10Lcluid 0.001! 3.3

uquid o.oo1_ 5

L.,:lUid 0.001 50

,Solid 0.001., 2.S

¢tllot,_=.- Solid 0.0011 20

" • Confined in _ A to 29 CFR 1gl0.11 g, "" • ContinKI in _ix A to 40 CFR 355 Page 11

Page 109: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

C,nemlcal , , •[ ,_hyslcat[ ;:::!elease[ "L.',/ , --1 E=P_J.3_._L._C.C d S-E_ .]._-

Tr iDPeny_tr_ crllorlQe '° _Olld 0 001 2C

",'rhmetnoxysllane' _Clbid ].]C _ _."_

Trls 12-¢rlloroethyl} amine" .:quid D 3CI 3 a ........ i

Vallnomycln'" SOlid r] 3 0 _ 2"5

Vanadium. as V205. pentoxlcle'" Solid 0 001 ] 05 _ ""

Vinyl acetate monomer'* :..,C:lUid 3 0! 35 54 !Vinyl chloride Gas 1 2.6 _3 j

War, arlr ,,, Solid 0 00_ 0 I 20 ...l=" 41

tWar'anr' soaJ.,m'" Solid 0.001 9 ....

Xftene LiQuid 0.00_ 435 _55 44' ]

X_lene alcnionde'" Solid 0.001' 2 ...... i

Zinc. ZnO Solid 0,001 5 _rj 1ZinciDhosonide'" Solid 0.00! *2 l

• • ContainKI in A_lndtx Ato 29 CFR 1910.119, "". Contained in Appendix A to 40 CFR 355 Page 12

Page 110: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

APPENDIX C

DEFINITIONS FROM AIHA, OSHA. ACGIH, AND NIOSH

03154804o/D.93-192.337M C November 30, 1_93

Page 111: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

AIHA EMERGENCY RESPONSE PLANNING GUIDELINES (ERPGs) FORON-SITE AND OFF-SITE EXPOSURES TO

ACUTELY HAZARDOUS MATERIALS

The American lndustnal Hygiene AsSoclauon (AIHA) has established ERPGs for 12

c_,mp_)unds. ERPGs are emergency exposure linuts based on insignificant, reversible, and

lrre,,erslble health et:tects. Three levels of ERPGs have been established by AIHA:

1 ERPG- 1 _sthe maximum airborne concentration below whJch it is believed that

nearly all individuals could be exl:xJsedfor up to 1hour without experiencing other

than mild )raatsient adverse health effects or without perceiving a clearly defined

objecuonable odor.

Conu'nent' These exposures are considered to have insignificant health consequences. Off-

site mrborne concentrations at or below ERPG-1 correspond to low consequence.

2. ERPG-2 is the maximum tarborne concentration below which it is believed that

nearly all individuals could be exposed for up to 1hour without experiencing or

developing irreversible or other serious health effects or symptoms which could

impair an individual's ability to take protective action.

Comment: On-site airborne (worker) concentrations at I00 or above ERPG-2 correspond

to moderate consequences.

3. ERPG-3 is the maximum airborne concentration below which it is believed that

nearly 'all individuals could be exposed for up to 1 hour without ex_nenencingoI"

_evelopiag_life-threatening health effects.i

Comment: Exposures at or above the ERPG-3 level off-site correspond to a high

consequence level.

o31548o40/D.q3-192.33 7m C. 1 November 30. 1993

Page 112: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

DEFINITIONS FOR AMERICAN CONFERENCE OF GOVERNMENTALINDUSTRIAL HYGIENISTS (ACGIH)

ACGIH

TLV Threshold limit values refer to airborne concentrauons of substances and

represent conditions under which it is believed that nearly all workers mu' :

repeatedly exposed day a_er day without adverse effect. Because of wide variation

in individual susceptibility, however, a small percentage may be affected more

seriously by aggravation of a pre-existing condition or by development of an

occupational illness.

Threshold limits are based on the best available in.formation from industrial

experience, from experiment',fl human and animal studies, and, when possible,

from a combination of the three. The basis on which the values are established

may differ from substance to substance; protection against impairment of health

may be a guiding factor for some, whereas reasonable freedom from imtation,

narcosis, nuisance, or other forms of stress may ft,.an the basis for others.

For some subslances, e.g., irritant gases, only one category, the TLV-

may be relevant. For other substances, either two or three categories may

be relevant, depending upon their physiological action. It is important to observe

that if any one of these three TLVs is exceeded, a potential hazard from that

substance is presumed to exist.

TLV TWA The Threshold Limit Value-'l_me Weighed Average is the TWA

concentration for a normal 8-hour workday and a 40-hour workweek to which

neatly all workers maybe repeatedly exposed, day after day, without adverse

effect.

STEL A STEL is defined as a 15-minute TWA exposure which should not be

exceeded at any time during a work day, even if the eight-hour-TWA is within the

TLV. Exposures at the STEL should not be longer than 15 minutes and should not

be repeated more than four times per day. There should be at least 60 minutes

between successive exposures at the STEL. An averaging period other than 15

minutes may be recommended when this is warranted by observed biological

effects.

t)3154804o/D-q3.192. 337m C-2 November 30. 19_3

Page 113: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

DEFINITION FROM NATIONAL INSTITUTE OFOCCUPATIONAL SAFETY AND HEALTH

I

NIOSH

II)LH The Immediately Dangerous to Lite ur Health level represents a maximum

ctmcentrauon from which one could escape wit.hin 30 minutes without any escape-

impairm_ symptoms t)r any irreversible health effects.

031548040/D-93-192.337m C-3 ,Vovember 30, 1993

Page 114: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

OSHA DEFINITIONS (29 CFR 1910.1000) FROMAIR CONTAMINANT STANDARDS

Permissible Exposure Linut (PEL)' An employee's exposure in an,,' 8-hour work

shift of a 40-hour work week, shall not exceed the 8-hour time weighted average given for

that material in the Z-1 Table unless othe_'ise noted' a (C) designation denotes a ceiling

hnut,

,,-X+_eptableCeiling Concentrauon'+ An employee's exposure to a material listed in

Table Z-2 shall not exceed at any time during an 8-hour sift the acceptable ceiling

concentration limit given tot the material, except for a time period, and up to a

concentration not exceeding the maximum duration and concentration allowed in the

column under "acceptable maximum peak above the acceptable ceiling concentration tor an

S-hour shift."

Time Weighted Average (TWA) i,'+the employee's average airborne exposure in

any 8-hour work shift of a 40- hour work week which shall not be exceeded.

Short-term Exmsure Limit tSTEL) is the employee's 15-minute time weighted

average exposure which shall not be exceeded any time during a work day unless another

time limit is specified in parenthetical notation below the limit. If another time period is

specified, the time weighted average exposure over that time limit shall not be exceeded at

rely time during the working day.

An employee's exposure to chemicals preceded by a "C" shall at no

time exceed the ceiling value Nven for that material. A ceiling value is the employee's

exposure which shall not be exceeded during any part of the work day. If instantaneous

monitoring is not feasible, the ceiling shall be assessed as a 15-minute time-weighed-

average exposure which shall not be exceeded at ny time over a working day.

031548O40/D- _3.1 _2.33 7m C-4 November 30, 1993

Page 115: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,

i II

Page 116: IIluIILIlLLi]] · 2019. 5. 10. · UCRL-15910, Design and Evaluation Guidelines for Department o.fEnergy Facilities Subjected to Natural Phentmuma Hazards (Ke_ et at, 1990). DOE 5480.28,