Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC...

67
Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America) D.M. Basko (Columbia, Trieste, Grenoble) G.V. Shlyapnikov Many body localization Many body localization G.V. Shlyapnikov (Orsay) Detailed paper (fermions): Annals of Physics 321 (2006) 1126-1205 Shorter version: cond-mat/0602510; chapter in “Problems of CMP” Bosons: NATURE PHYSICS 6 (2010) 900-904 Lewiner Institute of Theoretical Physics, Colloquium, December 23 rd , 2010

Transcript of Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC...

Page 1: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Igor Aleiner (Columbia)

Collaborators: B.L. Altshuler (Columbia, NEC America)

D.M. Basko (Columbia, Trieste, Grenoble)

G.V. Shlyapnikov

Many body localizationMany body localization

G.V. Shlyapnikov (Orsay)

Detailed paper (fermions): Annals of Physics 321 (2006) 1126-1205

Shorter version: cond-mat/0602510; chapter in “Problems of CMP”

Bosons: NATURE PHYSICS 6 (2010) 900-904

Lewiner Institute of Theoretical Physics, Colloquium, December 23rd, 2010

Page 2: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

I

V

Metal

Transport in solids

Superconductor

Conductivity:

Conductance:

Insulator

?????

Page 3: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Outline:Outline:

• Formulation and history of the problem

• Results for fermionic system

• Effective model

• Technique• Technique

• Stability of the metal

• Stability of the many-body insulator

• Metal insulator transition

• Extension for weakly interacting bosons in 1D.

Page 4: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

can e-e interaction alonesustain finite conductivity

in a localized system?

1. All one-electron states are localized

2. Electrons interact with each other

Problem:

Given:

2. Electrons interact with each other

3. The system is closed (no phonons)

4. Temperature is low but finite

Find: DC conductivity σ(T,ω=0)

(zero or finite?)

Page 5: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

1. Localization of single-electron wave-functions:

extended

Disorder IV

localized

V

Conductance

Page 6: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Most of the knowledge is based on extensions and

Improvements of:

Page 7: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

1. Localization of single-electron wave-functions:

extendedd=1; All states are localizedExact solution for one channel:

localized

M.E. Gertsenshtein, V.B. Vasil’ev, (1959)

D.J. Thouless, (1977)

Exact solutions for multi-channel:

Scaling argument for multi-channel :

K.B.Efetov, A.I. Larkin (1983)O.N. Dorokhov (1983)

“Conjecture” for one channel:

Sir N.F. Mott and W.D. Twose (1961)

Exact solution for σ(ω)σ(ω)σ(ω)σ(ω) for one channel:

V.L. Berezinskii, (1973)

Page 8: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

1. Localization of single-electron wave-functions:

extendedd=1; All states are localized

d=2; All states are localized

localized

d=2; All states are localized

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T.V. Ramakrishnan, (1979)

Thouless scaling + ansatz:

If no spin-orbit interaction

Instability of metal with respect to quantum

(weak localization) corrections:L.P. Gorkov, A.I.Larkin, D.E. Khmelnitskii, (1979)

First numerical evidence:A Maccinnon, B. Kramer, (1981)

Page 9: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Instability of 2D metal with respect to quantum(weak localization) corrections:L.P. Gorkov, A.I.Larkin, D.E. Khmelnitskii, (1979)

Page 10: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

1. Localization of single-electron wave-functions:

extendedd=1; All states are localized

d=2; All states are localized

localized

d=2; All states are localized

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T.V. Ramakrishnan, (1979)

Thouless scaling + ansatz:

If no spin-orbit interaction

Instability of metal with respect to quantum

(weak localization) corrections:L.P. Gorkov, A.I.Larkin, D.E. Khmelnitskii, (1979)

First numerical evidence:A Maccinnon, B. Kramer, (1981)

Page 11: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

“All states are localized “

means

Probability to find an extended state:Probability to find an extended state:

System size

Page 12: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

1. Localization of single-electron wave-functions:

extendedd=1; All states are localized

d=2; All states are localized

localized

d=2; All states are localized

d>2; Anderson transition

Page 13: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Anderson Model

• Lattice - tight binding model

• Onsite energies εεεεi - random

• Hopping matrix elements Iijj i

Iij

I =

I i and j are nearest neighbors{

-W < εεεεi <Wuniformly distributed

Iij =neighbors

0 otherwise{ Critical hopping:

Page 14: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

all states are

localized

I < IcI > Ic

Anderson Transition

Coexistence of the localized and extended states is not possible!!!

DoS DoS

localized

extended

- mobility edges (one particle)

Rules out first order phase transition

Page 15: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Temperature dependence of the Temperature dependence of the

conductivity (I)conductivity (I)

Assume that all the states

DoS DoSDoS

Assume that all the states

are localized

Page 16: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Inelastic processes )transitions between localized states

α

β energy

mismatch

(inelastic lifetime)–1

(any mechanism)

Page 17: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Phonon-induced hopping

energy difference can be matched by a phonon

α

β

Variable Range HoppingSir N.F. Mott (1968)

Any bath with a continuous spectrum of delocalized

excitations down to ω ω ω ω = 0 will give the same exponential

Sir N.F. Mott (1968)

Without Coulomb gapA.L.Efros, B.I.Shklovskii (1975)

Optimized

phase volume

Mechanism-dependent

prefactor

Page 18: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Q: Can we replace phonons with

e-h pairs and obtain phonon-less VRH?

A#1: Sure

1) Recall phonon-less AC conductivity:Sir N.F. Mott (1970)

Easy stepsEasy steps:: Person from the street (2005)

3) Use the electric noise instead of phonons.

2) Calculate the Nyquist noise

(fluctuation dissipation Theorem).

4) Do self-consistency (whatever it means).

Page 19: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Q: Can we replace phonons with

e-h pairs and obtain phonon-less VRH?

A#1: Sure [Person from the street (2005)]

A#2: No way(for Coulomb interaction in 3D – may be)

[L. Fleishman. P.W. Anderson (1980)]

is contributed by rare Thus, the matrix element vanishes !!!is contributed by rare

resonances

δα

βγγγγ

R

Thus, the matrix element vanishes !!!

0 *

Page 20: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Q: Can we replace phonons with

e-h pairs and obtain phonon-less VRH?

A#1: Sure [Person from the street (2005)]

A#2: No way [L. Fleishman. P.W. Anderson (1980)]

A#3: Finite T MetalMetal--Insulator TransitionInsulator Transition

Drude

[Basko, Aleiner, Altshuler (2005)]

insulator

metal

Interaction strength(Perfect Ins)

Page 21: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

ManyMany--body mobility thresholdbody mobility threshold

[Basko, Aleiner, Altshuler (2005)]

insulator

metal

Many body DoS

All STATES LOCALIZED

All STATES EXTENDED -many-body

mobility threshold

Page 22: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

“All states are localized “

meansProbability to find an extended state:

System volume

Page 23: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Localized oneLocalized one--body wavebody wave--functionfunction

Means, in particular:

localized

extended

We define localized manyWe define localized many--body wavebody wave--function as:function as:We define localized manyWe define localized many--body wavebody wave--function as:function as:

extended

localized

Page 24: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

All STATES EXTENDED

States always thermalized!!!

Entropy

Many body DoS

All STATES LOCALIZED

States never thermalized!!!

Page 25: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Is it similar to Anderson transition?

Why no activation?

Many body DoS One-body DoS

Page 26: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

0σ ==== Physics: Many-body excitations turn out

to be localized in the Fock space

Page 27: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Anderson Model

• Lattice - tight binding model

• Onsite energies εεεεi - random

• Hopping matrix elements Iijj i

IijCritical hopping:

Interpretation:

W

In fact, i,j can be states in any space (not necessarily

coordinate)

W – maximal energy mismatch;

2d – number of coupled neighbors;

(connectivity)

At I>Ic there will be always level mismatchedfrom given by

and the resonance transport will occur

Page 28: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Fock space localization in quantum dots (AGKL, 1997)

´

No spatial structure ( “0-dimensional” )

- one-particle level spacing;

Page 29: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Fock space localization in quantum dots (AGKL, 1997)

1-particle excitation

3-particle excitation

5-particle excitation

Cayley tree mapping

Page 30: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Fock space localization in quantum dots (AGKL, 1997)

1-particle excitation

3-particle excitation

5-particle excitation

1. Coupling between states:

- one-particle level spacing;

1. Coupling between states:

2. Maximal energy mismatch:

3. Connectivity:

Page 31: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Vs. finite T MetalMetal--Insulator Transition Insulator Transition in the bulk systemsin the bulk systems[Basko, Aleiner, Altshuler (2005)]

MetalMetal--Insulator “Transition” Insulator “Transition” in zero dimensionsin zero dimensions

[Altshuler, Gefen, Kamenev,Levitov (1997)]

In the paper:

insulator

metal

Interaction strength

Page 32: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Vs. finite T MetalMetal--Insulator Transition Insulator Transition in the bulk systemsin the bulk systems[Basko, Aleiner, Altshuler (2005)]

MetalMetal--Insulator “Transition” Insulator “Transition” in zero dimensionsin zero dimensions

[Altshuler, Gefen, Kamenev,Levitov (1997)]

- one-particle level spacing;

1-particle level spacing inlocalization volume;localization volume;

1) Localization in Fock space = Localization in the coordinate space.

2) Interaction is local;

Page 33: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Vs. finite T MetalMetal--Insulator Transition Insulator Transition in the bulk systemsin the bulk systems[Basko, Aleiner, Altshuler (2005)]

MetalMetal--Insulator “Transition” Insulator “Transition” in zero dimensionsin zero dimensions

[Altshuler, Gefen, Kamenev,Levitov (1997)]

- one-particle level spacing;

1-particle level spacing inlocalization volume;localization volume;

1,2) Locality:

3) Interaction matrix elements

strongly depend on the energy transfer, ωωωω:

Page 34: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Effective Hamiltonian for MITMIT.We would like to describe the low-temperatureregime only.

Spatial scales of interest >>

1-particle localization length

Otherwise, conventional perturbation theory fordisordered metals works.

Altshuler, Aronov, Lee (1979); Finkelshtein (1983) – T-dependent SC potential Altshuler, Aronov, Khmelnitskii (1982) – inelastic processes

Page 35: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Details: Seminar #1

December 26

Page 36: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

{{{{ }}}} (((( ))))ρ ξ ρr r

ζρr

ξ

dνζδζ

1≡

ar

Reproduces correct behavior of the tails of one particle wavefunctions

{{{{ }}}} (((( )))), jjρ ξ ρr r

O

ζ No spins

Page 37: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

ξj1

l1

l2

j2

Interaction only within the same cell;

Page 38: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Statistics of matrix elements?

Page 39: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Parameters:j

lσ randomsigns

Page 40: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Parameters:

j

lσ randomsigns

Ensemble averaging over:

Level repulsion: Only within one cell.

Probability to find n levels in the energy interval of the width E:

/

( , ) x!

e p

nE

e E

En

nFE

nP

ζζ

δ

ζ

δ

δ

−−−− ====

−−−−

(((( ))))

limx

F x

x→∞→∞→∞→∞= ∞= ∞= ∞= ∞

Page 41: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

What to calculate?

– random quantity

Idea for one particle localization Anderson, (1958);

MIT for Cayley tree: Abou-Chakra, Anderson, Thouless (1973);Critical behavior: Efetov (1987)

No interaction:

Metal InsulatorMetal Insulator

Page 42: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

What to calculate?

– random quantity

Idea for one particle localization Anderson, (1958);

MIT for Cayley tree: Abou-Chakra, Anderson, Thouless (1973);Critical behavior: Efetov (1987)

No interaction:

Metal InsulatorMetal Insulator

Page 43: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

What to calculate?

– random quantity

Idea for one particle localization Anderson, (1958);

MIT for Cayley tree: Abou-Chakra, Anderson, Thouless (1973);Critical behavior: Efetov (1987)

No interaction:

Metal InsulatorMetal Insulator

Page 44: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

What to calculate?

– random quantity

Idea for one particle localization Anderson, (1958);

MIT for Cayley tree: Abou-Chakra, Anderson, Thouless (1973);Critical behavior: Efetov (1987)

No interaction:

Metal InsulatorMetal Insulator

Page 45: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

What to calculate?

– random quantity

Idea for one particle localization Anderson, (1958);

MIT for Cayley tree: Abou-Chakra, Anderson, Thouless (1973);Critical behavior: Efetov (1987)

No interaction:

η!0metal

insulator

behavior for a

given realization

metal

insulator

∼ η

probability distribution

for a fixed energy

Page 46: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Probability Distribution

metal

insulator

Note:

Look for:

Page 47: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

How to calculate?How to calculate?

Parameters:

non-equilibrium (arbitrary occupations) → Keldysh

allow to select the most

relevant series

SCBA

relevant series

Find the distribution function of each diagram

Page 48: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Iterations:Iterations:

Cayley tree structure

Page 49: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

after standard simple tricks:

Nonlinear integral equation with random coefficients

Decay due to tunneling

Decay due to e-h pair creation

+ kinetic equation for occupation function

Page 50: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Stability of metallic phaseStability of metallic phase

Assume is Gaussian:

>>

( )2

Page 51: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Probability Distributions“Non-ergodic” metal [discussed first in AGKL,97]

Page 52: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Probability Distributions

Drude metal

Page 53: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Kinetic Coefficients in Metallic PhaseKinetic Coefficients in Metallic Phase

Page 54: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Kinetic Coefficients in Metallic PhaseKinetic Coefficients in Metallic Phase

WiedemannWiedemann--Frantz law ?Frantz law ?

Page 55: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Non-ergodic+Drude metal

So far, we have learned:

Trouble !!!Trouble !!!

Insulator

???

Page 56: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Nonlinear integral equation with random coefficients

Stability of the insulatorStability of the insulator

Notice: for is a solution

Linearization:

Page 57: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Recall:

# of interactions# of hops in space

metal

insulator

η

probability distribution

for a fixed energyunstable

STABLE

Page 58: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

So, we have just learned:

Insulator

Metal

Non-ergodic+Drude metal

Page 59: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Extension to non-degenerate system

I.A. and B.L. Altshuler , unpublished (2008)

For 1D it leads to:

Page 60: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Estimate for the transition temperature for general case

¢ t (Tc) ' U(Tc)N1(Tc)

2) Identify elementary (one particle) excitations and prove that they are localized.

3) Consider a one particle excitation at finite T and the possible paths of its decays:

1) Start with T=0;

¢ t (Tc) ' U(Tc)N1(Tc)

Energy mismatch

Interaction matrix element

# of possible decay processes of an excitationsallowed by interaction Hamiltonian;

Page 61: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Weakly interacting bosons in

one dimension

Page 62: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Details: Seminar #2

December 28

Page 63: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization
Page 64: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Phase diagram

1Crossover????No finite T phase transition

1

No finite T phase transitionin 1D

See e.g.Altman, Kafri, Polkovnikov, G.Refael, PRL, 100, 170402 (2008); 93,150402 (2004).

G.M. Falco, T. Nattermann, & V.L. Pokrovsky, PRB,80, 104515 (2009) ????.

Page 65: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

( )1 32

ctκ γ=

1 3

ctκ =

( )ctκ

E ngκ ∗≡

~1κ

Finite temperature phase transition in 1D

1 γ1 γ1

( )ctκ γ=

t T ng≡

~1c

κ

I.A., Altshuler, ShlyapnikovarXiv:0910.434; Nature Physics (2010)

Page 66: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Disordered interacting bosons in two dimensionsDisordered interacting bosons in two dimensions

Page 67: Igor Aleiner (Columbia) · Igor Aleiner (Columbia) Collaborators: B.L. Altshuler (Columbia, NEC America)D.M. Basko (Columbia, Trieste, Grenoble)G.V. Shlyapnikov Many body localization

Conclusions:

• Existence of the many-body mobility

threshold is established.

• The many body metal-insulator transition is • The many body metal-insulator transition is

not a thermodynamic phase transition.

• It is associated with the vanishing of the

Langevine forces rather the divergences in

energy landscape (like in classical glass)

• Only phase transition possible in one

dimension (for local Hamiltonians)