igarss11benedek.pdf

20
ISAR Image Sequence based Automatic Target Recognition by using a Multi-frame Marked Point Process Model Csaba Benedek 1 Marco Martorella 2 1 Distributed Events Analysis Research Group Computer and Automation Research Institute, Hungary 2 University of Pisa, Department of Information Engineering Work partially funded by the APIS Project of EDA IGARSS 2011, Vancouver, Canada

Transcript of igarss11benedek.pdf

Page 1: igarss11benedek.pdf

ISAR Image Sequence based Automatic TargetRecognition by using a Multi-frame Marked Point

Process Model

Csaba Benedek1 Marco Martorella2

1Distributed Events Analysis Research GroupComputer and Automation Research Institute, Hungary

2University of Pisa, Department of Information Engineering

Work partially funded by the APIS Project of EDA

IGARSS 2011, Vancouver, Canada

Page 2: igarss11benedek.pdf

Content

1 Introduction

2 Multiframe Marked Point Process ModelModel elements and configuration energyOptimization

3 Experiments

4 Future steps and conclusions

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 2 / 19

Page 3: igarss11benedek.pdf

Introduction

Content

1 Introduction

2 Multiframe Marked Point Process ModelModel elements and configuration energyOptimization

3 Experiments

4 Future steps and conclusions

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 3 / 19

Page 4: igarss11benedek.pdf

Introduction

Introduction

Extracting ship scattering centers in airborne Inverse SyntheticAperture Radar (ISAR) image sequences

Framework: “Array Passive ISAR Adaptive Processing” (APIS)Project of EDA

ISAR images in Automatic Target Recognition (ATR) systemsapplicable where other imaging techniques (e.g. SAR) failpost processing step after detection & imagingframes have different quality parameters (e.g. image focus)

Goals:

Measuring relevant features for target identification and behaviouranalysis

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 4 / 19

Page 5: igarss11benedek.pdf

Introduction

Proposed approach

Robust multi-frame technique, integrating the noisy imageinformation with prior constraints of target shape persistency andsmooth motion.

Multiframe Marked Point Process model

Input:ISAR image sequence of the detected target

Output:center line segment parameters of the target in each frame

length and orientation

positions of permanent characteristic feature points

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 5 / 19

Page 6: igarss11benedek.pdf

Multiframe Marked Point Process Model

Content

1 Introduction

2 Multiframe Marked Point Process ModelModel elements and configuration energyOptimization

3 Experiments

4 Future steps and conclusions

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 6 / 19

Page 7: igarss11benedek.pdf

Multiframe Marked Point Process Model Model elements and configuration energy

Configuration model: notations

Observation: n-frame-long ISARimage sequence

S: joint pixel lattice of the ISARframes, s ∈ S: a single pixelBt : binarized input image observedat time frame t ∈ {1, 2, . . . , n}Bt (s) ∈ {0, 1}: value of pixel s in Bt

ut ∈ H: a target candidate in frame tGoal: extract a sequence of objects:

ω = {u1, u2, . . . , un} ∈ Hn

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 7 / 19

Page 8: igarss11benedek.pdf

Multiframe Marked Point Process Model Model elements and configuration energy

Target modeling in a single ISAR frame

Parameters describing a target u:c(u) = [x(u), y(u)] center pixel, l(u) length and θ(u) orientation

Misalignment problem

periodicity of ISAR images both in horizontal and vertical directionstarget may break into two/four piecesusing a duplicated mosaic image

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 8 / 19

Page 9: igarss11benedek.pdf

Multiframe Marked Point Process Model Model elements and configuration energy

FmMPP energy function

Object sequence or configuration:

ω = {u1,u2, . . . ,un}

Configuration energy:

ΦD (ω) =

n∑

t=1

AD (ut)+γ ·

n−1∑

t=1

I (ut ,ut+1)

AD (ut): D-data dependent unary object potentialI (ut , ut+1) prior interaction potential function between objects ofconsecutive frames

Maximum Likelihood (ML) configuration estimate:

ω̂ = argminω∈Hn

ΦD (ω)

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 9 / 19

Page 10: igarss11benedek.pdf

Multiframe Marked Point Process Model Model elements and configuration energy

Data term

Unary potentials:evaluation of proposed shipcandidates in independent frames

Calculation:

AD (ut) = Q

1

Area{Rut ∪ Tut}

s∈Rut

Bt (s)+∑

s∈Tut

(1 − Bt (s))

Q(ζ) : R → [−1, 1]: a non-linear monotonously decreasing function

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 10 / 19

Page 11: igarss11benedek.pdf

Multiframe Marked Point Process Model Model elements and configuration energy

Interaction potentials

Key role: enforcing prior geometrical constraints.

persistent frame rate → small object displacements between twoconsecutive frames

Feature: length and angle difference (center is not relevant)

I (ut ,ut+1) = δθ · |θ (ut)− θ (ut+1)|+ δl · |l (ut)− l (ut+1) |

Penalized configuration ×

Favored configuration√

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 11 / 19

Page 12: igarss11benedek.pdf

Multiframe Marked Point Process Model Optimization

Optimization: iterative stochastic algorithms

The algorithm1 Start with a frame-by-frame initialization process

Hough transform based line estimation in each binarized frame Bt ,t = 1 . . . n

2 Iterate object perturbation and acceptance steps till convergence isobtained in the extracted object sequence

Object perturbation: for each t we propose an object u∗ which is therandom perturbation of ut−1 OR ut OR ut+1

Acceptance: we accept or reject a move replacing ut width u∗

Important properties:Acceptance: inverse approach considering simultaneously dataand prior featuresStochastic process both for object perturbation and acceptance(unlike in conventional hypothesis generation-acceptancetechniques)Simulated annealing framework to ensure convergence

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 12 / 19

Page 13: igarss11benedek.pdf

Multiframe Marked Point Process Model Optimization

Optimization: iterative stochastic algorithms

The algorithm1 Start with a frame-by-frame initialization process

Hough transform based line estimation in each binarized frame Bt ,t = 1 . . . n

2 Iterate object perturbation and acceptance steps till convergence isobtained in the extracted object sequence

Object perturbation: for each t we propose an object u∗ which is therandom perturbation of ut−1 OR ut OR ut+1

Acceptance: we accept or reject a move replacing ut width u∗

Important properties:Acceptance: inverse approach considering simultaneously dataand prior featuresStochastic process both for object perturbation and acceptance(unlike in conventional hypothesis generation-acceptancetechniques)Simulated annealing framework to ensure convergence

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 12 / 19

Page 14: igarss11benedek.pdf

Multiframe Marked Point Process Model Optimization

Target identificationPermanent scatterer extraction and counting

Permanent scattererresponses: characteristictarget features

high false/missing alarm ratein the individual frames(>50%)histograming technique forextracting the permanentscatters

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 13 / 19

Page 15: igarss11benedek.pdf

Experiments

Content

1 Introduction

2 Multiframe Marked Point Process ModelModel elements and configuration energyOptimization

3 Experiments

4 Future steps and conclusions

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 14 / 19

Page 16: igarss11benedek.pdf

Experiments

Experiments - qualitative results

Center alignment and target line extraction results

Top: input sequence. Center: frame-by-frame detection. Bottom: detection by the

proposed FmMPP model

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 15 / 19

Page 17: igarss11benedek.pdf

Experiments

Experiments - quantitative results

Test sequences:four airborne ISAR image sequences (each has 15-40 frames)different ship targets.

Error measure:

E({ut}, {ugtt }) =

n∑

t=1

(|x(ut)− x(ugt

t )|+ |y(ut)− y(ugtt )|+

+ |l(ut)− l(ugtt )|+ |θ(ut)− θ(ugt

t )|)

Sequence Frames Init Err. FmMPP Err.

Ship 1 13 52.0 7.5Ship 2 13 67.1 37.8Ship 3 13 17.2 12.8Ship 4 54 43.7 12.6

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 16 / 19

Page 18: igarss11benedek.pdf

Future steps and conclusions

Content

1 Introduction

2 Multiframe Marked Point Process ModelModel elements and configuration energyOptimization

3 Experiments

4 Future steps and conclusions

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 17 / 19

Page 19: igarss11benedek.pdf

Future steps and conclusions

Generalization for various objects

Identifying Airplanes in ISAR sequencesCross shaped modelShadowed wing

Result by the two step process

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 18 / 19

Page 20: igarss11benedek.pdf

Future steps and conclusions

Conclusions

Detecting and featuring ship/airplane targets in ISAR imagesequences through energy minimization

Proposed Multi-frame Marked Point Process schema

advantages versus a frame-by-frame direct detection technique

Towards target classification

permanent scatterer detection algorithm based on histograming

Benedek & Martorella (SZTAKI, CNIT) Target Extraction in ISAR Image Sequences 28 July 2011 19 / 19