[IEEE ICCON IEEE International Conference on Control and Applications - Jerusalem (April 3-6, 1989)]...

6
Wp-6- 1 DETERM IN ISTDC CONTROL OF U NCERTAI-N-SJSTEES A.S.I. Zinober Department of A plied and ComputationalMathematics fIniversitv of Sheffield Sheffield S IO 2TN, U.K. Abstract In Lhe determlnistlc control of uncertain multivariable systems robust closed-loop control is achieved for a specified magnitude range of a class of parameter variations and djsturbances. These nonlinear time-varying systems employ nonljnear control functions. The two majn approaches are Lyapunov control and varlable strucLure control. The development of the theory of this latter class of control systems will be briefly reviewed here and particular reference will be made to the eigenstructure assignment approach. The use of a CAD package VASSYD allows for straightforward design and simulation studies. Desirable robustness and invarjance properties are readily obtajned. Introduction The deterministic control of uncertain t ime-vary j ng systems is achieved using nonlinear feedback control functions, which operate effectively over a specified magnitude range of a class of system parameter variations, without the need for on-line identification of the values of the parameters. Statistical information of the system variations is not required. If the parameter varlations satisfy certain matching conditions, total invariance can be achieved. This control philosophy contrasts sharply with stochastic adaptive control systems in which the control law is alLered whilst system parameter values are calculated using online identification algorithms. The two main approaches are Lyapunov control, and variable structure control (VSC). Lyapunov control follows th a roach of researchess such as Gutman and Palmor ,4Corless and Lejtmann , Ryan3, Garofalo and Glielmo , and many oLher researchers. Using a Lyapunov function and specified magnitude bounds on the uncertainties, a nonlinear control law is devetoped to ensure uniform ultimate boundedness of the closed-loop feedback trajectory to achieve sufficient accuracy. The resulting controller is a discontinuous control function, with generally a continuous control in a boundary layer in the neighbourhood of the switching surface. The boundary layer control prevents the excitation of hjgh-frequency unmodel led parasjtic dynamics. Lack of space prevents a detailed analysis here of Lhe extensive theory of this important field. The reader is invjted to study further details in other papers in thjs session, chapters in the book5 and numerous publications in thjs growing area of research. A comparative study is presented by DeCarlo et a1 . In this paper particular attenf ion will be paid to the VSC approach. In fart Lhe resulting controller is often identical to Lyapunov control. It is simply the desjgn phllosophy which differs. In VSC the desjred closed-loop dynamic properties are Fi pp 6 WP-6- -1- UP-6-1 direrLly specif'ied arid subsecjwnt.ly a suitable (onl,rol fucLion is determined 1.0 ensure the at.Lainment and exjsl.enre of' f he sliding mode (desrribed below). Variable strucl.ure f.onl.r*oI (VSC) with a SI iding mode was first. described by Russian a Lhors in t.he 1960's. A survey paper by ULkjri ( 1977)' references many of the early rontribuLions avai lable in translation. Two recent, survey and f,u orial papers with numerous references are by ULkin' and De Carlo et a16. A recent book by Buhler explains the subject in French' . Drazenovic" established some early results on Lhe invariance of VSC in the sliding mode f,o rerf,ain disturbances and paramef,er variations. More recently the subject has attracted great interest because of the excel lent. invariance properties. Consequently, VSC is parl.ic.ularly suif,ed to l,he deterministjc control of unc.ertajn control sysf,ems. Some of the major interests have been {,he use of VSC and a1 lied techniques .in model-fol lowing and model reference adapti ve control, trackjng control and observer systems. The essential feature of VSC is that, the nonljnear feedback control has a discont,jnuity on one or more manifolds in the sLate space. Thus Lhe structure of the feedback system is altered or switched as its state crosses each discontinuity surface: in consequence of which, Lhe' closed-loop system is described as a variable strucf,ure system. A VSC system may be regarded as a combination of subsystems, each with a fixed structure and each operatjng jn a specjfied region of the state space. In this paper aLtent,jon wj I1 be focussed upon the VSC r e g u l a t o r . T h e aim of the design is to regula1,e the system sf.ate to zero. Much o f f.he Lheory may be direc1.ly appl jed Lo model-fol lowing and Lracking conf.ro 1 sysLems. Sliding motion in VSC The central fea1.ur.e of VSC js sliding mot ion. This occurs when !,he sysLern sf.al e repeaLedly crosses and jmmediately re-crosses a switc,hing surfar,e, b~'c aiise al I motion in $.he rieighbourhood of l,he manifold is directed inwards (i.e. f.owards the manifold). Depending on the f'orm of 1,he control law selecl.ed, Lhis SI iding rnof,ion may o c r u r on individual swif,chitig surfar,es in 1 he sl,ai,e space, on a select iofi of a surfaces, or on all Lhe swirching manifolds a toget.her. When 1,he last, of these cases of urs, Lhe sysf~m is said 1.0 be iri the sliding mode. The term 'sliding mode' is often also used for l,he sliding subspare. 'The dynamic mof.ion of the sysl.em 1

Transcript of [IEEE ICCON IEEE International Conference on Control and Applications - Jerusalem (April 3-6, 1989)]...

Page 1: [IEEE ICCON IEEE International Conference on Control and Applications - Jerusalem (April 3-6, 1989)] Proceedings. ICCON IEEE International Conference on Control and Applications -

Wp-6- 1 DETERM IN ISTDC CONTROL OF U NCERTAI-N-SJSTEES A.S.I. Zinober

Department of A plied and Computational Mathematics fIniversitv of Sheffield

Sheffield S I O 2TN, U.K.

Abstract

I n Lhe d e t e r m l n i s t l c c o n t r o l of u n c e r t a i n m u l t i v a r i a b l e s y s t e m s r o b u s t c l o s e d - l o o p c o n t r o l i s a c h i e v e d for a s p e c i f i e d m a g n i t u d e r a n g e o f a c l a s s o f p a r a m e t e r v a r i a t i o n s a n d d j s t u r b a n c e s . T h e s e n o n l i n e a r t i m e - v a r y i n g s y s t e m s employ n o n l j n e a r c o n t r o l f u n c t i o n s . T h e two majn a p p r o a c h e s are Lyapunov c o n t r o l a n d v a r l a b l e s t r u c L u r e c o n t r o l . T h e d e v e l o p m e n t of t h e t h e o r y of t h i s l a t t e r class of c o n t r o l s y s t e m s w i l l b e b r i e f l y r e v i e w e d h e r e a n d p a r t i c u l a r r e f e r e n c e w i l l b e made t o t h e e i g e n s t r u c t u r e a s s i g n m e n t a p p r o a c h . T h e u s e of a CAD p a c k a g e VASSYD allows for s t r a i g h t f o r w a r d d e s i g n and s i m u l a t i o n s t u d i e s . D e s i r a b l e r o b u s t n e s s a n d i n v a r j a n c e p r o p e r t i e s are r e a d i l y o b t a j n e d .

I n t r o d u c t i o n

T h e d e t e r m i n i s t i c c o n t r o l of u n c e r t a i n t ime-vary j n g s y s t e m s i s a c h i e v e d u s i n g n o n l i n e a r f e e d b a c k c o n t r o l f u n c t i o n s , w h i c h o p e r a t e e f f e c t i v e l y o v e r a s p e c i f i e d m a g n i t u d e r a n g e of a class of s y s t e m p a r a m e t e r v a r i a t i o n s , w i t h o u t t h e n e e d for o n - l i n e i d e n t i f i c a t i o n of t h e v a l u e s of t h e p a r a m e t e r s . S t a t i s t i c a l i n f o r m a t i o n of t h e s y s t e m variations is not r e q u i r e d . If t h e p a r a m e t e r v a r l a t i o n s s a t i s f y c e r t a i n m a t c h i n g c o n d i t i o n s , t o t a l i n v a r i a n c e c a n b e a c h i e v e d . T h i s c o n t r o l p h i l o s o p h y c o n t r a s t s s h a r p l y w i t h s t o c h a s t i c a d a p t i v e c o n t r o l s y s t e m s i n w h i c h t h e c o n t r o l l a w is a l L e r e d w h i l s t s y s t e m p a r a m e t e r v a l u e s are c a l c u l a t e d u s i n g o n l i n e i d e n t i f i c a t i o n a l g o r i t h m s .

The two main a p p r o a c h e s are Lyapunov c o n t r o l , a n d v a r i a b l e s t r u c t u r e c o n t r o l (VSC) . Lyapunov c o n t r o l f o l l o w s t h a r o a c h o f r e s e a r c h e s s s u c h as Gutman a n d P a l m o r , 4 C o r l e s s a n d Lej tmann , Ryan3, Garofalo a n d G l i e l m o , a n d many o L h e r r e s e a r c h e r s . U s i n g a Lyapunov f u n c t i o n a n d s p e c i f i e d m a g n i t u d e b o u n d s on t h e u n c e r t a i n t i e s , a n o n l i n e a r c o n t r o l law is d e v e t o p e d t o e n s u r e u n i f o r m u l t i m a t e b o u n d e d n e s s o f t h e c l o s e d - l o o p f e e d b a c k t r a j e c t o r y t o a c h i e v e s u f f i c i e n t a c c u r a c y . The r e s u l t i n g c o n t r o l l e r is a d i s c o n t i n u o u s c o n t r o l f u n c t i o n , w i t h g e n e r a l l y a c o n t i n u o u s c o n t r o l i n a b o u n d a r y l a y e r i n t h e n e i g h b o u r h o o d of t h e s w i t c h i n g s u r f a c e . T h e b o u n d a r y l a y e r c o n t r o l p r e v e n t s t h e e x c i t a t i o n of h j g h - f r e q u e n c y unmodel l e d p a r a s j t i c d y n a m i c s . Lack o f s p a c e p r e v e n t s a d e t a i l e d a n a l y s i s h e r e o f Lhe e x t e n s i v e t h e o r y o f t h i s i m p o r t a n t f i e l d . The r e a d e r is i n v j t e d t o s t u d y f u r t h e r d e t a i l s i n o t h e r p a p e r s i n t h j s s e s s i o n , c h a p t e r s i n t h e book5 a n d numerous p u b l i c a t i o n s i n t h j s g r o w i n g area of r e s e a r c h . A c o m p a r a t i v e s t u d y is p r e s e n t e d by D e C a r l o e t a1 . I n t h i s p a p e r p a r t i c u l a r a t t e n f i o n w i l l be p a i d t o t h e VSC a p p r o a c h . I n f a r t Lhe r e s u l t i n g c o n t r o l l e r is o f t e n i d e n t i c a l t o Lyapunov c o n t r o l . I t i s s i m p l y t h e d e s j g n p h l l o s o p h y w h i c h d i f f e r s . I n VSC t h e d e s j r e d c l o s e d - l o o p dynamic p r o p e r t i e s are

Fi pp

6

WP-6- -1-

UP-6-1

d i r e r L l y s p e c i f ' i e d arid s u b s e c j w n t . l y a s u i t a b l e ( o n l , r o l f u c L i o n is d e t e r m i n e d 1.0 e n s u r e t h e at .Lainment a n d e x j s l . e n r e of' f he s l i d i n g mode ( d e s r r i b e d b e l o w ) .

V a r i a b l e s t r u c l . u r e f.onl.r*oI (VSC) w i t h a S I i d i n g mode was f i r s t . d e s c r i b e d by R u s s i a n a L h o r s i n t .he 1960's. A s u r v e y p a p e r by ULkjri ( 1977)' r e f e r e n c e s many o f t h e e a r l y r o n t r i b u L i o n s a v a i l a b l e i n t r a n s l a t i o n . Two r e c e n t , s u r v e y a n d f,u o r i a l p a p e r s w i t h numerous r e f e r e n c e s are by ULkin' a n d De Carlo e t a16 . A recent book by B u h l e r e x p l a i n s t h e s u b j e c t i n F r e n c h ' . D r a z e n o v i c " e s t a b l i s h e d some e a r l y r e s u l t s o n Lhe i n v a r i a n c e o f VSC i n t h e s l i d i n g mode f,o r e r f , a i n d i s t u r b a n c e s a n d p a r a m e f , e r v a r i a t i o n s . More r e c e n t l y t h e s u b j e c t h a s a t t racted great i n t e r e s t b e c a u s e of t h e e x c e l lent. i n v a r i a n c e p r o p e r t i e s . C o n s e q u e n t l y , VSC is p a r l . i c . u l a r l y s u i f , e d t o l ,he d e t e r m i n i s t j c c o n t r o l of u n c . e r t a j n c o n t r o l sysf ,ems . Some o f t h e major i n t e r e s t s h a v e been {,he u s e o f VSC a n d a 1 l i e d t e c h n i q u e s .in m o d e l - f o l l o w i n g a n d model r e f e r e n c e a d a p t i v e c o n t r o l , t r a c k j n g c o n t r o l a n d o b s e r v e r s y s t e m s .

T h e e s s e n t i a l f e a t u r e o f VSC is tha t , t h e n o n l j n e a r f e e d b a c k c o n t r o l h a s a d i s c o n t , j n u i t y on o n e o r more m a n i f o l d s i n t h e sLate s p a c e . Thus Lhe s t r u c t u r e o f t h e f e e d b a c k s y s t e m is al tered or s w i t c h e d as i ts s ta te crosses e a c h d i s c o n t i n u i t y s u r f a c e : i n c o n s e q u e n c e o f w h i c h , Lhe' c l o s e d - l o o p s y s t e m is d e s c r i b e d as a v a r i a b l e s t r u c f , u r e s y s t e m . A VSC s y s t e m may b e r e g a r d e d as a c o m b i n a t i o n o f s u b s y s t e m s , e a c h w i t h a f i x e d s t r u c t u r e and e a c h o p e r a t j n g j n a s p e c j f i e d r e g i o n of t h e s t a t e s p a c e .

I n t h i s p a p e r aLtent,jon w j I 1 be f o c u s s e d upon t h e VSC r e g u l a t o r . The aim of t h e d e s i g n is t o r e g u l a 1 , e t h e s y s t e m sf.ate t o z e r o . Much o f f.he Lheory may b e d i r e c 1 . l y a p p l j e d Lo model - fo l l o w i n g a n d L r a c k i n g c o n f . r o 1 sysLems.

S l i d i n g m o t i o n i n VSC

T h e c e n t r a l fea1.ur.e of VSC j s s l i d i n g m o t ion. T h i s occurs when !,he sysLern sf.al e r e p e a L e d l y crosses a n d j m m e d i a t e l y re-crosses a s w i t c , h i n g s u r f a r , e , b ~ ' c aiise al I m o t i o n i n $.he r i e i g h b o u r h o o d o f l,he m a n i f o l d i s d i r e c t e d i n w a r d s ( i . e . f.owards t h e m a n i f o l d ) . D e p e n d i n g o n t h e f'orm o f 1,he c o n t r o l law s e l e c l . e d , Lhis S I i d i n g rnof,ion may o c r u r on i n d i v i d u a l s w i f , c h i t i g s u r f a r , e s i n 1 h e sl,ai,e s p a c e , on a s e l e c t io f i o f a s u r f a c e s , or o n a l l Lhe s w i r c h i n g m a n i f o l d s a t o g e t . h e r . When 1,he last, o f t h e s e cases of urs, Lhe s y s f ~ m is s a i d 1.0 b e i r i t h e s l i d i n g mode.

The term ' s l i d i n g mode' is o f t e n a l so u s e d f o r l,he s l i d i n g s u b s p a r e . 'The dynamic mof.ion of t h e sysl .em

1

Page 2: [IEEE ICCON IEEE International Conference on Control and Applications - Jerusalem (April 3-6, 1989)] Proceedings. ICCON IEEE International Conference on Control and Applications -

is t h e n e f f e c t i v e l y c o n s t r a i n e d t o l i e w i t h i n a c e r t a i n s u b s p a c e of t h e f u l l s t a t e s p a c e . The s y s t e m is t h u s f o r m a l l y e q u i v a l e n t , t o a n u n f o r c e d s y s t e m of lower o r d e r , t e r m e d t h e e q u i v a i e n t s y s t e m . The m o t i o n of t h i s e q u i v a l e n t , sysl.em is d i f f e r e n t from t h a t of e a c h of t h e consl. i I.iierif

s u b s y s t e m s .

The d e s i g n of a VSC s y s t e m e n t a i Is f h e c h o i c e ot' t h e s w i t c h i n g s u r f a c e s , t h e s p e c i f i t a t ion o f t.he

d i s c o n t i n u o u s c o n t r o l f u n c t i o n s a n d Ltie d e t e r m i n a t i o n of t h e s w i t c h i n g log ic . assoc i a l . e d w i t h t h e d i s c o n t i n u i t , y s u r f a c e s . ' l e s w i t r h i n g surfaces are u s u a l l y f i x e d h y p e r p l a n e s i n t . h e st.at.e s p a c e p a s s i n g t h r o u g h t h e s t a t e s p a r . e o r i g i n , t h e i n t e r s e c t i o n of w h i c h forms t h e sl i d i r i g s u b s p a c e . T h e o b j e c t i v e of t h e d e s i g n is t o d r i v e l.he s1.al.e of t h e s y s t e m from a n a r b i 1 , r a r y i n i t . i a i r o r i d i f . i o n t o t h e i n t e r s e c t , i o n of t h e s w i t c h i n g s u r f a c e s . O n c e t h e s tate starts s l i d i n g , t h e a c t i o n of t h e c . o n t r o l is r e q u i r e d on:y t o m a i n t a i n t h e s t a t e o n (o r i n t h e n e i g h b o u r h o o d of t h e i n t e r s e c L i o n m a n i f o l d .

T h e e q u i v a l e n t , s y s t e m m u s t b e a s y m p t o t i c a l l y s t a b l e t o e n s u r e t h a t t h e s tate a p p r o a c h e s t h e s t a t e s p a c e o r i g i n w j t h i n t h e s l i d i n g mode. S t a b l e s l i d i n g m o t i o n is a s s u r e d by t h e s u i t a b l e s e l e c t i o n of t h e s w i t c h i n g h y p e r p ; a n e s , t h e t a s k w h i c h forms t h e first stage of t h e VSC d e s i g n p r o c e s s . T h i s p r o b l e m of d e t e r m i n i n g a se t of h y p e r p l a n e s p r o v i d i n g s u i t a b l e b e h a v i o u r i n t h e s l i d i n g mode is d e s c r i b e d as t h e e x i s t e n c e p r o b l e m . It is c o n c e r n e d s o l e l y w i t h f i x i n g a s e t of h y p e r p l a n e s s u c h t h a t t h e s l i d i n g mode o n t h e i r i n t e r s e c t i o n ( i f i t is r e a c h e d ) g i v e s a s p e c i f i e d p e r f o r m a n c e t o t h e e q u i v a l e n t l o w e r o r d e r s y s t e m . T h e s o l u t i o n of t h e e x i s t e n c e p r o b l e m may b e c o m p l e t e d wi thout , a n y a s s u m p t i o n s o n t h e form of t h e c o n t r o l f u n c t i o n s t o b e e m p l o y e d by t h e s y s t e m .

Once t h e e x i s t e n c e p r o b l e m h a s b e e n s o l v e d , t h e s e c o n d stage of t h e d e s i g n p r o c e d u r e i n v o l v e s t h e s e l e c t i o n of t h e c o n t r o l w h i c h w i l l e n s u r e t h a t . t h e c h o s e n s l i d i n g mode is a t t a i n e d a n d m a i n t a i n e d . F o r t h i s r e a s o n , t h e p r o b l e m of d e t e r m i n i n g a c o n t r o l s t r u c t u r e a n d a s s o c i a t e d g a i n s w h i c h e n s u r e t h e r e a c h i n g o r h i t t i n g of t h e s l i d i n g mode, is c a l l e d t h e r e a c h a b i l i t y p r o b l e m . The s o l u t i o n of t h e r e a c h a b i l i t y p r o b l e m is d e p e n d e n t o n t h e s w i t c h i n g h y p e r p l a n e s ( a s m i g h t b e e x p e c t e d , s i n c e t h e c o n t r o l f u n c t i o n s are r e q u i r e d t o b e d i s c o n t i n u o u s o n t h e s w i t c h i n g s u r f a c e s ) , a n d so c a n n o t b e s o l v e d u n t i l t h e e x i s t . e n c e p r o b l e m h a s b e e n r e s o l v e d .

The t r a n s j e n t rno t ion t h e r e f o r e c o n s i s t s of two i n d e p e n d e n t stages:

a ( p r e f e r a b l y r a p i d ) m o t i o n b r i n g i n g t h e s t a t e of t h e s y s t e m t o t.he m a n i f o l d i n w h i c h s l i d i n g o c c u r s ;

a slower s l i d i n g mot,ion d u r i n g w h i c h t,he s ta te s l i d e s t o w a r d s t h e s ta te s p a c e o r i g i n w h i l e r e m a i n i n g i n t h e s l i d i n g s u b s p a c e .

T h i s two stage b e h a v i o u r c a n h e l p t,o r e s o l v e t h e c o n f l i c t bet,ween t.he o p p o s i n g requi remen1.s of s t a t i c a n d dynamic a c c u r a c y w h i c h are e n c o u n t e r e d when d e s i g n i n g a l j n e a r coril.ro1 s y s t e m , b e c a u s e a VSC s y s t e m may b e d e s i g n e d 1.0 g i v e : a r a p i d

r e s p o n s e w i t h n o loss of s L a b i I i L y ; asyrnpf,c,t.ic s ta te r e g u l a t i o n ; i n s e n s i t . i v i t . y t o a c lass of p a r a m e t e r v a r i a t i o n s ; a n d i n v a r i a n r e 10 c e r t a i n e x t e r n a 1 d i s t u r b a n c e s .

D u r i n g t h e s l i d i n g mode t h e d i s c o n t . i n u o u s c o n t . r o l r hat,t.er,s about, t h e swiI . r .h ing s i i r f a r p at t i igh f r e q u e r i r y . T h i s phenomenori is usilal l y u r l d e s i r : i b l e f o r m o s t . p r a c t i c a l a p p l i ( al. i o n s arid ii sinooc.hed c.ont i n u o u s non1 i n e a r con1 r ' o l ( ari b e subsf, i t u t , e d wit.h i i t t ] ? a l t e r a t i o n i r i t tie dynamic b e h a v i o u i , of Lhe syat.em . T h e smoof.hed ( o r i t rol ier a lso p r e v o n t s Lhe exr i t a t i o n of h i g h - f r e q u e n c y unmode l e d d y n a m i c s ( c f t h e b o u n d a r y l a y e r i n t h e Lyapiinov a p p r o a c h 1 .

T h e R e g u l a t o r S y s t e m

Let, u s c o n s i d e r t h e r e g u l a t o r syst ,em w h i c h may he e x p r e s s e d i n i t s most g e n e r a l f o r m as

:( 1.) :[ P.+AA( t, 1 ]X ( t +[ B+AB( t , ) 1 U ( t ) + D f ( t. 1 ( 1 )

w h e r e x is t h e s t a t e n - v e c t o r , U is t h e c o n ' . r o l m-vectcir a n d f is a p - v e c t o r of d i s t u r b a n c e s . I . is assumecl t h a t n>m, B is of f u l l r a n k m a n d t h a t 1,he p a i r ( A , B ) i s c o m p 1 e L e l y c o n t r o l l a b l e . T h e ma'.vix A A r e p r e s e n t s t h e v a r i a t i o n s a n d u n c e r t a l n t . i e s i n t h e p l a n t p a r a m e t e r s , AB is t h e p l a n t / r o n l . r o I i n t e r f a c e u n c e r t a i n t y a n d f r e p r e s e n t s ext.ei-na1 d i s t u r b a n c e s . T h e o v e r a l l aim of a v a r i a b l e s t r u c t u r e r e g u l a t o r c o n t r o l d e s i g n is t o r e g u : a t . e t h e z ,ys tem s t a t e from a n a r b i t r a r y i n i ' , i a l c o n d i t i o n x(0) :x t o t h e s t a t e o r i g i n a s y m p t o t i c a l ~ y as ?-+W.

T h e m c . o n t r o 1 c o m p o n e n t s U . of t h e c o n t r o ; v e c t o r U are s ta te d e p e n d e n t ( f e e d b d c k ) f u n c t i o n s , U . :U. X I . The s w i t c h i n g ( o r s l i d i n g ) s u r f a c d s arc i n t e r s e c t i n g h y p e r p l a n e s M . p a s s i n g t h r o u g h t h e staLe s p a c e o r i g i n a n d d e f i n e d by M.=:{x:r. .::=a> (j=1,2 ,..., m) w h e r e c . is a row n - v d c t o r . J The ( i d e a l ) s l i d i n g modeJ o c c u r s when t h e s t a t e iie.7 s i m u l L a n e o u s l y i n e a c h of t h e h y p e r p l a n e s M . f o r j = 1 , ..., m . T h i s is a c h i e v e d when t h e sLat.e r4ar :hes a n d r e m a i n s i n t h e m a n i f o l d M, M={x:Cx=O] ~ w h i c h is t h e i n t e r s e c t i o n of t h e m h y p e r p l a n e s . I n g e o m e t r j c a l terms t h e s u b s p a c e M is t h e n u l l s p a c e ( o r k e r n e l ) of C , d e n o t e d N ( C ) .

F o r s i m p l i c j t y of p r e s e n t a t i o n l e t u s now r e s t : - i r . t o u r attent. ion t o t h e n o m i n a l s y s t e m w i t h o u t u n c e r t a i n t ies

= A x ( t ) + Bu(t , ) ( 2 )

i.e. A A = O , AR=O, f = O . T h e a n a l y s i s may b e c,ars-ied out. s i m i l a r l y for Lhe more g e n e r a l case b u t wi1.h greater n o t a t j o n a l c o m p l e x i t y . T h e s l i d i n g rnode may b e de1,ermined froin t h e d e f i n i n g c o n d i t i o n C x ( . . ) = O for t>,t w h e r e 1. is t h e time when l,he SI i t1 ing mani f o l dS is r e a c h e d .'D i f f e r e n t i a t i n g r e s p e c t , to t i m e a n d i n s e r t i n g (2) g i v e s

w i t h

C i ( j , ) = CAx(t . )+CBu( t , ) = 0 (1 . >/ 1, ) . ( 3 )

An e q i i i v a l e n L c o n t r o l U may b e e x p r e s s e d i n t h e 1 i n e a r f e e d b a c k form ueq ( 1 . ) I -Kx ( 1,) . mx n f e e d b a c k m a t r i x K is g r v e r i by K=(CB:"FA. T h e c l o s e d - l o o p s y s t e m d y n a m i c s i n t h e s l i d i n g mode are t h e n d e s ( r i bed by Lhe s y s t e m e q u a t i o n

UP-6-1 -2-

Page 3: [IEEE ICCON IEEE International Conference on Control and Applications - Jerusalem (April 3-6, 1989)] Proceedings. ICCON IEEE International Conference on Control and Applications -

It s h o u l d b e n o t e d t h a t t h i s motian is i n d e p e n d e n t of the a c t u a l control U a n d d e p e n d s o n l y o n t h e c h o i c e af C. The f u n c t i o n of t h e control U IS t o d r i v e t h e state i n t o t h e s l i d i n g s u b s p a c e M , and t h e r e a f t e r t o m a i n t a i n i t w i t h i n M. The c o n v e r g e n c e of t h e s t a t e v e c t o r t o t h e o r i g i n is e n s u r e d by s u i t a b l e c h o i c e of the f e e d b a c k maLr ix K . The d e t e r m i n a t i o n of t h e m a t r i x K or a l t e r n a t i v e l y , t h e d e t e r m i n a t i o n of t h e matrix C d e f i n i n g Lhe s u b s p a c e M, may b e a c h i e v e d w i t h o u t p r i o r knowledge of Lhe form of t h e c o n t r o l v e c t o c U. ( T h e r e v e r s e I S not, t r u e ) . The n u l l s p a c e of C, N(C1, and t h e r a n g e s p a c e of B, R ( B ) , are complemen ta ry s u b s p a c e s ; i . e . N(C)AR(B) = EO]. S i n c e m o t i o n l ies e n t j r e l y w i t h i n N ( C ) d u r i n g t h e i d e a l s l i d i n g mode, t h e dynamic b e h a v i o u r of t h e s y s t e m d u r i n g s l i d i n g is u n a f f e c t e d by t h e c o n t r o l s b e c a u s e t h e y act o n l y w i t h i n R ( B ) .

7

Sys tem T r a n s f o r m a t i o n

The deve lopmen t of t h e t h e o r y and d e s i g n p r i n c i p l e s is s i m p l i f i e d by u s i n g a p a r t i c u l a r c a n o n i c a l form for t h e s y s t e m . T h i s form is c l o s e l y r e l a t e d t o t h e c o n t r o l l a b i l i t y c a n o n i c a l form for a m u l t i v a r i a b l e l i n e a r s y s t e m . By a s s u m p t i o n t h e m a t r i x B h a s f u l l r a n k m , so t h a t t h e r e e x i s t s a n o r t h o g o n a l nxn t r a n s f o r m a t i o n m a t r i x T s u c h t h a t

TB = [I2] ( 5 )

where B is mxm and n o n - s i n g u l a r . T h e o r t h o g o n a l i t y r e s t r i c E i o n is imposed o n T fo r r e a s o n s of n u m e r i c a l s t a b l l i t y and t o remove t h e p r o b l e m of i n v e r t i n g T when t r a n s f o r m i n g b a c k t o t h e o r i g i n a l s y s t e m i n t h e CAD package!'

The t r a n s f o r m e d state is y = Tx and t h e s t a t e e q u a t i o n (2) becomes

i ( t ) = TATTy(t) + T B u ( t ) . ( 6 ) T The s l i d i n g c o n d i t i o n is C T y ( t ) = O . I f t h e

t r a n s f o r m e d s ta te y is now p a r t i t i o n e d as T T

Y ( Y , Y:) ; y 1 y2"' ( 7 ) T T and t h e matrices TAT , T B and CT are p a r t i t i o n e d

a c c o r d i n g l y , t h e n

' l ( t ) = A , , y l ( t ) + A I 2 y 2 ( t )

>,(t) = A 2 1 y l ( t ) + A 2 2 ~ 2 ( t ) + B2U(t) ( 8 )

and

C , y l ( t ) + C2Y2( t ) = 0 (9)

and C2 is n o n - s i n g u l a r (from CB n o n - s i n g u l a r ) . The more g e n e r a + s y s t e m ( I ) c a n b e s i m i l a r l y e x p r e s s e d , i f T(AA)T and T(AB) are a l s o p a r t i t i o n e d c o m p a t i b l y w i t h y1 a n d y2 .

11. w i l l b e a s sumed t h r o u g h o u t (,he r e m a i n d e r of t h i s p a p e r t h a L t h e u n c e r t a i n t i e s i n t h e p l a n t c o n t r o l . i n t e r f a c e o c c u r o n l y o n t h e a c t u a l jnpui, c h a n n e l s , i .e. r a n k ( B ) = r a n k ( B AB). Under t h i s a s s u m p t i o n , AB1 ( t ) = O , and y , becomes . i ndependen t of t h e c o n t r o l U.

'The c a n o n i c a l form is c e n t r a l 1.0 t h e h y p e r p l a n e d e s j g n me thods d e s c r i b e d be low. I f . a l s o p l a y s a s i g n i f i c , a n t r o l e in t h e s o I u L i o n of t h e r e a c h a b i l i t y p r o b l e m , i .e. t h e d e t e r m i n a L i o n of t h e c o n t r o l form e n s u r i n g Lhe a t t a i n m e n t of t h e s l i d i n g mode, wh ich w i l l b e d i s c u s s e d la1.er. EquaLion ( 9 ) d e f i n i n g t h e S I i d i n g mode is e q u i v a l e n t , t o

where t h e mx(n-m) riraLrix F is d e f i n e d by

- 1 (12) 2 c l F = C

so t o y l . The s l i d i n g mode sa t i s f ies t h e e q u a t i o n s

t h a t i n t h e s l i d i n g mode y2 is r e l a t , e d l i n e a r l y

( 1 3 )

T h i s r e p r e s e n t s a n (n -m) - th o r d e r s y s t e m i n wh ich y2 p l a y s t h e role of a s t a t e f e e d b a c k c o n t r o l . Thus

( 1 4 )

so t h a t t h e d e s i g n of a s t a b l e s l i d i n g mode s u c h t h a t y-+O as t 3 w r e q u i r e s t h e d e t e r m i n a t i o n of t h e g a i n m a t r i x F s u c h t h a t A -A F h a s n-m l e f t - h a n d h a l f - p l a n e e i g e n v a l u e s . " T h l g may b e a c h i e v e d by u s i n g a m o d i f i e d form of a n y s t a n d a r d d e s i g n method g i v i n g a l i n e a r f e e d b a c k conf , ro l l e r for a l i n e a r d y n a m i c a l s y s t e m . The main me thods are t h o s e b a s e d o n t h e m i n i m i s a t i o n of a n i n t e g r a l cost f u n c t i o n a l w i t h q u a d r a t i c i n t e g r a n d , and d i r e c t p o l e p l a c e m e n t .

H y p e r p l a n e D e s i g n Sy Direct E i g e n v a l u e Ass jgnmen t

The m a j o r i t y of VSC d e s i g n t e c h n i q u e s u s e e i g e n v a l u e a s s j g n m e n t me thods i n s e l c t j n g i.he s l j d i n g mode. F o r s c a l a r - c o n t r o l l e d e x a m p l e s w i t h a s i n g l e swi t c h j n g h y p e r p l a n e , s p e c i f i c a t i o n of t h e n-1 e i g e n v a l u e s to b e a s s o c j a t e d w i t h t h e s l i d i n g mode complei ,e ly d e t e r m i n e s t h e f e e d b a c k maLr ix F wh ich is a n (n -1 ) - row v e c t o r . F o r Lhe m u l t i p l e input . case U t k i n a n d Yang'' show t h a t t h e p a i r

is c o n t r o l l a b l e and t h a t e i g e n v a l u e

a s s j g n m e n t is f e a s i b l e . I t is w e l l known, however , thal , t h e a s s i g n m e n t of e i g e n v a l u e s of a n n t h o r d e r m-jnpul, s y s t e m r e q u i r e s o n l y n of t h e nm d e g r e e s of f r eedom ( d . 0 . f . ) a v a j l a b l e i n c h o o s i n g t h e f e e d b a r k g a i n m a t r i x . The rema i n i rig ( n - m ) d . 0 . f . may b e u t i l i s e d i n p a r t i a l l y a s s i g n i n g t h e a s s o c i a t e d e i g e n v e c t o r s . T h i s c a p a b i I i t y o f a s s i g n i n g Lhe e i g e n v e c t o r s may b e u s e d i n two complemen ta ry ways: to s h a p e Lhe r e s p o n s e of t h e c l o s e d loop s y s t e m ; or t o max imise t h e r o b u s t n e s s o f t h e e i g e n v a l u e p l a c e m e n t . We assume t h r o u g h o u t L h a t t h e non-ze ro s l i d j n g mode e i g e n v a l u e s are d i s l i n c t from e a c h o t h e r and from t h e e i g e n v a l u e s of A l l .

Our f irst a p p r o a c h r e v o l v e s a r o u n d t h e i d e a of

( A 1 1 ? A t , )

W-6-1 -3-

Page 4: [IEEE ICCON IEEE International Conference on Control and Applications - Jerusalem (April 3-6, 1989)] Proceedings. ICCON IEEE International Conference on Control and Applications -

a s s i g n i n g t h e e i g e n v e c t o r s of' ( 14) d i r e c . l . 1 ~ i n o r d e r 1.0 s h a p e t h e syst.em r e s p o n s e d u r i n g sl i d i r l g . I f . is c l e a r t h a t t h e e j g e n v e c l o r s s h a p e t h e r e s p o n s e of a n u n f o r c e d a u t o n o m o u s 1 i n e a r sysf etit k = Px. I f t,he t , r a n s i i . i o n mat,rix is w r i l . 1 eri i r i I he modal form

e x p ( p t ) = x e x p ( O t ) X-' ( 1 ' ) )

w h e r e Q is t h e J o r d a n normal form of P a n d X i s f h e e i g e n v e c i , o r mat , r ix a s s o c i a % e d wj1.h Q .

S u p p o s ~ tha l , Lhe s l i d i n g mode h a s commenced on N(C). 'Then

;(t) z (A-BK) x ( t ) (16)

w h e r e K = ( C B ) - CA. S i n c e s l i d i n g m o t i o n m u s t r e m a i n i n N ( C ) , we h a v e t h a t

1

C[A-BK]=O <=> R(A-BK) C N ( C ) . ( 1 7 )

L e t h,(i=l, ..., n) b e t h e e i g e n v a l u e s of A-BK w i t h c o r r e i p o n d i n g e i g e n v e c t o r s w i . Then ( 17) imp1 i e s t h a t

C [ A - B K I w . = hi C w . = O ( 1 8 )

so t h a t e i t , h e r w . is zero o r wic N ( C ) . Now = A h a s p r e c i s h l y m z e r o - v a l u e d e i g e n v a l u e s , so 1 8 A . ( j = l , . . . , E - m ) b e t h e n o n - z e r o e i g e n v a l u e s ( d i s t j n c t by a s s u m p t i o n ) . Then s p e c i f y i n g t h e c o r r e s p o n d i n g e i g e n v e c t o r s wi ( i = l , ..., n-m) f i x e s t h e n u l l s p a c e of C , s i n c e d im[N(C)]=n-m.

T h e d r a w b a c k t o t h i s a p p r o a c h is t h a t !,he e i g e n v e c t o r s of A-BK are not,, i n g e n e r a l , f r e e l y a s s j g n a b l e . A t most m e l e m e n t s of a n e i g e n v e c t o r may b e a s s i g n e d a r b i t r a r i l y ; t h e r e m a i n i n g n-m e l e m e n t s are Lhen f u l l y d e t e r m i n e d by the a s s i g n e d e l e m e n t s . T h u s o n e a p p r o a c h t o e i g e n v e c t o r a s s i g n e n t , would b e t o p i c k m e l e m e n t s a c c o r d i n g Lo some s c h e m e a n d a c c e p t t h e r e m a i n i n g e l e m e n t s as d e t e r m j n e d . T h i s m i g h t a l l o w a d e g r e e of a d j u s t m e n t t o b e c a r r i e d o u t by i n s p e c t , j o n .

An a l L e r n a t i v e method of e j g e n v e c t o r a s s j g n m e n t j s by c o n s i d e r a t . i o n of Lhe a s s i g n a b l e s u b s p a c e c o r r e s p o n d i n g t o a g i v e n e i g e n v a l u e . I f t h e c h o s e n v e c t o r js not. a s s j g n a b l e , i t is t h e n m o d i f i e d i n t h e c o m p u t e r a l g o r i t . h m by d e t e r m i n i n g t h e " c l o s e s t " a s s i g n a b l e e j g e n v e c t . o r ( j n t,he least s q u a r e s s e n s e ) for t h e p r e s e n t e j g e n v a l u e . A more d e t a i l e d t r e a t m e ? $ h a s b e e n presen1 ,ed by Dorljng a n d Z i n o b e r .

A-$7

Robust. E j g e n v a 1 u e Assi gnment

The f r e e d o m t o a s s i g n (ai. l e a s t p a r t i a l l y ) t h e e i g e n v e c t - o r s of t h e e q u i v a l e n t , s y s t e m may a l t e r n a t i v e l y b e u s e d 1.0 e n s u r e Lhat, Lhe e i g e n v a l u e s a s s o c i a t . e d w i t h t h e si i d i n g mode are m a x j m a l l y j n s e n s i l . i v e Lo p e r L u r b a t . i o n s i n f.he s y s t e m p a r a m e t e r m a t r i x A . T h i s r e d u c e s d e v i a t ion from t h e d e s i r e d d y n a m i r r e s p o n s e w h i r h may ar ise from14;q% p a r a m e t e r v a r i a t i o n s w h i c h do not, l i e i n R ( B )

I n c l u d i n g Lhe p a r a m e t e r v a r i a t i o n t.erms i n t h e c l o s e d l o o p f o r m of ( 1 4 ) g i v e s

wt1f-r.r i.tie r ~ x p I i ( i f 1, imp d e p e n d e n c e of' y I , A A i a n d A A has t,f:erl drvppecf. The s r r . ~ n d i,erfri or1 h e r,.t!,<s. o f ' ( < ' ( I ) r*epres?r i f , s t.he p e r t u r b a l . i o n of' t h e riot" i na l d u e Lo par,amet e r v a r i at. i 011s.

T h i s k r m IS , i n g c m e r a l , I irrW-vary ng , m d a r b i i . r a i - y ; 1 t r r r*otiusl. assigrirtlc~f approa< t1 aims f o m i r l j m i s r i ( :; 6 , f ' t ' w I S .

I f ' t,he [,:lr'arrifl e r v;it'ial i o t i s : i r ' f , l f l : j f ( tll-'d, i .e . r a r r k ( B ) j$;mk ( 1 13 A A I ) , 1 h r , r i 1 t i c , r~ i l111: ;1 , f on1 r o l d e s i g n s may tie emp I r i y ~ d 1.0 c ' f i : ; i i i ' < x 1 ti:31 f r i e SI a1 ('

r e a c h e s a n d rerna i n s w i I h i r i I t i r , :: I i r i i ti): mm i 1 ' 0 I d NIC). T h i s is e q u i v a l e n l I o t t t ; i i r i ~ ; ~ i f ~ i r i i { t h c 111

z e r o - v a l u e d e i g e n v a l u e s o f A , , , , , , r i r , r , r , . ~ ~ ~ f ~ r i r ~ i r i ~ l 1 ( J

t h e d y n a m i c s i n R ( B ) , ai. zf 'r ' r) . l ; o w ~ ~ v c ~ r ~ , i f t t i e s

p a r a m e t e r v a r i a t i o n s are t i r t ~ r ~ a l ~ + i c ~ t l , I k i w i I,& iteal sliding mode w i l l b e c i i sh l r , t i f - f i . 0 1 1 1 ' aim is t h e r e f o r e t.0 d e s i g n !.he f e e d t m k m a t t ' i x F suf h f hat. t h e n-m a s s i g n e d n o n - z e r o e i g f x i v a l u ~ ' s are maximal l y r o b u s t , t h e r e b y m i n j m i s i r i g t tie r f f w t,s of i.hf- p a r a m e t , e r v a r i a t i o n s i n t h e N ( C ) or l.h? sl iOine; mode d y n a m i c s .

The s l i d i n g mode s y s t e m as d e s r r i b e d by ( 8 ) r e p r e s e n t s a n (n-m)i,h o r d e r sysi .em wij,h m con .rol i n p u t s . . T h e i n t e r f a c e m a f , r j x A , ? h a s d i m e n s i o n (n-m)xrn a n d r a n k p w h i c h sa+, isf ies

sy:.t err1 ( I / I )

I 6 p 6 min @-m, m). ( 2 1 )

Note Lhat, p=O would imply ( A l l , A unconti"o1 l a b l e , c o n t r a d i c t i n g Lhe con1,rol l a b i 1 lgy of t h e o r i g i n a l syst ,em. I f p<m, t.he s l i d i n g mode s y s t e m h a s redundant , input , s whic,h may b e removed by r e o r d e r i n g the r.ont.r'o1 inpu1.s and s e l . t i n g par t . of F t o zer3.

We now d e s c r i b e b r i e f l y Lhe h y p e r p l a n e d e s i g n s c h e m e for r o b u s t , e i g e n v a l u e a s s i g a m e n f , u n d e r t.he assumpl . icn 1,hat. p=m. Lei, ~ . G ( T ( A , ~ ;-fti12F), wi1.h c o r r e s p o n d i n g r i g h t . e i g e n v e c t o r v . cR a n d left e i g e n v e c t o r Then i t , i s ' w e l l -knownIq (see Wil l t inson, 1965) LhaL t.he s e n s i t j v i t , y of w . 1.0 p e r t , u r b a t i o n s i n A l 1 , A 1 2 a n d F d e p e n d s a p p r o x i m a t e l y I i n e p r l y o n t h e quarit.it.y 1 / r . , t.he s e c a n t of t,he a n g i e b e t w e e n t.t?e v e c f o r s ' v a n d ri so t h a t . l / c . 2 I . I n t h e c a s e o f a n e q u a l number' of sl.at,esl a n d i n p u L s for t h e S I i d i n g mode s y s t e m (n-m-m), we h a v e c o m p l e L e f r e e d o m i n a s s i g n i n g t h e e i g e n v e c t o r s of A - A i F a n d r x d o n o beLt ,e r Lhan selec 1. i n g a n or t .hogona? ' c ' i g e r l v e c L o r m a t r i x V= [ v , v ... v 1 w h i c h c l e a r l y i ? i v e s I / < , . = i , a n d i n p a r 1 ?! I I fa r w"e;ay f . a k e V= I

More g e n e r a l l y , i < m < r i - m a n d we s h o u l d aim t o makp I/c. as small as p o s s i b l e for e a c h i z l ,..., n-m. I f . is ' a lso wel l -known I,hal an u p p e r bound on e a i h oi' t h e s e n s i 1 , i v i t i e s j s t .he spet. t .ra1 c.ondii . ion number K ( V ) ( d e f i n e d by

n-m'

- I K ( V ) = I I V I I . I I V I I ( 2 2 )

w h e r e Lhe spec 1.r.a I mai,ri x norm i s ernp I o y e d . T h u s m i n i m i s i n g K(V) s h o u l d e n s u r e t.hal. !,he s e n s i t , i v i i . i e s o f a l l t.he a s s i g n e d e i g e n v a l u e s are a c c e p t a b l e ; a n d , adr i i l i o n a l l y e n s u r e !.hat. V is we1 I - tor id i t , ionec i w . i ' . t . i n v e r s i o n , sc: I.hal f h e s o I u l , i o n p rwess f ' o r . t.he f e e d b a r k mtf . r ix F is s t . a b l e arid t h e t)otmtls o n t h e magnj1,iides of' f ' a n d Lhe t r a n s i e n t , re :spor iw a r t m i n i m i s e d . I t s h o u d b e nol.ecl, h o w e v e r , f tiat. we a re n o t f ' ree (.hoo:;e o u r

UP-6- 1 -4-

Page 5: [IEEE ICCON IEEE International Conference on Control and Applications - Jerusalem (April 3-6, 1989)] Proceedings. ICCON IEEE International Conference on Control and Applications -

e i g e n v e c t o r s V . a r b i t r a r i l y i f m<n-m, a n d t h a t , t h e minimum a t t a i n h b l e c o n d i t i o n number K ( V ) is t h e r e f o r e n o t n e c e s s a r i l y u n l t y for a g i v e n se t of e j g e n v a l u e s .

T e c h n i q u e s for d e t e r m i n i n g a s u i t a b l e se t of e i g e n v e c t o r s for a s p e c i f i e d s p e c t r u m i n t h e u s u a l l i n e a r f e e d b a c k s y s t e m h a v e been d e s c r i b e d i n r e f e r e n c e 17. T h e s e t e c h n i q u e s h a v e been a d a p t e d t o t h e r e s t r i c t e d p r o b l e m o f a s s i g n i n g t h e e i g e n v a l u e s of t h e s l i d i n g mode s y s t e m . The me thod d o e s n o t i n f a c t p r o d u c e a minimum f o r K ( V ) , b u t i t d o e s m i n i m i s e a c o n d i t i o n i n g m e a s u r e g i v i n g a good a p p r o x i m a t i o n t o t h e o p t i m a l c o n d i t i o n i n g .

C o n t r o l Scheme D e s i g n

H a v i n g s o l v e d t h e E x i s t e n c e P r o b l e m ( t h e d e t e r m i n a t i o n of C) a t t e n t i o n mus t b e t u r n e d to t h e R e a c h a b i l i t y Problem: t h e p r o b l e m of s e l e c t i n g a s ta te f e e d b a c k c o n t r o l f u n c t i o n w h i c h w i l l d r i v e t h e state x from a r b i t r a r y x i n t o t h e n u l l s p a c e of C and m a i n t a i n i t w i t h i n &is s p a c e t h e r e a f t e r . T h e r e are a w i d e v a r i e t y of c o n t r o l forms w h i c h h a v e been s t u d i e d . E a r l y VSC d e s i g n s u s e d r e l a y control w j t h f j x e d o r s t a t e - d e p e n d e n t g a i n s w i t h a d i s c o n t i n u i t y o n o n e or more of t h e h y p e r p l a n e s forming t h e m a n i f o l d M:N(C) . More r e c e n t l y t h e d e s i g n t e c h n i q u e h a s been s i m p l i f i e d by a r r a n g i n g fo r d i s c o n t i n u i t i e s t o occur o n l y o n t h e in tersect ion of a l l t h e h y p e r p l a n e s .

I n g e n e r a l t h e v a r i a b l e s t r u c t u r e control law c o n s i s t s of two p a r t s : a l i n e a r c o n t r o l l aw U a n d a n o n - l i n e a r p a r t U wh ich are a d d e d t o form k. T h e Linear control 8s a l i n e a r s ta te f e e d b a c k c o n t r o l l e r , u L ( x ) = L x , w h i l e t h e n o n l i n e a r f e e d b a c k c o n t r o l l e r U i n c o r p o r a t e s t h e d i s c o n t i n u o u s o r c o n t i n u o u s n o n l i n e a r elemerits of t h e c o n t r o l law. T h e s e n o n - l i n e a r i t i e s may l n c l u d e r e l a y s w i t h c o n s t a n t g a i n s , r e l a y s w i t h s t a t e - d e p e n d e n t g a i n s , l i n e a r f e e d b a c k w i t h s w i t c h e d g a i n s a n d s c a l e d u n i t - v e c t o r n o n - l i n e a r i t y , U ( x ) I p Cx / I I C x l l , ( p > O ) . The f irst t h r e e forms are d i s c o n t i n u o u s on t h e i n d i v i d u a l s w i t c h i n g h y p e r p l a n e s a p d r e q u i r e a h i e r a r c h i c a l d e s i g n s t r u c t u r e f o r m>l? I n t h e u n i t - v e c t o r case t h e i n d i v i d u a l c o n t r o l s are c o n t i n u o u s e x c e p t on t h e f i n a l j n t e r s e c t i o n , N ( C ) , o f t h e h y p e r p l a n e s , where a l l t h e c o n t r o l s are d l s c o n t i n u o u s t o g e t h e r .

To e l i m i n a t e t h e u n d e s i r a b l e c h a t t e r mot ion, c a u s e d by t h e a p p l i c a t i o n of d i s c o n t , i n u o u s c o n t r o l , f h e d i s c o n t i n u i t y c a n b e " s o f t e n e d " a n d r e p l a c e d 1 2 b y a I lboundary l a y e r " c o n t i n u o u s approximat , i o n . F o r e x a m p l e , a r e l a y m i g h t b e r e p l a c e d by a s a t u r a t i n g a m p l i f i e r , g i v j n g a small r e g l o n of u n s a t u r a t e d c o n t r o l effor t i n t h e n e i g h b o u r h o o d of t h e s w i t c h i n g s u r f a c e . T h i s e l i m i n a t e s c h a L t e r m o t i o n and y i e l d s 18smoothed" conk rol. Such a c o n t r o l s y s t e m is not a VSC s y s t e m i n t h e o r i g i n a l s e n s e of t h e term, a l t h o u g h i t works on t h e same p r i n c i p l e : a r a p i d a t t a i n m e n t of t h e s l i d i n g m a n i f o l d is f o l l o w e d by a t r a n s i e n t i n tthe n e i g h b o u r h o o d o f t h e m a n j f o l d , wh ich c a n b e made

N .

N

a r b i t r a r i l y c l o s e t o t h e i d e a l i s e d

The c o n t r o l s t r u c t u r e d e v e l o p e d i n form

s l i d i n g mode.

ref. h a s t h e

u ( x l = LX + p ( x ) N x / ( / /Mx(( + d ) (231

where t h e n u l l s p a c e s of N , M a n d C are c o i n c i d e n t : N ( N ) = N ( M ) = N ( C ) . T h e l i n e a r c o n t r o l law U s e r v e s o n l y t o d r i v e t h e st,ate to N(C) a s y m p k o t i c a l l y ; t o a t t a i n N ( C ) i n f i n i t e time, t h e n o n - l i n e a r componen t uN js r e q u i r e d . T h i s c o n t , r o l s1 , ruc ty t je h a s b e e n i n c l u d e d i n t h e CAD p a c k a g e VASSYD . When d i s t u r b a n c e s a n d u n c e r t , a i n t , ies are n o t p r e s e n t , a s c a l a r c o n s t a n t may b e e m p l o y e d . I n t h e p r e s e n c e of u n c e r t a i n t i e s t h e s c a l a r d is r e p l a c e d by a t j m e - v a r y i n g , s t a t e - d e p e n d e n t , f u n c t j o n i n c o r p o r a t l n g d e s i g n p a r a m e t e r s . The d e s i g n e r n e e d s t o s p e c i f y t h e r a n g e of m a g n i t u d e s of e x p e c t e d p a r a m e t e r v a r i a f , i ons a n d d i s t u r b a n c e s . F o r a f u l l e r e x p o s i t j o n of t h e t h e o r y a n d a d e t a i l e d e x p l a n a t i o n o f t h e d e s i g n p r o ~ ~ s ~ 3 , ! , ~ ; , 8 r e a d e r js r e f e r r e d f.0

r e f e r e n c e s

C o n c l u s i o n

Two a p p r o a c h e s t o t h e n o n l j n e a r d e t e r m i n i s t i c c o n t r o l o f u n c e r t a i n t i m e - v a r y j n g s y s t e m s are Lyapunov a n d v a r i a b l e s t r u c t u r e c o n t , r o l . The main p r o p e r t y is j n v a r i a n c e t o m a t c h e d p a r a m e t e r v a r i a t i o n s . T h i s p a p e r h a s c o n c e n t r a t e d on t h e d e s i g n of v a r i a b l e s t r u c t u r e c o n t r o l s y s t e m u s i n g a n e i g e n s t r u c t u r e a p p r o a c h . It n a s b e e n shown t h a t t h e h y p e r p l a n e d e s i g n p r o b l e m r e d u c e s t o a l i n e a r f e e d b a c k d e s j g n p r o b l e m f o r a lower o r d e r s y s t e m . t h e r e are two b a s i c algorithms; e i g e n v a l u e a n d p a r t i a l e i g e n v e c t o r a s s i g n m e n t t o s h a p e t h e c l o s e d - l o o p r e s p o n s e , a n d a r o b u s t e i g e n v a l u e ass ignment , a p p r o a c h t o m i n i m j s e t h e sensitivity of t h e e i g e n v a l u e s t o unmatched p a r a m e t e r v a r i a t i o n s . The CAD F o r t r a n 77 p a c k a g e , named VASSYD ( V a r j a b l e S t r u c t u r e S y s t e m D e s i g n 1 , p r o v j d e s faci I i ti es fo r o n - l j n e VSCS d e s j g n , s i m u t a t i o n of t r a n s i e n t r e s p o n s e a n d t h e storage or s y s t e m d a t a . It j n c o r p o r a t e s a n e x t e n s i v e ' h e l p ' modu le p r o v i d i n g t h e u s e r a t a l l stages w j t h d e t a j l e d i n s t u c t i o n s r e g a r d i n g t h e a p p l i c a b l e t h e o r y a n d t h e mode of o p e r a t i o n of t h e p a c k a g e .

R e f e r e n c e s

S . Gutman a n d Z . P a l m o r , " P r o p e r L i e s of min-max c o n t r o l l e r s i n u n c e r t a i n d y n a m i c a l s y s t e m s , " SIAM J . C o n t r o l O p t i m i z a t i o n , v o l .

M . J . Corless and G . L e i t m a n n , " C o n t i n u o u s sta1.e f e e d b a r k guarar i1 ,ee ing u n i f o r m u l t i m a t e bout idedness f o r unc e r l , a i n d y n a m i c a l s y s f , e m s , " JF:F:F: T r a n s AuLorri ConLro1 , v o l . AC-26, pp. I 149-1 1/14, '981. E . P . Ryan, " A d a p t i v e s t a b i 1 i z a f . i o n of a c lass o f ' uric P r t a i n non1 i n e a r sysLems: a d i f f e r e n t i a l i r i c l u s ion a p p r o a c h , " S y s f . e m s a n d C o n t r o l [ .efter's, v o l . I O , pp. 95-101, 1988. F. C a r o f ' a l o a n d L , . G 1 ielnio, " N o n l j n e a r curit iriiioiis f e e d b a c k ront r o 1 fo r r o b u s t t r a c k i n g , " i n "Del c:rtninirit.ic. c o n t . r o l of unr ,e r%ain sys+.ems," e d . A.S.I. Z i n o b e r , P e t e r P e r e g r i r i u s Press, London, t o b e p u b l i s h e d

2 0 , pp. 850-861 , 1982.

Page 6: [IEEE ICCON IEEE International Conference on Control and Applications - Jerusalem (April 3-6, 1989)] Proceedings. ICCON IEEE International Conference on Control and Applications -

1989. [5] A.S.I. Zinober, "Determinjstic conLrol of

uncertain systems,1t (edited book), PeLer Peregrinus Press, London, to be publjshed 1989.

[6] R.A. DeCarlo, S.H. Zak and G.P. Matthews, "Variable s1.ructure control of nonlinear multivariable sysLems: a tutorial ,Ig Proc. IEEE, vol. 76, p p . 212-232, 1988.

[7] V.I. Ut,kin, 'IVariable structure systems with sliding modes", IEEE Trans Autom Control, vol. AC-22, pp. 212-222, 1977.

[8] V . I . Utkjn, "Variable structure control : state of !.he art," Proc IFAC Conference (Munich), 198'1.

[9] H . Buhler, "Reglage par mode glissement.," Presses Polyt.er.hniques Romandes, 1986.

[ 101 B. Drazenovic, "The invariance conditions in variable st.ructure systems," Automatics, vol.

[ l l ] C.M. Dorling, "Manual for the VASSYD CAD Package," Dept. of Appljed and Computational Mathematics, Uni versi Ly of Sheffield (obtainable from A.S.I. Zinober), lOOpp, 1985.

[12] J.A. Burton and A.S.I. Zjnober, "Continuous approximaLion of variable structure control ," Int. J. SysLems Scj., vol. 17, pp. 875-885, 1986.

[131 C.M. Dorling and A.S.I. Zjnober, "Two approaches to hyperplane design jn multivariable variable structure control systems," Int J Control, vol. 44, pp. 65-82, 1986.

[141 C.M. Dorling and A.S.I. Zinober, "Robust hyperplane design i n multivariable variable structure control systems, Int J Control, vol. 48, pp. 2043-2054, 1988.

[151 A.S.I. Zinober, M.K. Yew and R.J. Patton, ltVariable structure control of fljght dynamics," Proc IEE Int Conf, C o n t r o l '88, Oxford, pp. 707-71 1 , 1988.

[161 V.I. Utkin and K.D. Yang, "Methods for constructing d i sconti nuj ty planes in mu1 t j dimensi onal variable structure systems , I 1

Autom Remote Control, vol. 39, pp. 1466-1470, 1978.

1173 J. Kautsky, N . K . Nichols and P. Van Dooren, "Robust, pole assignment, i n 1 inear state feedback," Int. J. Control, vol. 41, pp.

[181 E.P. Ryan and M. Corless, ltUltimate boundedness and asympt.ot.j c. stabi 1 j t.y of a class of uncertain dynamjcal systems via continuous and discontinuous feedback control , I t IMA J. Math. Control Information, vol. I , pp. 223-242, 1984.

[I91 J . H . Wilkinson, "The Algebrajc Eigenvalue Problem," Clarendon Press, Oxford, 1965.

5, pp. 287-295, 1969.

1129-1 15, 1985.

WF-6- 1 -&*