ie IRODOV SOLUTION PART 1

95

description

IRODOV solutions

Transcript of ie IRODOV SOLUTION PART 1

  • 1raftMotor Boat

    V

    V

    1.1. Method : 1 (Relative approach)V = Relative speed of

    motor boat w.r.t.

    river which is constant

    Observer on raft see that speed of motor boat is constant because duty of motor boat is constant.Hence if motor boat take 1 hrs in down stream journey then to reach again at raft motor boatwill take 1 hrs in upstream journey. Hence Total time in complete journey = 2 hrs.Motion of raft : u = speed of river. Then 2 u = 6 u = 3 km/hr. Ans.

    Method : 2 (With frame of ground)

    Motion of raft : u (1 + t1) = 6 (i)

    Motion of motor boat : (v + u) 1 (v u) t1 = 6 v + u vt1 + ut1 = 6

    v vt1 + u (1 + t1) = 6; from (i) v vt1 + 6 = 6 t1 = 1 hrs.

    put t1 = 1 hr in (i) : u (1 + 1) = 6 u = 3km/hr Ans.

    Q.1.2: Total distance travel by point is S. Then Time taken in first journey :

    t1 = 0V2

    S Time taken in second journey :

    2t V

    2t V

    2S 2

    22

    1 t2 = 21 V VS

    Mean velocity = 21 t t

    S =

    210 V VS

    VS/2

    S

    Mean velocity = 021

    2102V V V

    )V (V 2V

    Ans.

    Q.1.3 Method : 1 (Graphical Approach) Given tan =

    timeTotal

    trapziumof Area tan

    2t ) t (

    21

    Time

    ntDisplaceme

    4 1 t Ans.

    Fixed point

    6 km u

    distance = 2 u

    raft

    1 hr.

    t1

    6 km

    Part OnePhysical Fundamenatls of Mechanics

    1.1 Kinematics

    V

    t

    t

    t2

    t2

  • Compact ISC Physics (XII)2

    Method : 2 (Analytical)

    Total displacement (S) = 22

    2t

    21 t

    2t

    2t

    21

    Time taken = =

    22

    2t

    21 t

    2t

    2t

    21

    S t =

    4 1 Ans.

    Q.1.4 (a)

    S

    2m

    20 s t

    average velocity = 202

    = 0.1 m/s = 10 cm/s Ans.

    (b) Velocity will be maximum when slope of S (t) curve will be maximum.

    V = 10 140.4 1.4

    m/s = 25 cm/s Ans.

    (c) Instanteneous velocity may be equal to mean velocity whenslope of line joining final and initial point will be same toslope at point on curve. Ans. : to = 16 s

    Q.1.5 Velocity of B with respect to A : 12A B V V V

    Position of B with respect to A : 12ABA B r r r r r

    A

    B

    VB A

    Particle B will be collide with A if velocity of B with respect A is directed toward observer A.

    Then A BA BA BA B r V r || V Then | r r |

    r r | V V |

    V V

    12

    12

    12

    12

    Ans.

    Q.1.6

    N

    EW

    S

    V = 15 km/hrW E

    V = 30 km/hrS E60

    Y

    X

    S

    16 sapprox

    t

    S

    1.4

    14t

    0.4

    10

    A

    r1

    v1v2

    r2

    B

    Y

    X

  • 3E SV

    = 30 i; j 60sin 15 i 60 cos 15 V E W

    E W E SS W V V j 60sin 15 i 30) 60 cos (15 V

    km/hr 40 60)sin (15 30) 60 cos (15 |V | 22S W

    19 30 60 cos 1560sin 15 tan Ans

    Method 2

    30 km/hr

    VW S15 km/hr

    60

    we know E SE W S W V V V

    60 cos V V 2 V V |V| E SE W 2

    E S2

    E W S W

    40 km/hr Ans.

    from figure : tan = 60 cos 15 3060sin 15

    = 19

    Person : 1

    Q.1.72 km/hr

    d

    2.5 km/hr

    Time to cross the river : t = cos 2.5

    d (i)

    from figure : sin = 54

    2.52

    cos = 53

    Put in (i) : t = 1.5d

    (ii)

    Person : B

    2 km/hr

    d

    2.5 km/hr

    x

    Using trigonometry : x = d tan 1

    Time to reach at destination point : t = t1 + t2 Here t1 = Time to cross the river = 2.5d

    t2 = Time to walk on bank = u tan d

    ux And tan

    = 5

    4 2.52

    t = 54

    ud

    2.5d

    (iii)

    from (ii) and (iii) : 5u4d

    2.5d

    1.5d

    u = 3 km/hr Ans.

  • Compact ISC Physics (XII)4

    Q.1.8 Boat A : dd

    time to reach again at same point.

    tA = W Vd

    W Vd

    (i) where V = Speed of boat w.r.t. river

    W = Speed of water w.r.t. earth.

    Boat B : dW

    V Time to reach again at same point. tB = 22 W V

    2d (ii)

    Also given V = (iii) now 1

    2d

    d

    d

    tt

    2222

    B

    A

    1

    tt

    2B

    A

    = 1.8s

    1.9: Method : 1 d Vm r

    x

    Vr EA

    Time to cross the river: t = cos | V |d

    mr

    Then Drift (x) = (Vm r sin Vr E) cos Vd

    mr Since Vm r < Vr E . Hence

    this is not possible that drift will be zero. Hence we should have to minimize

    drift (x). Hence d

    dx = 0

    d sec2 mr

    E r V

    d )(V sec tan = 0 sin = 2

    1 VV

    E r

    r m = 30

    Angle made by boat with flow velocity of water = 30 + 90 = 120 Ans.

    Method : 2 (Vector addition method)

    Vr E

    Vm r

    E r r mE m V V V

    Hence will taken any value between

    (0 180) hence we can draw a semi circle of radius of length |V| r m

    . Then.

    30 90

  • 5Vr EA

    C4C3

    C2C1

    B

    And resultant is given by C1, C2, C3 and C4, ....... Cn. But for minimum drift resultant must be

    tangent at semicircle. Then cos = 21

    VV

    E r

    mr = 60 Then = 180 60 = 120

    1.10: Relative acceleration of particle (1) w.r.t. (2) = g g = 0; Relative velocity

    of particle (1) w.r.t. (2) = V1 2 = ) (90 cos V 2V V V 0020

    20

    = V0 )sin (1 2 Where 90 is angle b/w two velocity..

    Since there is no relative acceleration of particle (1) hence its relative velocity

    does not change w.r.t time then. Distance b/w two particle at time t is : Distance = V0 t )sin (1 2

    = 22 m Ans.

    Q.1.11 : Method : 1 (Vector) + y

    3 m/s 4 m/s x (+)1

    2

    Initial velocity in y direction

    of both particle zero. Hence vertical velocity of particles (1) at time t : Vy = u + at Vy = g t; Velocity

    of particle (1) at time t = : j t g i 3 V1

    ; Velocity of particle (2) at time t : j t g i 4 V2

    Since 0 V . V V V 2121

    Then 12 + g2 t2 = 0 t = 0.12 s. Hence distance between two

    particle will be : Distance = Vrelative t = (4 (3)) 0.12 = 7 0.12 2.5 m Ans.

    Method : 2 (Graphical) : Since 21 V V

    + = 90

    = 90 tan = tan (90 ) tan = cot

    tan tan = 1 (i)

    And tan = 3gt

    tan = 4gt

    Vr E

    C

    Vmr

    V0

    = 60

    g g

    1 2V0

    3 m/s 4 m/s

    V1 gt gt

  • Compact ISC Physics (XII)6

    put in (i): 1 4gt

    3gt

    t = 0.12

    Distance = Vrel time = 7 0.12 2.5 m Ans.

    1.12 : Method : 1 (Velocity of approach) Since particle A heading to particle B and B to C and Cto A. Then position of all particle at t = dt is as figure 2.

    Again position of all particle at t = 2 dt is as figure 3.

    Again position at t = 3 dt and so on ........ Since at any timeall particle travel same distance then at each moment of time,all particle will be at equilateral tringle. Then by symmetry youcan say that all particle will be met at centriod of tringle thenpath of each particle will as :Suppose at any instant of time, distance b/w particle A andcentriod P is r. Then, line joing particle A and P make 30 angle

    with side of equilateral tringe then dtdr

    will always constant and

    equal to v cos 30 then dtdr

    = V cos 30, ()ive sign because

    r is dicreasing function. Finally r = 0 while initial / 3r a

    t

    0

    0

    3a

    dt 30 cos v

    dr t = 3V

    2a A P =

    2a

    sec 30 = 3a

    Ans.

    a

    60 60

    60

    A

    B

    C

    a

    V

    V

    V

    a

    Vdt

    Vdt

    Vdt

    Vdt

    Vdt

    Vdt

    Vdt

    Vdt

    Vdt

    A

    B

    C

    30

    P30A

    P

    A 30a2/

    / 3a

  • 7Method : 2 (Relative approach)

    let distance b/w A and B at time t is r then. At any instant of time, rate of decreasement ofdistance b/w two particle A and B will be constant as shown in figure.

    Then dtdr

    = (V + V cos 60) = 2

    3V dt

    0

    0

    a

    dt 3V dr 2 t = V

    3a Ans.

    1.13: Suppose at time t distance b/w A and B is r. Then rate of decreasement of r is : dtdr

    =

    v + u cos o t

    0dt ) cosu (v dr

    l = vt + u

    t

    0 cos dt.... (i)

    Now since t

    0 cos dt is not known then to find this integration,

    we use rate of decreasement of component: Then dtdx

    = V cos

    + u dt u) cos V( dx t

    0

    0

    0 0 = ut V cos

    t

    0 dt

    cos t

    0 dt = V

    ut now put in (1) : l = vt + u

    Vut

    t = 22 u V V

    1.14: With frame of train : With frame of train, train appear in restthen distance b/ there two event is equal to l.

    With frame of earth : When event (1) will happen. Velocity of train is V = u + at = wt. Sinceevent (2) will be happen after time then. Distance travelledby headlight (A) = Distance travelled by head light (B) =

    u1 t1 +

    a t21 = wt() +

    ww

    t Then distance

    b/ two events is =

    2 t w = 0.24 km. Ans.

    AA

    1

    A

    11

    B11

    C11

    C1

    C

    B1

    B

    V co

    s 60

    V cos

    60

    V V

    V

    VV

    V60

    60 60V

    V cos 60

    B

    A

    W

    AB

    event 2

    B A event 1

    w (t + /2)

    A

    VB u x

    y x

    r

  • Compact ISC Physics (XII)8

    It we want that both event will be happen at same point then velocity of reference frame

    will be Vreference frame = 60km 24.0

    = 4 m/s Ans.

    1.15: (a) For observer inside lift at t = 2s. velocity of bolt = 0

    Accn of bolt = 10 + 1.2 = 11.2 m/s2. Then assume t time is taken by

    bolt to reach at floor. s =

    at2 2.7 =

    11.2 t2 t = 0.7s

    (b) Velocity of bolt with respect to ground at t = 2 sec.

    V =1.22 = 2.4 m/s Displacement then S= ut +

    at2 S = 2.4 (0.7)

    10 (.7)2 0.7 m

    Distance : H = 2g2.4 .

    = 0.288 Distance travelled = 2 0.288 + 0.7

    1.3 m Ans.

    1.16: Method : 1 (Relative velocity) from figure

    tan = 1

    2VV

    cos = 22

    21

    1

    V V

    V

    also tan = 12

    1 VV y

    y = 12

    1 VV BC =

    1

    212 V

    V

    Shortest distance = CM = BC cos = 22

    21

    1

    1

    212

    V V

    V VV

    shaft

    a=1.2 m/s2

    2.7m

    2.4m/sH

    0.7m

    Shortest distance

    = 22

    21

    2112

    V V

    |V V |

    now t = 2

    22

    1

    22122

    21

    122

    21

    22

    21

    V V V V

    V V

    tan CM sec V V

    BM AB V V

    AM

    22

    21

    2211

    V V V V

    t

    Ans.

    1

    2y

    0V1

    B

    CM

    V2

    1

    2V2

    0V1

  • 9Method : 2 (Velocity of approach)

    At shortest distance velocity of approach = 0. Then V1 cos = V2 sin tan = 21

    VV

    In tringle B A O : tan = 2

    1

    1

    2VV

    tV t V

    V22 t l2 V2 = l1 V1 V2

    1 t t = 222

    1

    21

    V VV V

    Ans.

    And Shortest distance is : ) t (V t)V ( 2 22

    1

    Shortest distance = 22

    21

    21

    V V

    V V

    Method :3

    V t11 1 V t

    V1

    V t 2 2

    V2

    ) t (V t)V ( 2 22

    1 ... (1). for shortest

    distance dtdl

    = 0 ) t (V t)V (

    V ) t (V 2 V t)V ( 2 2

    22

    1

    2 211

    = 0

    t = 22

    21

    21

    V VV V

    Ans. put value of t in (1) : 2

    221

    21

    V V

    |V V |

    Ans.

    1.17: Method : 1

    Time to reach at point D : T = V/n sec

    V tan m

    . For

    minimum time : ddT

    = 0 Then V

    sec2 + Vn

    sec

    tan = 0 sec = n tan sin = 1

    . Then

    distance BC = l tan BC =

    Ans.

    1 1 V t

    V1

    V t2

    V2

    V t1

    A A1

    B1

    2

    B

    90

    O

    BCm tan

    m

    D

    A

    tan

  • Compact ISC Physics (XII)10

    Method: 2 (Help of light wave)

    We know that light travel via that path in which time will be

    less. Then. (2) mediumin speed(1) mediumin speed

    sin isin = V

    V sin

    90sin

    sin length BC = l tan =

    12

    Ans.

    1.18:

    1.19: (a) Mean velocity in irodov is misprint and it is mean speed then mean speed = R

    Ans.

    (b) Mean velocity = R 2

    Ans. (c) We know ....(i)

    And t2

    2 2

    2 ii from

    (i) and (ii) :

    2

    2

    2 now V = RW then

    V = R

    2

    . Average accleration :

    cf V V =

    0 R 2

    Avg. Accn = 2R 2

    Ans.

    B C

    medium (1)i

    medium (2)

    BR

    A

    Time taken =

    WX

    13

    6

    1m/s2

    1m/s2

    x

    Distance

    t

    t

    t

  • 11

    1.20: This is one dimension motion be cause direction of position vector r is same as constant

    vector a . Then t) (1 t a r a t t a 2

    (a) at 2 a dtrd V

    a 2 dt

    vd a cc

    a V

    (1 2 t) Ans.

    (b) At initial position t = 0 r = 0 Now at final position r = 0 then. a t (1 t) = 0

    t = 0 ro t = Ans.

    Initial A B At point B velocity will be equal to zero so

    that particle will be turn back. Then 0 = a (1 2t) t =

    Then position B is :

    r = a

    4a 1 . The Distance travelled in up and down journcy is:

    2a

    4a

    4a

    Ans.

    1.21: (a) V = V0 (1 t/) dt t 1 V dx

    x

    0

    t

    00

    x = V0

    2t

    t 2

    Position at time t is

    x then : x = V0 t

    2t t Ans.

    (b) Henc we see that velocity will change dirn at t = because When t > v =

    And t < v = ive. Then Case I : t < x VV0 t

    2t l Ans.

    Case II : t > Total distance travelled = AB + BC

    = V0

    2t

    l t V 2

    l V 2

    l 00 =

    2t l t V

    2 V

    2 V

    000

    Distance = V0 V0 t

    2t l when t > Ans.

    1.22 : (a) v = 1

    x x differentiate w. r. t. time : 21

    21

    21

    x x2 a

    dtdx x

    21

    dtdv

    a = 2 21

    Since acceleration is constant; velocity will be : V = u + at V = 2 21

    t

    C

    AB

    t =

  • Compact ISC Physics (XII)12

    (b) S = ut + 21

    at2 S = 21

    22

    t2 t =

    s2 Mean velocity = s2

    s

    ts

    < V > = s

    Ans.

    1.23: Calculation of time : w = a v ( i ve sign is used to show deacceleration)

    dtdv

    = a v ot

    0

    0

    0v

    dt a v

    dv t0 = a

    V 21

    0 Ans.Ans.

    Calculation of distance : v a v a dxdv v

    0

    0

    21

    x

    0

    0

    v

    dx a dv v x0 = 3aV 2

    3

    0

    1.24 : (a) j bt iat r 2 x = at y = bt2 y = b

    2

    ax

    a2y = bx2 Ans.

    (b) j2bt i a dtrd v

    j2bt i a v 222 tb 4 a |v| j 2b dt

    vd a

    j 2b a

    2b |a|

    (c) Since direction of acceleration is toward y dirn then angle made by velocity vector with y axis

    is known as angle b/w two vectors then. tan = 2bta

    Ans.

    (d)t

    j bt iat ts V

    2

    mean

    jbt i a Vmean

    222mean tb a |V|

    1.25: (a) x = at y = at (1 t) y = x

    ax 1 Ans.

    (b) vx = dtdx

    = a ay = dtdvy = a 2 a t j t) 2a (a i a v

    22 t) 2a (a a |v|

    2t) 2 (1 1 a |v|

    j 2a dtvd a

    2a |a|

    Ans.

    2bt

    x

    y

    a

  • 13

    Method : 1

    (c) Velocity =

    a (2a t)

    a acceleration = 2a

    cos = | v | | a |v . a

    222 )(2a t) 2a (a a

    t) 2a (a 2a 2

    1

    t = 1

    Method : 2

    t 2a aa 4 tan

    a = a 2 a t t = Ans.

    1.26 : x = a sin wt y = a (1 cos wt)

    1

    ay

    = cos wt (i) ax

    = sin wt (ii)

    1 1 ay

    ax

    22

    x2 + (y a)2 = a2 Equation of circle of radius a. j dtdy i

    dtdx v

    jsin wt aw i wt cos wa v wa |v| = const. Uniform circular motion.

    (a) Distance travelled in time is = (aw) Ans.

    (b) Since motion is uniform circular motion. Hence only radial acceleration ispresent then Angle b/w velocity vector and accn will be

    Ans.

    1.27 : y = ax bx2 differentiate w.r.t. time : dtdx2x b

    dtdx a

    dtdy

    Vy = a VVx 2bx Vx (i)

    At x = 0 Vy = a Vx (ii) differentiate equation (i) w.r.t. time : 2x

    xxy 2bV dt

    dV2bx dt

    dV a dt

    dV

    ay = a ax 2bx ax 2b Vx2 At x = 0 Given ax = 0 and ay = w ay = | 2b Vx

    2 | w = 2b Vx2 (iii)

    Speed at origin will be : V = 2y2x V V = 2b

    wa 2bw 2

    V = 2bw

    (1 + a2) Ans.

    1.28 : (a) 2 ta 21 t u s

    20 tg 21 t V s

    g

    V 0

    Ans.

    a

    (0, a)

  • Compact ISC Physics (XII)14

    (b) ts v

    tg 21 v v 0

    Ans.

    we know T = gsin u 2

    u sin = gg . v 0

    g2

    gg . v

    2g v v 00

    20

    0 gg . v g v v

    1.29 : (a) S = 0 in y direction 0 = (V0 sin ) T 21

    g T2 T = gsin V 2 0

    (b) At maximum height final velocity in y direction = 0 Vy2 = uy

    2 + 2 aH

    02 = (V0 sin )2 + 2 (g) H H = 2g

    sin V 220 Range R = V0 cos

    gsin 2V0

    R = g 2sin V20 when H = R g

    cos sin 2V 2g

    sin V 2022

    0

    tan = 4 = tan 1 (4)

    (c) x = (v0 cos ) t y = (v0 sin ) t 21

    g t2 y = v0 sin 2

    00 cos vx g

    21

    cos vx

    y = x tan cos 2u

    gx22

    2

    Ans.

    (d) Radius of currature = onaccelerati normal

    V2 R0 = cos g

    V20

    gV cos 0

    A

    V0 RA = g cos V 220 Ans.

    1.30 : w = g sin andw

    = g cos Here is first dicreasing and then

    increasing and projection of total accn on velocity vector

    will be ()ive then. wv = v. w1

    = g sin

    g

    V

    y

    x

    V cos 0

    V0V sin 0

    g

    V0

    g wn

    w

    V

    t

    wV

    wg si

    n w = w

    V

    w = g cos n

  • 15

    1.31 :

    Time to collide with incline T = g

    2g 2

    cos g

    cos2gh 2

    cos gu 2 y

    Length MO = (velocity in MO) T =

    sin cos 2gh sin cos 2gh

    Range OC = (MO) sin = cos

    MO =

    cos g

    2gh 2 )sin cos 2gh 2 R = 8 h sin Ans.

    1.32: We know R = g2sin u 2

    5.1 103 = g sin )( 2

    1 = 32.5. Also we know that range

    will be same for 2 = 90 31.5 = 59.5. Then time of flight will be: T1 = gusin

    T1 = 1031.5sin 240

    = 24.3s = 0.41min Ans.

    T2 = 1059.5sin 240

    = 42.3s = 0.69 min Ans.

    1.33: Method: 1

    . For both particles x and y co-ordinate must be same then.

    Particle (1): y = x tan 1 1

    220

    2

    cos V 2 xg

    .... (i)

    Particle (ii): y = x tan 2 2

    220

    2

    cos V 2 xg

    .... (ii)

    From (i) and (ii) : x tan 1 cos 2V

    xg 1

    220

    2

    = x tan 2

    222

    0 cos 2Vgt

    V = 2gh0

    Just before collision

    2gh2gh

    sin

    Just after collision

    2gh s

    in

    2gh c

    os

    O

    C

    x

    M

    y

    5.110 m3

    240m/s

    250 m/s = v0

    250 m/s = v 0

    6045=

  • Compact ISC Physics (XII)16

    x = 2

    21

    22121

    20

    cos cos cos cos ) (sin

    gV

    .... (iii) Time for particle (1) : t1 = 10 cos V

    x

    TIme for particle (ii) : t2 = 20 cos Vx

    Then t =

    210 cos1

    cos

    1

    Vx

    .... (iv)

    Put value of x on (iv) : t =

    21210 cos cos) (sin

    gV 2

    = 11s Ans.

    Method: 2

    Particle (1) : x = V0 cos (t + t) .... (i) y = V0 sin (t + t)

    g (t + t)2 .... (ii)

    Particle (2) : x = V0 cos (t).... (iii) y = V0 sin (t)

    gt2 .... (iv) From (i), (ii),

    (iii) and (iv): t =

    21210 cos cos) (sin

    g

    2V= 11s Ans.

    1.34 : (a) tan = ayV0

    Time to reach at hight y : t = y/V0

    Also dtdx

    = ay dtdx

    = a [V0 t] t

    0

    x

    00 dt t aV dx

    x =

    0

    02

    0Vy

    2V a

    2 taV

    x =

    0V 2a

    y2 Ans.

    (b) ay = 0 ax = dtdy a

    dtdVx = aVy = aV0 anet = aV0 Tangential acceleration = a

    = aV0 cos a = 20

    2

    220

    0

    )(ay/V 1

    y a (ay) V

    (ay) V a

    Ans.

    Radial accn or normal acc

    n : (an) = a V0 sin an =

    00 V

    y a V a Ans.

    y

    0 x x

    v = ayx

    v0

    y

  • 17

    1.35: (a) tan = bxa

    x = at .... (i) Vy = (a t) b

    y

    0

    t

    0dt t ab dy

    2 tab y

    2

    Then y =

    ax

    2ab

    y =

    2ab

    x2 Ans.

    (b) ax = 0 ay = dtdx

    b dt

    dVy = ab anet = ab Then normal accn : an = anet cos

    anet = ab Then an = ab 22 (bx) a

    a

    R =

    b a) xb (a

    aV

    2

    3/2222

    n

    2

    R =

    /

    axb 1

    ba

    Ans.

    1.36: Method: 1 (Work-Energy)

    Tangential accn is given by :

    . a |w| = a cos

    Suppose at time t particle at posetion A and in smal l time dt particle displacementby ds.

    Work done : dw = Ft ds = (ma cos) ds = ma (ds cos) dw = ma (ds cos) = ma

    (ds) cos ma ds cos

    Using work energy theorem : W = max

    mV2 = max V = xa Ans.

    y

    x

    a = v x

    bx=Vy

    v

    a na net

    0

    a

    ds

    x

  • Compact ISC Physics (XII)18

    Method : 2 (Kinematics)

    Tangential accn : at = . a = a cos. Also since we know

    that tangential accn is rate of change of speed then. dt|v| d

    = a cos dsdv v

    = a cos v dv = a (ds) cos = a dx

    x

    0

    v

    0dx a dv v

    2v = ax v = xa Ans.

    1.37: Angle travel by particle: = 2n. Speed of particle : v = Rw = at w =

    t

    0

    n2

    0

    dt Rat ds

    dtd

    Rat

    2n = 2Rat2

    t2 = anR

    t2 = anR

    Now : Radial accn : ar = R ta R

    V222

    = a

    Rn 4 Ra2

    = 4na Tangential accn : at = dtdv

    = a Total accn = 2t2r a a =

    22 na)(4 a

    Total accn = a 2n)(4 1 = 0.8 m/s2 Ans.

    1.38: (a) At any time t : at = ar = RV2

    Since at is rate of change of speed then.

    V

    V

    t

    0

    22

    0Rdt dV V

    RV

    dtdv () sign because

    V is decreasing R

    tV 1

    V V R

    t V

    VV

    0

    0

    0

    1

    (b) anet = 2r2t a a = at at = R

    v2 = v ds

    dv v dv =

    Rv2

    dt

    Where ds = distance travel by particle in time dt. v dv = Rv2

    ds

    V

    V

    S

    00Rds

    vdv n

    RS

    VV

    0 Then V = V0 e

    S/R at = Re V

    Rv 2S/R20

    2

    ds V

    dx

    a

    R

    v

    R

    atar

    Givena = aat t = 0u = V

    t r

    0

  • 19

    anet = 2 RV

    Re 2 V 22S/R20 anet = 2 R

    V e R

    2 V 22S/R

    20 Ans.

    1.39: Method : 1

    v = a s Squaring both side : v2 = as

    Compare with : v2 = u2 + 2 accS u = 0 acc = 2a

    Hence motion is constant magnitude tangential accn. Then.

    At any time t : at = a/2 ar = RV2

    = Ras

    Since we know that velocity vector and tangential accn is parallel then.

    tan R2S

    a/2 Ras

    aa

    t

    r Ans.

    Method : 2

    v2 = as differiate w.r.t time : 2v = dtds a

    dtdv

    = av 2a

    dtdv

    = at

    ar = Ras R

    V2 tan = R2S

    aa

    tr Ans.

    1.40 : (a) = a sin wt now = 0 t = 0

    = a t = 23 ,2 , V = wtcos wa dt

    d

    a = sin wt wa dtdv 2 Then at = aw

    2 sin wt

    ar = R wtcos wa

    RV 2222

    anet = 2r2t a a

    anet = aw2 wtcos

    Ra

    wt sin 422

    2 (i)

    at t = 0 = 0 at t = 23or 2 anet = R

    wa 22 anet = aw

    2 Ans.

    at

    ar

    at

    ar

    x = a

    sin wt

    y

  • Compact ISC Physics (XII)20

    (b) For minimum value of acceleration 0 dtdanet cos wt = a 2

    R put in equation(i)

    amin = aw2

    2aR 1 =

    a 2R 1 a = 2

    2

    a 2R 1 a Ans.Ans.

    1.41: Speed of particle when distance is S. V2 = 2aS (i) (Because a = const.)

    S = 21

    at2 t2 = a2S

    Then wn = b 222

    a4bS

    a2S

    Radius of curvature : R = 22

    n

    2

    4bS2aSa

    wV

    R = 2bSa3

    Ans.

    Net accn : w = 2n2T w a w =

    2

    2

    22

    a4bS a

    Ans.

    1.42: (a) y = ax2 diff. w.r.t. time : dtdx2ax

    dtdy

    Vy = 2ax VVx

    Again diff. w.r.t. time : ay = 2ax ax + 2aVx2

    At x = 0 Vy = 0 Then Vx = v ay = 2aV2

    Since speed is const. its tangential acceleration will be zero. Then

    ax = dtdV

    = 0 anet = 2 a VV2 R = 2

    2

    n

    2

    2avV a

    V R = 2a1

    Ans.

    (b) 22

    2

    2

    by

    ax

    = 1 diff. w.r.t. time : 0 b

    V2y

    aV2x

    2y

    2x

    Again diff. w.r.t. time : 0 b

    2V

    b

    a2y

    aV 2

    a

    a2x 2

    2y

    2y

    2

    2x

    2x

    At x = 0 and y = b : 0 b

    V 2

    ba 2

    aV 2

    2

    2yy

    2

    2x

    a = a

    w = btn4

    x

    y

    V0

  • 21

    As shown in figure : Vy = 0 and Vx = V0 0 ba 2

    aV 2 y2

    20 ay =

    202 V a

    b

    Since speed is Const. tangential accn = ax = 0 at; t = 0 anet = 202 V a

    b

    Radius of curvature : R = n

    20

    aV R = 2

    02

    20

    V a

    bV

    R = b

    a2 Ans.

    1.43 : Given dtd

    = w = const. Then dtd 2

    dt)d(2

    = 2w = const.

    Hence angular velocity of point A w.r.t. point P isconstnat then. WP = 2W and velocity will be perpendicularto position of A w.r.t. P then V = R WP = 2RW Ans.

    Since WP = const. 0 dtdWP Then Tangential accn = 0

    Radial accn = R WP2 = 4 RW2 = anet Direction is toward the centre. Ans.

    1.44 : = at2 dtd

    = w = 2at dtdw

    = = 2a

    Tangential acceleration : at = R = 2aR Radial acceleration: ar = RW

    2 = R (2at)2 = 4 a2 t2 R

    And. v = RW = R 2at 2at = Rv (i)

    Now anet = 2r2t a a = 2aR

    22 )(2at 1

    from (i) : anet = 22 )(2at 1

    tv

    = 0.7 m/s Ans.

    1.45 : Since acceleration is constant. l = 21

    at2 and

    V = at Then l = 2

    Vt (i) and also. angular acceleration is const. then

    = 21 t2 and w = at then =

    21

    wt and since particle taken n turn in its journey..

    V

    O

    A

    P

    at

    ar

    l

    Va

  • Compact ISC Physics (XII)22

    = 2 n Now 2 = 21

    wt (ii)

    (II)(I) : W

    V

    2

    W = v2

    Ans.

    1.46 : = at bt3 w = dtd

    = a 3bt2 when body is in rest then w = 0 a 3bt2 = 0

    t = 3ba

    in = 0 and final = t (a bt2) =

    3

    2a 3ba

    Wavg = t infinal

    =

    32a

    3ba

    32a 3b

    a Ans.

    Win = a and Wfinal = a 3b

    3ba

    = 0 avg = 3ab

    3baa

    t W W infinal Ans.

    And. = dtdw

    = 6bt = 6b 3ba

    = 2 3ab Ans.

    1.47 : Given = = at To find tangential accn : (at) : at = R = Rat

    To find radial accn : (ar) : = dtdw

    ar = Rw2

    t

    0

    w

    0 dt dw w = 2

    at dtat 2 t

    0 ar = 4

    ta R 42

    Then

    at

    ar

    tan = t

    r

    aa

    tan = ta R 4 ta R 42

    t = s 7 tan a4 3 Ans.

    1.48 : Given W = angular accn. = k W k = const.

    Wk ddW W

    ()ive because W is decreasing.

    0

    0

    W

    21

    dk dw W0

    at

    ar

    y

    x

    R

  • 23

    k 3

    W2 230 (i) = Angular displacement. Also = k W

    dW = k W dt t

    0

    0

    w2

    1 dtk dw W

    0 t

    k2W 2

    10 (ii)

    Avg. angular velocity : Wavg = = t

    = 3

    W

    k W2

    k 3

    W2 02

    10

    230

    Ans.

    1.49: (a) Given W = W0 a (i). At t = 0 = 0 W = W0

    Also dtd

    = W0 a t

    0

    0 0dt

    a Wd

    t )a (Wn a1

    0 0

    at Wa W

    n 0

    0 = )e (1 a

    W at0 Ans.

    (b) Put value of in equation (i) : W = W0 a

    )e (1 a

    W at0 W = WW0 e

    at Ans.

    1.50: Given = 0 cos = W ddW

    = 0 cos

    0 0 w

    0 d cos dw w

    2W2

    = 0 sin

    W = sin 2 0 Ans.

    1.51: (a) Instanteneous axis of rotation is passing through that pointwhich velocity is zero always. If we observe carefully itspoint must be at line joining AB. Then. at time t :VP 0 = RW = Rt = yt

    y

    x

    B

    A

    V

    y

    0

    0

    0

    2 sin 2 w 0

    sin 2 w 0

    cos 0

  • Compact ISC Physics (XII)24

    x = vt (i) Velocity of point P :

    VP = 0 v = ty x = v

    yv

    t = yv put in (i)

    y = xv2

    Ans.

    (b) Velocity of point O = 0

    VO P = Rw VP = u + at = wt

    Then yw = wt t = wwy

    x = 21

    at2 = 21

    w 2

    wwy

    x =

    wyw

    21 22

    Ans.

    1.52 : Since there is no slipping at ground. VC = 0 V = RW where VC = velocity of contact point.

    To find distance, we have to find speed of a particle of rim then. = wt Time to one complets

    journey = 2/w VP = ) ( cos v v2 v v 22 = 2 v sin /2 = 2V sin (wt)/2 Again

    dtds

    = 2 v sin wt/2

    w2

    0

    s

    0 dt sin wt/2 v2 ds S = w

    v8 = 8 R Ans.

    y

    xO

    P (x, y) Vy t

    y

    x

    O

    P

    (x, y)yw = RW

    y

    x

    C

    w

    V

    A

    W

    O

    RC

    B

    P

    v

    v

    1.53: (a) Acceleration of point C : aC = w Velocity of pointC at time t : VC = u + at = wt

    Angular accn of ball about its centre:

    = Rw

    Rw

    RaC Angular velocity of ball at

    time t : w = w0 t = Rw

    t Velocity of point AA

    w.r.t. centre C : VA C = RW = w t i VC E = w t i VA E = 2 w t Ans.

  • 25

    Point B :

    A

    wt

    wtC B

    y

    x

    VBC = Rw = wt ( j) VCE = wt i VBE = wt (i j) VBE = wt Ans.

    Point O : VOC = wt i VCE = wt i VOE = O Ans.

    (b) Acceleration Calculations :

    Point A:

    A

    arC

    at

    y

    x

    aCE = wi .... (i) aAC = at i ar j Where at = tangential acceleration. ar = radial acceleration.

    at = R = w ar = R tw R

    2(wt) Rv

    222 aAC = wi R

    tw 22 j .... (ii)

    (i) + (ii) : aAE = 2 wi R tw 22

    j aAE = 2w

    2Rwt

    2 Ans.

    wt

    wtC

    0

    A

    wt

    wt

    y

    x

  • Compact ISC Physics (XII)26

    Point B : a

    CE = wi .... (i) a

    BC = (R) j +

    Rv2

    i =

    w j R tw 22

    i .... (ii)

    (i) + (ii) : a

    B =

    R tw w

    22

    i + w j aB = w

    2Rwt

    2 Ans.

    Point O: a

    CE = w i .... (i) a

    OC = (R) i +

    Rv2 j =

    w i R tw 22 j .... (ii)

    (i) + (ii) : a

    OE = R tw 22

    j aOE = R tw 22

    Ans.

    1.54 : Velocity of point A = 2v Velocity of point B = v accn

    of point A = Rv2 accn of point B = R

    v2

    Again Radius of curvature = onaccelerati normal

    (speed)2 RA = /RV

    (2V)2

    2 = 4R

    Again an = Rv2

    cos 45 = R 2

    v2 RB = R 2 2

    R 2v

    )2(V2

    1.55 : Method : 1 (axis is rotating): w

    10 = w1 i w

    10 = w2 j w

    12 = w1 i w2 j

    w12 = 2221 w w

    12 = dt

    wd 21

    = w1 dti d

    w2 dtj d

    direction of dt

    i d is toward y axis and

    this is rate of change of dirn of x axis.

    y

    x

    RC B

    y

    x

    C

    0

    A 2V

    B v

    v

    V

    x

    B

    an

    v2

    RV

    45

    V V 2

    v2

    A2V

    R

  • 27

    Method : 2 (axis is not rotating)

    w

    1C = w1 cos i + w1 sin k w

    C0 = w2 j w

    10 = w1

    cos i + w1 sin k + w2 j 222101 w w |w|

    dtw d 01

    = w1 sin

    dtd

    i + w1 cos

    dtd

    k

    And dtd

    = w2 = w1 w2 sin i + w1 w2 cos k

    | | = w1 w2. Here x axis is directly attached with observer. Then

    dti d

    = w2 k d 1|i d| dtd

    dt|i d| = w2

    But dt

    j d = 0 Because with frame of this observed dirn of axis does not rotating then.

    12 =

    w1 w2 k 12 = w1 w2

    1.56 : w = at i + b t2 j dtdw

    = a i + 2b t j (a)

    t

    ab 1at |w|

    (b)

    a t2ab 1at ||

    w = w cos cos

    w . w

    cos 2224222

    322

    t4b a tb ta

    t2b t a

    = 17 Ans

    y

    x0

    w2

    w1

    y

    x0

    w2

    y

    x0

    w2

    w1

    w2z

    C1

    y

    z passing

    y axis 1 unit

    1 unitd

    jd ii

  • Compact ISC Physics (XII)28

    1.57: Method : 1 (axis are moving): It we see carefullythen x axis is moving while y direction is not rotating.Angular velocity of disc with respect to centre M

    is : i RV W OM

    .... (i) Angular velocity of centre

    M w.r.t. origen. j OMV W OM

    OM = R cot

    j tan RV

    W OM

    . Since angular velocity is vector

    quantity it follow vector addition law ] j tan i[ RV W OD

    cos R

    V tan 1 RV |W| 2OD

    Ans.

    Again Angular acceleration () is : dtwd

    dtj d

    tan dt

    i d

    RV

    And since y dirn is constant dt

    j d = 0 But

    dti d | id | = d dt

    d dt

    id = wMO k tan R

    V dt

    id

    k tan RV

    RV

    k tan

    RV 2

    2

    2

    2

    RV ||

    tan

    Method : 2 (axis are not rotating)

    angular velocity of disc w.r.t. M : WDM = RV

    cos i +

    RV

    sin j angular velocity of M w.r.f. O

    : j tan RV j

    cot RV W OM

    angular velocity of disc

    wrt O: W

    DO = W

    DM + W

    M0 W

    DO = RV

    cos i

    RV

    sin j RV

    tan j

    cos RV

    tan RV

    sin RV

    cos RV

    |W| OM

    Ans.

    y

    xR0

    v

    M

    p

    z

    y axis

    y axisd

    jd ii

    y

    x0

    w =0

    D

    z

    VR

    VM

  • 29

    0 j dtd cos

    RV i

    dtd sin

    RV

    dtwd ODOD

    and dt

    d is angular velocity of M w.r.t.

    0 : d/dt = RV

    tan 22

    ODRV

    sin tan i + 2

    2

    RV

    cos tan j | OD

    | = 22

    RV

    tan Ans.

    1.58 : Method : 1 : (Direction of Co-ordinate axis is fixed)

    At time t line AB rotate by angle then APW

    =

    w0 cos i + w0 sin k t j

    | APW

    | = 22022

    022

    0 t sin w cos w

    | APW

    | = w0

    0

    0w

    t Now

    j k dtd cos W

    dtd ) i ( sin W

    dtW d 000AP

    = W0 0t sin i + W0 0 t cos k + 0 j 2022

    020 t w ||

    2200 t w 1 ||

    Ans.

    Method : 2 (x axis is moving) : Here we take line AB along

    x dirn. jt i w W 00AP

    20

    2

    0APw

    t 1 w |W|

    j dt

    j d t dt

    i d w dt

    wd 000AP

    Here 0

    dtj d

    But dt

    i d =

    t k Then k t k dt

    ds dtdi

    0 = w0 t k + j 212020 t w 1 ||

    Ans.

    y

    xA

    0

    w0

    w0

    z

    y

    xA

    0w0

    z

    P

  • Compact ISC Physics (XII)30

    1.2 The Fundamentals Equation of Dynamcis

    1.59: Where F is force due to air which will be constant then. mg F= mw .... (1). When m mass is taken then F (m m) g + (m

    m) w .... (ii) From (i) and (ii) : m = w mw 2

    Ans.

    1.60 : Net pulling force = ( m) a m0g k m1 g k m2

    g = (m1 + m2 + m0) a a =

    021

    210m m m

    )m (mk mg Ans.

    F. B. D of m2 :

    m2

    a

    k m g2

    T

    T k m2 g = m2 a. Put value of a then T = 2100m m m

    m k) (1

    m2 g Ans.

    1.61 : (a) Pulling force F = m1 g sin + m2 g sin k1 m1 g cos k2 m2 g cos . Then acceleration

    a is : a = 21

    2211m m

    )m k m (k cos g m2) (m1 sin g

    .... (i)

    F. B. D of m1 : N = Normal force between two blocks. m2 g sin + N + k1 m1 g cos = m1

    a .... (ii) put value of (a) in (ii) : N = 21

    2121m m

    cos m m )k(k Ans.

    F

    mg

    m

    F

    (m m) g

    m m w

    km g2

    m2m1

    a

    km g1m0

    m g0

    (b) For minimum value of acceleration will be zero and friction force will at maxm value then

    0 = [g sin (m1 + m2) g cos (k1 m1 + k2 m2)] / m1 +m2 tan = 212211

    m mm k m k

    a

    mg s

    in

    1

    k mg c

    os

    22

    k mg c

    os

    11

    mg s

    in

    2

    m 2

    m 1

    N

    m g sin

    1

    k mg co

    s

    11

    m 1

  • 31

    1.62 : Upward Journey : We know S = Vt 21

    at2where V = final velocity in this situation Vf = 0

    Then = 21

    (g sin + g cos ) t2 (i)

    t = Time taken in upward journey.

    Downward journey : We know S = ut + 21

    at2 u = initial

    velocity. Then = 21

    (g sin g cos ) (t)2 (ii)

    and u = 0 now : (ii)(i)

    = 21

    cos ug sin g cos ug sin g

    =

    1 1

    2

    2

    tan Ans.

    1.63 : (a) Starts coming down. m2g > m1 g sin + fmax m2g > m1 g sin + k m1 g cos 12

    mm

    > sin + k cos (b) m1 g sin > m2 g + k m1 g cos g sin > 12

    mm

    + k cos

    1

    2mm

    < g sin k cos (c) At rest : Friction will be static : g sin k cos < 1

    2mm

    m1 g sin Block m2 has tendency tomove down ward.

    Then. Pulling force = m2g m1 g sin k m1 g cos acceleration a = 21112

    m m cos g mk sin g m g m

    a = 1 ] cosk sin [ g

    Ans.

    1.65 : (a) Before no sliding b/w m1 and m2 :

    F.B.D. of System : Acceleration of both block will be same. w1 = w2 = w = 2121 m mat

    m m

    F

    But friction b/w m1 and m2 will be static then. m1fr

    fr = m1 [w1] = 211

    m mat m

    < k m2 g t < 1212

    m a)m (m g mk

    w1 = w2 = 21 m mat (i)

    If t > k m2 g 121

    m a)m (m

    . Sleeping b/w two block will be start then F.B.D. of m2 :

    m2 F = atkm g2 w2 w2 = 2

    2m

    g km at (ii) Ans.

    F.B.D. of m1 : m1k m g2 w1 = 1

    2m

    g mk (iii) Ans.

    Assume to = 1212

    m a)m (m g mk t > to : Slope of w2 >

    Slope of w1 = w2 because of Slope of w2 =

    2ma

    from

    (ii) [After sliding] Slope of w1 =

    21 m ma

    from (i) [Before sliding]

    Slope w1 = 0 from (iii) [After sliding]

    m 1

    m2

    m g2

    m g

    sin

    1

    f

    = k m

    g co

    s

    max

    1

    k

    Given mm

    1

    2.

    m2m1

    fr = k m g2 F = at

    m2m1

    w F = at

    w

    t0t

    w1

    w = w1 2

    w2

  • 33

    1.66 : F.B.D. of block : ma = mg sin k mg cos a = g sin kg cos

    Time to reach at bottom : s = ut + 21

    at2 sec = 21

    (g sin kg cos ) t2

    A

    R

    k = coefficient of friction mg sin

    k mg cos

    t2 = ] cosk cos [sin g

    2 ) cosk (sin g

    sec 22

    t = ] cosk cos [sin g

    22

    (i)

    To minimise t (sin cos k cos2 ) will be minimum also. Assume. x = sin cos

    k cos2 Now d

    dx = 0 sin sin + cos2 + 2 k cos sin = 0

    cos 2 = k sin 2 tan 2 = k1 Ans.

    Put value of k : = 49 Put value of in equation (i) :

    tmin = 49] cos 0.14 49 cos 49[sin 102.10 2

    2

    1.0 s. Ans.

    1.67 : When block pull up Direction of friction will be downward.F.B.D. of block : N = mg cos T sin fr = k (mg cos T sin ). At just sliding:

    T cos = mg sin + k (mg cos T sin ) T =

    sin k cos cos mgk sin mg

    Tmin

    m k

    T

    m

    T

    mg sin

    mg

    mg cos N

    T cos T s

    in

    N

    (cos + k sin ) min minimum value of cos + k sin = 2k 1 Tmin = 2k 1

    ) cosk (sin mg

  • Compact ISC Physics (XII)34

    1.68 : (a) At time of breaking off the plane vertical component of

    F

    must be equal to weight mg. Then F sin = mg = at sin

    t = sin amg . Motion equation of block : a1 = Accelration

    of block. F cos = m a1 a1 = dtdv

    m cosat

    1t

    0

    V

    0

    dt t cos a

    dV m 2t

    cos amV 21

    sin ag m

    21

    cos amV

    22

    22 V = =

    sin a 2 cos g m

    2

    2 Ans.

    (b) t

    0

    V

    0

    dt t cos a

    dV m

    2t

    cos amV 2

    1.69 : Motion equation : = aS 3mg

    cos = m a1 a1 =

    acceleration of block of mass m. a1 = m 3mg

    cos = 3g

    cos

    a1 = 3g

    cos as s

    0

    v

    0

    ds as cos 3g

    dv v

    s

    0

    v

    0

    2

    aassin

    3g

    2v

    v2 = a 3g 2

    sin as v = assin a 3g 2

    v = m 2

    cos a t2

    2 t cos m 2a

    dtds

    t

    0

    2s

    0

    dt t m 2

    cos a ds s = 3

    3

    xt

    m 2 cos a

    s =

    sin a 6 cos g m

    32

    32 Ans.Ans.

    1.70 : Method : 1

    Motion of mass 2 m : T k2mg = 2 mw T = 2mw + 2kmg

    Motion of motor : T kmg = ma 2 mw + 2 k mg k mg = ma a = 2 w kg

    Acceleration of 2 m w.r.t. m : a2m m = 2w kg + w = 3w kg Suppose in time t both

    will be met then. = 21

    (3w kg) t2 t = kg 3w 2

    Ans.

    m

    F = at

    = 0

    m

    F = m

    g/3

    2m wk2mg

    m a

    k mgT T

    kk

  • 35

    Method : 2

    On system : Tension will be internal force hence k2 mg k mg = 2 mw + ma

    a = 2w kg a2m m = 3 w kg then = 21

    (3w kg) t2 t = kg 3w 2

    Ans.

    1.71: For observer inside elevator : a12 = 21010212

    m m wm wm g m g m

    = 21

    012m m

    ) w (g )m (m

    But in form of vector : a1car = 21012

    m m)w g( )m (m

    Ans.

    Acceleration of m1 w. r. t. shaft : a1shaft = a1car + acar = 21012

    m m) w (g )m (m

    + w0 a1shaft = 21021112

    m m wm m g m )m (m

    Ans.

    Tension in string : T m1 g = m1 a1shft T = 21021

    m m) w (g m m 2

    Force applied by pulley on ceiling = 2 T = 21

    021m m

    ) w (g m m 4

    as vector form:

    2T = )w g( m mm m 4

    021

    21 Ans.

    1.72: Motion of body (2) : mg T/2 = ma 2 mg T= 2 ma .... (i)

    Motion of body (1): T mg sin = m a/2 .... (ii) from (1)

    and (ii) : ]1 []sin [2 2g

    Ans.

    1.73 : Equationof motion : T = m0

    2

    a a 21 .... (i) m1g

    = T/2 = m1 a1 .... (ii) m2 g T/2 = m2 a2 .... (iii)

    from (i), (ii) and (iii) : a1 = )m (m m m m g ).m (m m m m 4

    21021

    21021

    Ans.

    m g1

    m1T

    T T

    m2

    m g2

    2T

    shaft

    w0

    m

    mg sin

    a/2T

    T/2a

    mmg

    T/2T/2

    m2m1

    a1

    mg

    m g2

    m0T

    a + a1 2

    a2

    2

  • Compact ISC Physics (XII)36

    1.74: Motion equation on system: Mg mg = M a1 + m a2 .... (i) Motion equation

    of m : fr mg = ma2 .... (ii) Since length of rod is then. 21

    (a1 + a2)

    t2 .... (iii). From (i), (ii) and (iii) : fr = 2 tm) (M m m

    Ans.

    1.75: = 100 cm T + mg = m a1 .... (i) + 2T mg = m 2a1 .... (ii) from

    (i) and (ii) : a1 = 4 g 2) (

    arel = 2a 3 1 . Suppose t time is taken then

    = 21

    arel t2 t = g ) (2

    4) (

    Ans.

    1.76 : Motion equations T mg = ma .... (i) mg 2T = m a/2 ....

    (ii) from (i) and (ii) : a = 4 2) ( 2g

    . When body

    (1) travel h distance then in same time body (2) travel 2h distance in upward dirn using constraint relation. Nowvelocity of body (2) Justbefore string slack.

    V2 = 2a (2h). It body (2) travel x distance again then V2 = 2a (2h) = 2gx

    x = gah 2

    . Total hight from ground : 4 = 4 h 6

    h gah 2

    Ans.

    1.77: F. B. D. of N sin = m a2 .... (i) F. B. D. of rod : mg N cos = m a1 .... (ii) Constraints:

    a2 sin = a1 cos .... (iii) From (i), (ii) and (iii) : a1 = cot 1g

    2 a2 = cot tan g

    T

    2T

    mg

    nm

    Ta1

    m

    nmg

    a 2

    1

    mgMg

    Ma1

    ma2

    mg

    2mgT a

    2T

    h

    a2

    N

    mg

    a1

    a1

    a2

    m a2

    a1

    N a2

  • 37

    1.78: F. B. D. of m : mg KN T = m a2 .... (i) N = m a1 .... (ii) F. B. D. of wedge : a1 = a2....

    (iv) From (i), (ii), (iii) and (iv) : a1 =

    mM k 2

    g km M 2m

    mg

    Ans.

    mg

    T

    m

    KN

    M

    a1a2

    1.79: F.B.D of bodies on frame of wedge: Since system is stationary on frame of wedge hence :

    mg = kma + ma + kmg a = k 1k) (1 g

    Ans.

    a2

    a1

    mg

    mN

    TKN

    1.80: F.B.D. of block (2) with frame of wedge: At maximum accn w : fr1 will be maxm then fr1 = k [mg

    cos + mw sin ]. Since block is under rest with frame of wedge, then equilibrium equation

    of block along incline. k (mg cos + mw sin ) + mg sin = mw cos w = k cot )cot k (1 g

    am

    ma

    mg

    2 m N

    1 mma

    m

    ma

    kmg kma

    mg

    mg

    mw

    fr1

    2

    mg

    mw

    w

    m

    1fr

    1.81 : Method : 1

    F.B.D. of System a2 = accn of bar w.r.t. incline. Since no force on system in horizontal direction

    then O = ma1 + m [a1 a2 cos ] (1) F.B.D. of bar w.r.t. wedge : m2 a1 cos + m2 g

    sin = m2 a2 (ii) from (1) and (2) : a1 =

    sin m m cos sin g m

    221

    2 Ans.

  • Compact ISC Physics (XII)38

    Method : 2

    F.B.D. of bar : with frame of wedge, bar has zero accn in perpendicular to incline then. N + m2a1 sin = m2g cos (i) F.B.D. of wedge : N sin = m1 a1 (ii) from (i) and

    (ii) : a1 =

    sin m m

    sin cos g m2

    21

    2

    2m 2

    1

    m 1

    a2

    m 2m1 a1

    m a2 1m 2

    m g2

    Method : 3

    F.B.D. of bar with frame of ground observes : Motionequation in perpendicular dirn of incline then : m2g cos N = m2 a1 sin (i)

    1.84: v = 360 km/hr = sm 100

    36001000 360

    At point A : N mg = R

    mv2 N = mg +

    Rmv2

    = 70 g + 500[100] 70 2

    = 70

    g + 500100 100 70

    = 70 g + 140 g = 210 g = 2.1 kN Ans.

    At point B : N = R

    mv2 (i) put value of m, V and R N = 1.5 kN Ans.

    At point C : N + mg = mv2/R N = mv2/R mg (ii) put value of V, m, Rin (ii) N = 0.7 kN Ans.

    a2m g2

    N

    a1

    vC

    v

    BR

    Av

    N

    mg

    N

    m a2 1

    m g2

    N

    N

    m1

    a190

    N

    mg

  • 39

    1.85: Tangential acceleration (at) : mg sin = m at at = g sin

    Radial acceleration (ar) : Energy conservation : mg cos

    = 21

    mv2 v = cos g 2 ar = 2v = 2 g cos

    anet = cos 4 sin g a a22

    rt 22 anet = g cos 3 12

    Now : T mg cos = 2mv

    = 2 mg cos T = 3 mg cos Ans.

    (b) Component of velocity in y dirn: vy = v sin

    vy = cos g 2 sin v2y = 2 g cos sin2

    For vy maximum v2

    y will be maximum. Then x = cos sin2 will

    be maximum. ddx = 0 = 2 cos2 sin sin3 = 0 2 cos2

    = sin2 tan = 2 sin = 32 cos = 3

    1 v2y

    = 2 g 32

    3

    1 3 3

    g 4 vmaxy

    T = 3 mg cos = 3 mg

    31

    = mg 3 Ans.

    (c) If no acceliration in y direction then. ar cos = at sin 2 g cos2

    = g sin2 tan = 2 cos = 31

    Ans.

    1.86 : Extreme position : Only tangential acceleration is prerent at extremeposition. at = g sin

    Lowest Position : Energy conservation : mg [ cos ] = 21

    m v2

    v2 = 2 g (1 cos ) ar = 2v

    = 2 g (1 cos )

    A/C condition : ar = at g sin = 2 g (1 cos ) sin + 2

    cos = 2 cos = 53 = 53 Ans.

    m

    T

    mg

    v

    v

    y dirn.

    at

    ar

    mgv

  • Compact ISC Physics (XII)40

    1.87: Particle will break off sphere when normal reaction will be zero.

    mg cos = R

    mv2 v2 = Rg cos . Energy conservation : mgR

    (1 cos ) = 21

    mv2 mgR (1 cos ) = 21

    mRg cos

    1 cos = 2

    cos cos = 3

    2

    2 cos 3

    = 1 v2 =

    Rg

    32

    v = 3Rg 2

    Ans.

    1.88: Top view : Spring force = F = N = normal reaction on sleeve. Since no accelerationin tangential direction. N sin = cos (i). Equation in radial direction: N cos

    + sin = m r w2 = m ( + ) cosec w2 from (i):

    sin cos x

    (cos ) + sin

    = m ( + ) cosec (w2) x = m + m w2 = 2mw x m

    Ans.

    A

    A

    v

    mg

    RR

    N

    w

    r

    v

    l

    w

    1.89: k = k0 =

    Rr 1 friction coefficient. Suppose cyclist at radius of r. then friction provide centripital

    force to motion on circular path. Then where kmg = friction force. k0 rmv

    mg Rr

    12

    v2

    = k0 g

    Rr

    r 2

    . To maximum value of v : x = Rr r

    2 will be maxm. Then dr

    dx = 0

    0 R2r

    1 r = 2R 4

    R g k 4R

    2R g k V 00

    2max

    Vmax = gR k 2

    10 Ans.Ans.

    O

    R

    r kmgmv /r2

  • 41

    1.90: Tangential and radial both acceleration is only provided by friction becausefriction is acting as external force. Then maximum value of friction = k mg.Velocity of car after d distance travel. v2 = 2 w

    d. Then ar = Radial

    acceleration = R

    d w2

    Rv2 at = Tangential acceleration = w

    anet = 22

    22

    R4d 1 w w

    Rd 2w

    Fnet = m w 22

    R4d

    1 = k mg

    Squaring :

    2

    22

    R4d 1 w = k2 g2 d = 1 w

    kg 2R

    2

    Ans.

    1.91 : y = a sin x k = friction coefficient. Centripital force=

    R vm 2

    and centripital force will be provided by friction.

    At limiting condition : mgk R vm 2

    v2 k Rg.

    For v maximum R will be minimum. And we know : speedis constant also we are secing that radius of curvature will be

    minimum at maximum point of curve then. ay = 22

    2

    2 a v dt

    y d

    sin x . At maximum value of curve : sin x = 1

    ay = 22

    a v R = a v

    v av

    2

    22

    y

    2 R = a

    2 . Then v2 g ak

    2 v

    akg Ans.Ans.

    1.92: F.B.D. of differential element of length dl. Equation of motion : 2T sin N cos = (dm) Rw2

    (i) N sin = (dm) g put value of N in (i) : 2 T (dm) g cot = (dm) Rw2 2 T

    R

    v /R2

    w

    y

    x

    y

    x

    v

    ay

    mg

    N

    w

    T T

    (dm)

    N

    gT

    T

    = very small angle.sin =

  • Compact ISC Physics (XII)42

    R 2m

    (R 2 ) g cot = (R 2 ) R 2m

    Rw2 T

    2 wR m

    2cot g m 2

    T = 2

    m [Rw2

    + g cot ] T = 2g m

    gRw

    cot 2

    Ans.

    1.93 :1

    2mm

    = 0 T1 m1 g = m1 a (i) m2 g T2 = m2 a (ii)

    Relation between T1 and T2 : (T + dT) sin 2d + T sin 2

    d = dN

    Td = dN dfr = dN = Td (i)

    Since is very small. sin d d cos d 1

    In horizontal direction : (T + dT) cos 2d T cos 2

    d = dfr

    dT = dfr (i) dT = T d

    0

    T

    T

    d TdT

    2

    1

    n (T2 T1) =

    T2 = T1 e (iii)

    from (i) and (ii) : a) (g ma) (g m

    TT

    1

    2

    1

    2

    from (iii) :

    1

    2 e TT

    Then e =

    a ga g

    a ga g

    mm

    1

    2 (iv). Since pulley is fixed : Before skiding a =

    0 = 0 e = 0 =

    1 n 0

    (b) from equaiton (iv) : en0 =

    a ga g

    a ga g

    0

    a = g 0

    0n

    ] [n

    Ans.

    T1T2m1m2

    m g1m g2

    a

    dT + dT

    dN

    dfr

    T

    y

    x

  • 43

    1.94: Hence velocity along y axis is not responsible for circularmotion only velocity along Z-axis i s responsible.

    Then N = RV m 2Z VZ = V0 cos N = R

    cos V m 220

    1.95: x = a sin wt ax = 22

    dtxd

    = aw2 sin wt

    y = b cos wt ay = 22

    dtyd

    = bw2 cos wt jay i a a xnet

    = j wt cos wb isin wt wa 22 ]j wt cos b isin wt [a mw F 2

    j wt cos b isin wt a jy i x r 2 wr m F

    where r

    = position vector of particle. F = mw2 22 wt)cos (b sin wt) (a

    F = mw2 22 y x Ans.

    1.96 : Method : 1 (Impluse equation)

    (a) We know P

    = Impluse in time t = t

    0

    dt F = t

    0

    dt mg P

    = mg t Ans.

    v0

    xR

    Z

    O

    y

    V0

    w

    x

    y

    gV0

    m

    (b) T = gsin V 2 0

    g . V0 = V0 g cos (90 + ) g

    sin V 2 mg P 0

    g . V0

    = V0

    g sin = 2 m V0 sin V0 sin = gg . V 0

    gg . V

    2m P 0

    Ans.

    Method : 2 (Kinematic)

    (a) j sin V i cos V V 000

    j gt) sin (V i cos V V 00f

    where fV

    = final veloci ty vecto r then 0f V m V m P

    j t g m P

    Ans.

    V0

    y

    x

    V0

    90+

    g

  • Compact ISC Physics (XII)44

    (b) T = gsin V 2 0

    j gsin V 2

    g m P 0

    P

    = 2 m V0 sin j

    From method : 1 : V0 sin = gg . V 0

    j gg . V m 2

    P 0

    Ans.

    1.97 : m

    t) (T t a F

    (a) w m F

    w = linear acceleration. ] tt [ m

    a w

    dtVd 2

    t

    0

    2 t

    0

    V

    0

    dt t dt t ma Vd

    3

    2 t

    ma

    V32

    f3

    P 6 a V m

    Ans.

    (b) ] t t [ ma

    w 2

    t

    0

    2t

    0

    V

    0

    dt t dt t ma Vd

    3t

    2t

    ma

    V32

    0

    3

    0

    2S

    0

    dt 3t dt

    2t

    ma dS

    12

    6 .

    ma

    S43

    12

    ma S

    4 S =

    m 12 a 4

    Ans.

    1.98: sin wt F F 0

    a = dtdV sin wt

    mF0

    t

    0

    0V

    0

    dtsin wt mF

    dV V = t

    0

    0 wt cos mwF

    V = wt]cos [1 mwF0

    t

    0

    0S

    0

    dt wt]cos [1 mwF

    dS S =

    sin wt w1 t

    mwF0

    S = 20

    mwF

    [tw sin wt] distance

    distance will be increasing function w.r.t. time then

    dtdS

    = (+)ive or > 0 w w cos wt > 0

    cos wt < 1 0 < wt < 2 < wt < 3 4 < wt < 5

    wt

  • 45

    1.99: F = F0 cos wt mF a

    dtdv 0 cos wt

    t

    0

    00

    0

    dt wt cos mF

    dV 0 = wmF0 sin wt

    sin wt = 0 wt = t = w

    Ans.

    Now : t

    0

    00

    0

    wt cos mF

    dV V = wmF0 sin wt ... . (i )

    t

    0

    0s

    0

    dt sin wt wm

    F ds

    S = wt)cos (1 wmF

    20

    at t = w s = 2

    0

    wm2F

    velocity will be maximum when sin wt = 1

    Vmax = wmF0 Ans.

    1.100 : (a) F = rV V mr

    dtdV

    t

    0

    V

    V

    dt m

    r VdV

    0 t

    mr Vn VV0

    V = V0 er/m t V will be zero when t Ans.

    (b) a = mr

    V = dsdv v

    s

    0

    V

    V

    ds vmr dV v

    0V V0 = m

    r S V = V0 mr S

    Total distance travel by particle is S1 then final velocity = 0 0 = V0 mr S1

    S1 = rV m 0 Ans.

    (c) 0V

    = VV0 mr

    S2 S2 =

    1

    rV m 0

    (i) Also 0V

    = VV0 2 tmr

    e

    t2 = n rm (i) =

    n

    1) ( V

    tS 0

    2

    2 Ans.

    1.101 : F v2 F = kv2 a = mkv 2

    t

    0

    V

    V2 dt m

    k vdv

    0

    mkt

    V

    1 V

    V 0 m

    kt

    V1

    V1

    0

    t km

    V V

    V V

    0

    0

    (i)

    V0 V

    h

  • Compact ISC Physics (XII)46

    Also a = dxdv v

    mkv 2

    v dv = m

    dx kv 2

    h

    0

    V

    V

    dx k Vdv m

    0 m n

    0VV

    = kh

    k = hm

    n 0V

    V put in (i) : t =

    VVn

    h V V

    V V00

    0

    Ans.

    1.102: Suppose at time t distance travel is x then F = mg sin axmg cos mw = mg sin ax mg cos where w =acceleration of block. w = g sin ax g cos .... (i) v = g

    sin ax g cos dxdv v

    = g sin a x g cos

    mx

    0

    0

    0

    dx ) cos axg sin (g dv v 0 = (g sin ) x 2

    cos g xa 2 x =

    cos g a

    sin g 2 x = a

    2

    tan . Velocity will be maximum when dtdv = 0 = acceleration g sin = ax g cos

    x = a1

    tan now

    tan ay

    0

    maxv

    0

    dx ) cos g x a sin (g dv v

    maxV = g sin

    tan a1

    2 cos g 2 tan

    a1

    VVmax = a

    g cos sin

    ag 2

    sin tan Ans.

    1.103: K = friction coefficient Block start sliding when.

    F = at1 = k m g t1 = ag mk . Assuming over time start from block start sliding then.

    Suppose acceleration of block is w then. mw = at kmg = a (t1 + t) kmg = a t w

    = ma

    t 2

    t

    0

    v

    0

    t 2ma V t)( dt (

    ma dV

    t)( d t 2ma ds

    t

    0

    2s

    0

    S = 6ma

    (t)3 = 6ma

    (t t1)3 Ans.

    mg

    sin

    K mg co

    s

    k = ax

    t = 0 t = t1

    t = t t1

    t = t

    mK F = at

  • 47

    1.104 : h

    v = 0

    V0Upward journey :

    mg

    F = Kv2V0

    Fnet = mg + kv2 a = g +

    mkv 2

    m

    kv mg dsdv v

    2 mv dv = (mg kv2) ds

    0

    v

    h

    02

    0

    ds kv mgdv mv h = mg

    mg KVn

    2km 20 .... (i)

    Downward Journey : Fnet = mg kv2

    mg k v

    2

    v a = mkv mg 2

    = v dv/ds

    mgmg KV

    n 2km

    h ds kv mgdv mv

    20

    v

    0

    h

    02

    2

    20

    kv mgmgn

    2km

    mgmg KVn

    2km

    v =

    mgKV 1

    v20

    0

    Ans.

    1.105 :(a) Position vector of particle : r

    = r cos i + r sin j

    At time t : = wt )j sin i (cos F r F F

    ]j sin i [cos mF a

    t

    0

    t

    0

    V

    0

    dt (sin wt) mF idt wt)(cos

    mF v d

    ]j wt)cos (1 i[sin wt mwF V

    speed = 22 wt)cos (1 (sin wt) mwF |V|

    Speed = 2

    wtsin mw2F

    Ans.

    (b) Distance is calculated by speed. Then 2wtsin

    mw2F V

    dtds

    dt 2wtsin

    mw2F

    ds t

    0

    s

    0

    S = Distance S = t

    02 2

    wt cos 2 mw

    2F S =

    2wt cos 1

    mwF 4

    2 .... (ii) velocity of particle

    rw

    m

    F

    0

  • Compact ISC Physics (XII)48

    will be zero : 0 = 0 2wtsin 2

    wtsin mw2F

    put value of t = w2 in (ii)

    S = 2mwF 4

    (1 cos ) S = 2mwF 8

    Average speed = /w2

    8F/mw Time

    Distance 2

    Average speed = mw 4F

    Ans.

    1.106: K = tan = friction coefficient When = W = net

    tangent ial accelerat ion/ Wx = Acceleration

    in x direction. Now W =

    m cos mgk cos sin mg

    = g (sin cos K cos ) = g [sin cos sin ] W = g sin (cos 1)... (i)

    Acceleration in x dirn: Wx = m cos cos mgk sin mg

    WWx = g sin [1 cos ] .... (ii)

    From (i) and (ii) : W = Wx dt

    V d dtV d x V = Vx + cos at t = 0 V

    = V0 and Vx = 0 V = Vx + V0 .... (iii) Then const = V0 Also Vx = V cos ....

    (iv) From (iii) and (iv) : V = cos 1

    V0 Ans.

    1.107: Tangential force on system is F then F sin g (dm) = sin g )d R ( = Rg

    t

    0

    d sin = R f in = 0 = Rgf cos

    f = R

    f = RF

    =

    Rg R cos 1 a = mg R

    R cos 1 = x g R

    R cos 1 a = R g

    R cos 1

    v

    wmg sin

    K mg cos

    x

    f

    y

    Rd

    dm= R d

    x

    (dm)g

    F

    ddm

  • 49

    1.108: At time of break off. normal reaction will be zero. Where mw0

    = Psuedo force because observer at sphere. R

    mV20 = mg cos

    m w0 sin V20 = Rg cos R w0 sin .... (i)

    Energy equation: Wall forces = Kf Ki Wpsuedo + Wmg = Kf

    Ki m w0 R sin + mg [R R cos ] = 21

    m V20 0 V20 = 2w0

    R sin + 2 g R [1 cos

    ].... (ii) From (i) and (ii) : V20 = 2R

    RV 20

    + 2 g R V20 = 2 g 3R V0 = 3

    g R cos

    gw

    1 3

    gw g 5 3

    w

    0

    00

    Ans.

    1.109 : Given F nr1

    F = nrK

    Where K = Constannt.

    A particle is said to steady if we displace particle away from origin, particle want to regainits position and also it we displaced particle toward origin, particle want to regain its original

    position. Then. At steady state (mean position) : F = rV m 20 Then r

    V m

    rK 20n .... (i)

    It we increases r then. F rV m 2

    > 0 K rn mV2 r1 > 0 Differentiate both side

    with respect to r for small increase of r: n k rn1 dr + mV2 r2 dr > 0 and

    r1

    rVm

    r1

    r

    Kn 20n

    > 0 .... (ii) From (i) and (ii) n < 1 Ans.

    w = acceleration0 R

    R00

    mw0

    V0

    mg

    R

    O F

    v0

    r

    r

    0

    v

  • Compact ISC Physics (XII)50

    1.110: At steady state: mg sin = m (R sin ) w2 cos cos

    = 2 wRg

    . Case (i) : If Rw2 > g then cos 2 wRg

    is defined and

    only one equilibrium position will be exist and will be steady.

    Case (ii) : If Rw2 < g then only 2 wRg

    = 0 will be equilibrium

    position because tangential fore along arch of ring due to mgwill be greater than that of pseudo force and object will comeat lower position of ring.

    RN

    Y

    mg

    m (R sin ) w2

    Y

    90