IDESA CMOS Physics Using MASTAR Part 1of2x

135
CMOS Physics using MASTAR (20 Tutorials containing 57 MASTAR exercises) (20 Tutorials containing 57 MASTAR exercises) Thomas Skotnicki & Frederic Boeuf 1

Transcript of IDESA CMOS Physics Using MASTAR Part 1of2x

Page 1: IDESA CMOS Physics Using MASTAR Part 1of2x

CMOS Physics using MASTAR

(20 Tutorials containing 57 MASTAR exercises )(20 Tutorials containing 57 MASTAR exercises )

Thomas Skotnicki & Frederic Boeuf

1

Page 2: IDESA CMOS Physics Using MASTAR Part 1of2x

Summary

� This set of slides intends to cover a wide part of the CMOS device physics from the basic solid-state properties to the system level functions, using the MASTAR software

� ~ 57 Exercices can be found within 20 Tutorials

T. Skotnicki & F. Boeuf

� ~ 57 Exercices can be found within 20 Tutorialscovering several aspects of the device and CMOS circuit physics and operation

2

Page 3: IDESA CMOS Physics Using MASTAR Part 1of2x

Outline� Tutorial 1 : General MASTAR presentation (1 ex.)� Tutorial 2 : Creating a Profile (Saving device parameters) (1 ex.)� Tutorial 3 : Modifying a Profile (3 ex.)� Tutorial 4 : Device Workspace Basics : Creating a Plot File (5 ex.)� Tutorial 5 : Basic Physics of the Electron Mobility in Silicon (4 ex.)� Tutorial 6 : Basic Physics of the Hole Mobility in Silicon (4 ex.)� Tutorial 7 : Carrier Mobility in MOSFETs (6 ex.)� Tutorial 8 : Carrier Mobility and Drive Current in Strained-MOSFETs (3 ex.)� Tutorial 9 : Coulomb Limited Carrier Mobility (2 ex.)� Tutorial 10 : Using the “System Layout Module” (2 ex.)

T. Skotnicki & F. Boeuf

� Tutorial 10 : Using the “System Layout Module” (2 ex.)� Tutorial 11 : Using the “System Layout Module” For industrial feasibility evaluation (2 ex.)� Tutorial 12 : Inverter Delay (6 ex.)� Tutorial 13 : Device Scaling (4 ex.)� Tutorial 14 : H-K dielectric and Metal Gate Stack (3 ex.)� Tutorial 15 : Device Variability (2 ex.)� Tutorial 16 : SRAM Variability (3 ex.)� Tutorial 17 : Device Speed (1 ex.)� Tutorial 18 : III-V High Mobility Channel Materials (1 ex.)� Tutorial 19 : Device Structure – FDSOI (3 ex.)� Tutorial 20 : Device Structure – DG / FinFET (1 ex.)

3

Page 4: IDESA CMOS Physics Using MASTAR Part 1of2x

Tutorial 1

General MASTAR PresentationGeneral MASTAR Presentation

4

Page 5: IDESA CMOS Physics Using MASTAR Part 1of2x

Description

� Objective � this series of exercices intends to present a general

view of the MASTAR tool which will be used for all thiscourse on device physics

� Basic operation and principle are reviewed

� Pre-requisite :

T. Skotnicki & F. Boeuf

� Pre-requisite :� none

5

Page 6: IDESA CMOS Physics Using MASTAR Part 1of2x

Bibliography on MASTAR Model

�Introduction to MOSFET Physics, T.Skotnicki, F.Boeuf and T. Poiroux, Chapter 3 of “Physics And Operation of Silicon Devices in Integrated Circuits”, WILEY ISBN 978-1-84821-163-6

�Optimal scaling methodologies and transistor perfor mance, T. Skotnicki and F. Boeuf Chapter 6 in High-K Gate Dielectric Materials for VLSI MOSFET Applications, H. Huff and D. Gilmer, Eds. New York:Springer Verlag

T. Skotnicki & F. Boeuf6

Page 7: IDESA CMOS Physics Using MASTAR Part 1of2x

Loading MASTAR

1. Open MASTAR directory, then double click on

MASTAR.exe

T. Skotnicki & F. Boeuf7

2. Read and Accept the User

Agreement

3. Click on continue

Page 8: IDESA CMOS Physics Using MASTAR Part 1of2x

General Presentation

Device Device WorkspaceWorkspace

Device Device WorkspaceWorkspace

Roadmap Roadmap WorkspaceWorkspaceRoadmap Roadmap

WorkspaceWorkspaceAdv. Physics Adv. Physics WorkspaceWorkspace

Adv. Physics Adv. Physics WorkspaceWorkspace

T. Skotnicki & F. Boeuf8

Page 9: IDESA CMOS Physics Using MASTAR Part 1of2x

What Does MASTAR Compute ?Device Device

WorkspaceWorkspaceDevice Device

WorkspaceWorkspaceRoadmap Roadmap

WorkspaceWorkspaceRoadmap Roadmap

WorkspaceWorkspaceAdv. Physics Adv. Physics WorkspaceWorkspace

Adv. Physics Adv. Physics WorkspaceWorkspace

Input : 1 Architecture (Bulk, SOI, DG) Geometry, stress, Materials, Power supply …

Input : up to 5 architectures, year of production, familly (HP, LoP, LstP)

Input : specific to each module : Strain, Quantum confinement, FDSOI , Balistic transport…

T. Skotnicki & F. Boeuf9

Output : Ion, Ioff, Vth, DIBL, CET, CV/I

Graphics Output :Ion/Ioff, Vt-L, performance points (cloud), users Plot …

Graphics Output :Ion/Ioff vs CMOS node, CV/I vs Year trend-line, gate leakage vs year

Output : Basic MOSFET caracteristics

Output : (Strain) Silicon band structure (electron and holes), ballistic current, Energy level in confined inversion channel,

Usage : Device Usage : Device (reverse) engineering, (reverse) engineering, platform definition platform definition

Usage : long term view Usage : long term view of CMOS Roadmaps of CMOS Roadmaps (e.g. ITRS roadmap)(e.g. ITRS roadmap)

Usage : Fine device Usage : Fine device physics assesment. physics assesment. Longer calculation timeLonger calculation time

Page 10: IDESA CMOS Physics Using MASTAR Part 1of2x

Device Workspace Presentation

Output Window :

T. Skotnicki & F. Boeuf10

Output Window : Device Performance

:Vth, Ion, Ioff, SS, DIBL, µ …

Input Window : Device Geometry, Doping, Strain… Graphical

Representation (Ion/Ioff, Vt-L, DIBL-L …

Page 11: IDESA CMOS Physics Using MASTAR Part 1of2x

Roadmap Workspace

Input Window : up to 5 architectures

Graphical Representation of the

T. Skotnicki & F. Boeuf11

Output Window : Main Device output caracteristics

Representation of the Roadmaps

Page 12: IDESA CMOS Physics Using MASTAR Part 1of2x

Tutorial 2

Creating a Profile (Saving device parameters)Creating a Profile (Saving device parameters)

12

Page 13: IDESA CMOS Physics Using MASTAR Part 1of2x

Description

� Objective � this series of exercices intends to learn how to handle

the MASTAR software� Basic functions are reviewed

� Loading/saving data� Graphical representation of calculations results in real-time

T. Skotnicki & F. Boeuf

� Graphical representation of calculations results in real-time

13

Page 14: IDESA CMOS Physics Using MASTAR Part 1of2x

Device Workspace Presentation

Output Window :

T. Skotnicki & F. Boeuf14

Output Window : Device Performance

:Vth, Ion, Ioff, SS, DIBL, µ …

Input Window : Device Geometry, Doping, Strain… Graphical

Representation (Ion/Ioff, Vt-L, DIBL-L …

Page 15: IDESA CMOS Physics Using MASTAR Part 1of2x

1. Click on View Graphics

2. Select Cloud Ion/Ioff

T. Skotnicki & F. Boeuf15

Ion/Ioff

Page 16: IDESA CMOS Physics Using MASTAR Part 1of2x

Loading Default Profile

1. Click on (…) icon : this will

open the 2. Select

4. Close window

T. Skotnicki & F. Boeuf16

open the « load profile »

window

2. Select Default.pro

3. Click on the « Load » button

Page 17: IDESA CMOS Physics Using MASTAR Part 1of2x

1. Device parameters are loaded from the

file Default.pro

2. Output iscalculated

T. Skotnicki & F. Boeuf17

3. Current Ion/Ioff point is show on the Cloud_Ion/Ioff graph

Page 18: IDESA CMOS Physics Using MASTAR Part 1of2x

Modifing a Profile

1. Play with Nbulk arrows to change channel doping of

the MOSFET

T. Skotnicki & F. Boeuf18

2. Current Point is moving on Ion/Ioff

Graph3. Play with other parameters : Vdd,

Tox …

Page 19: IDESA CMOS Physics Using MASTAR Part 1of2x

Tutorial 3

Device Workspace Basics :Device Workspace Basics :Modifying a Profile (Saving device parameters)

Page 20: IDESA CMOS Physics Using MASTAR Part 1of2x

Description

� Objective � this series of exercices intends to learn how to handle

the MASTAR software� Basic functions are reviewed

� Creating profiles� Saving Data

T. Skotnicki & F. Boeuf

� Saving Data

20

Page 21: IDESA CMOS Physics Using MASTAR Part 1of2x

Device Workspace Presentation

Output Window :

T. Skotnicki & F. Boeuf21

Output Window : Device Performance

:Vth, Ion, Ioff, SS, DIBL, µ …

Input Window : Device Geometry, Doping, Strain… Graphical

Representation (Ion/Ioff, Vt-L, DIBL-L …

Page 22: IDESA CMOS Physics Using MASTAR Part 1of2x

1. Click on View Graphics

2. Select Cloud Ion/Ioff

T. Skotnicki & F. Boeuf22

Ion/Ioff

Page 23: IDESA CMOS Physics Using MASTAR Part 1of2x

Loading Default Profile

1. Click on (…) icon : this will

open the 2. Select

4. Close window

T. Skotnicki & F. Boeuf23

open the « load profile »

window

2. Select Default.pro

3. Click on the « Load » button

Page 24: IDESA CMOS Physics Using MASTAR Part 1of2x

1. Device parameters are loaded from the

file Default.pro

2. Output iscalculated

T. Skotnicki & F. Boeuf24

3. Current Ion/Ioff point is show on the Cloud_Ion/Ioff graph

Page 25: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-1 : Modifing a Profile

1. Play with Nbulk arrows to change channel doping of

the MOSFET

T. Skotnicki & F. Boeuf25

2. Current Point is moving on Ion/Ioff

Graph3. Play with other parameters : Vdd,

Tox …

Page 26: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-2 : Profile Definition (1)

1. Enter Lg=39nm

2. Enter Tox=1.55nm

T. Skotnicki & F. Boeuf26

3. Enter Xj=15nm

4. Enter Vdd=1.1V

5. Enter Rs=180 Ohm.µm

6. Check Conventional Slope

Page 27: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-2 : Profile Definition (2)

1. Adjust Nbulk, so that Ioff=10nA/µm

T. Skotnicki & F. Boeuf27

Page 28: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-2 : Profile Definition (3)

1. Result is shown here

2. Click on « Save-As »

T. Skotnicki & F. Boeuf28

3. Name the file « ex1_LVT.pro »

4. Click on Save

Page 29: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex3 – Define another profile

1. Adjust Nbulk, so that Ioff=0.1nA/µm

2. Click on « Save As »

3. Name « ex1_SVT.pro », then

T. Skotnicki & F. Boeuf29

3. Name « ex1_SVT.pro », then click on Save

Page 30: IDESA CMOS Physics Using MASTAR Part 1of2x

Tutorial 4

Device Workspace Basics :Device Workspace Basics :Creating a Plot File

Page 31: IDESA CMOS Physics Using MASTAR Part 1of2x

Description

� Objective � this series of exercices intends to learn how to handle

the MASTAR software� Basic functions are reviewed

� Creating a plot file from existing profiles� Creating a plot file from a ASCII text file

T. Skotnicki & F. Boeuf

� Creating a plot file from a ASCII text file� Adjusting the display

31

Page 32: IDESA CMOS Physics Using MASTAR Part 1of2x

Generate Graphics with MASTAR

Profile (.pro)Profile (.pro)Stocks MOS Stocks MOS parametersparameters

MASTAR Plot MASTAR Plot (.plm)(.plm)

Simple Plot (.plt)Simple Plot (.plt)Ion/Ioff target Plot is Ion/Ioff target Plot is

generated from a textgenerated from a text--file file (ASCII)(ASCII)

GRAPHICS

Clouds (.clo)Clouds (.clo)

T. Skotnicki & F. Boeuf32

Collection of profilesCollection of profiles

Each profile is recalculated to Each profile is recalculated to generate the Ion/Ioff MASTAR generate the Ion/Ioff MASTAR

plotplot

Clouds (.clo)Clouds (.clo)Ion/Ioff is generated from a Ion/Ioff is generated from a

single profile by varying single profile by varying MOS parameters (e.g. Lg, MOS parameters (e.g. Lg,

Nbulk …)Nbulk …)

Experimental Data can be Experimental Data can be imported from a textimported from a text--filefile

Page 33: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex 1 - Creating a MASTAR Plot from previouslysaved Profiles (.pro)

1. Right-click inside the « Cloud_Ion_Ioff »

T. Skotnicki & F. Boeuf33

2. Select Plot > Edit/Modify Plot

Page 34: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex- 1 : Creating a Plot

1. Click on « New Plot »

T. Skotnicki & F. Boeuf34

Page 35: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex- 1 : Creating a Plot

1. Name the file example1.plt

T. Skotnicki & F. Boeuf35

Page 36: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-1 : Creating a Plot

1. The new file appears in the plot list

T. Skotnicki & F. Boeuf36

Page 37: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-1 : Creating a Plot

1. Click on « Profiles »

T. Skotnicki & F. Boeuf37

2. Select ex1_LVT.pro by double clicking or use

« Add>> » button. Repeat the operation with ex1_SVT.pro

3. Both selected profile should appear in the « Profile

in Plot » list

4. Click on « Apply Change », then « Close Window »

Page 38: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex- 1 : Creating a Plot

1. A « Plot » containing the

T. Skotnicki & F. Boeuf38

1. A « Plot » containing the previously saved profiles in

created

Page 39: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-2 :Quick Load a Profile from a Plot

1. Put the mouse cursor on the ex1_LVT profile

T. Skotnicki & F. Boeuf39

2. Click on the Triangle to load the corresponding profile

into the Device Workspace

Page 40: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex – 3 : Adding another Plot (1)

1. Right-click inside the « Cloud_Ion_Ioff »

T. Skotnicki & F. Boeuf40

2. Select Plot > Load/Unload Plot

Page 41: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex – 3 : Adding another Plot (2)

1. Select ITRS2003_HP_MASTAR.pl

2. Click « Add » Button

T. Skotnicki & F. Boeuf41

ITRS2003_HP_MASTAR.plm

3. Click « Close » Button

Page 42: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex – 3 : Adding another Plot (3)

1. Plot is only Partially visible

2. Right click in graphic window

T. Skotnicki & F. Boeuf42

3. Select Modify Scale

Page 43: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex – 4 : Changing the Plot Scale

1. Set ymax=1000

T. Skotnicki & F. Boeuf43

2. Set xmax=2500

3. Click on Apply

Page 44: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex – 4 : Changing the Plot Scale (2)

1. ITRS Roadmap 2003 is now visible

T. Skotnicki & F. Boeuf44

Note :Note :

When opening a plot file (.plm), When opening a plot file (.plm), each profile (= plot component) each profile (= plot component) is recalculated. Therefore a plot is recalculated. Therefore a plot is not a simple preis not a simple pre--calculated calculated line but a realline but a real--time calculated time calculated

lineline

Page 45: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex 5 - Creating your own plot (. plt ) fromtext file

1. Open explorer and go to the MASTAR

installation directory (e.g. C:\MASTAR)

2. Go to /Data/Plots sub-directories

T. Skotnicki & F. Boeuf45

3. Select « plot_example.plt »

and double click

Page 46: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex – 5 : Creating your own plot (.plt) from text file

1. The file is opened in Windows Note Pad

2. Syntax is as follows

Label

Perf. Value

T. Skotnicki & F. Boeuf46

[label displayed in graph]

Ion = value in µA/µm

Ioff = value in nA/µm

Page 47: IDESA CMOS Physics Using MASTAR Part 1of2x

Displaying your plots

1. Return to MASTAR and open the

plot_example.plt file using contextual menu (righ click)

T. Skotnicki & F. Boeuf47

2. Graph is displayed on graph.

Note :Note :

Plot are displayed with dotted Plot are displayed with dotted line and Mastar Plot are line and Mastar Plot are

displayed with solid linesdisplayed with solid lines

Page 48: IDESA CMOS Physics Using MASTAR Part 1of2x

Tutorial 5

Basic Physics of the Electron Mobility in Basic Physics of the Electron Mobility in Silicon

Page 49: IDESA CMOS Physics Using MASTAR Part 1of2x

Description

� Objectives� This series of exercices intends to describe a

simplified conduction band-structure of Silicon� Conduction band is analyzed for relaxed and strained-

Silicon. From Bandstructure calculations, impact on mobility is deduced

T. Skotnicki & F. Boeuf

mobility is deduced

49

Page 50: IDESA CMOS Physics Using MASTAR Part 1of2x

Bibliography

� A Comprehensive Modeling Study of Two-Dimensional Si licon Subbands Using a Full-Zone k.p Method, M. Szczap, N. Cavassilas, F. Michelini, F. Payet, F. Boeuf,and T. Skotnicki, In Extented Abstracts of SSDM 2007 (JSAP CAT AP071239), pp. 462-463

� Analytical Model for Phonon-Limited Mobility in n-M OS Inversion Layers on Arbitrarily Oriented and Strained Si Surfaces, Mélanie Szczap, Nicolas Cavassilas, Frédéric Boeuf, Fabrice Payet and Thomas Skotnicki, in Extented Abstracts of SSDM 2006 (JSAP CAT AP061239), pp 1062-1063

� Strained Si/ SiGe MOSFET Capacitance modeling based on band structure

T. Skotnicki & F. Boeuf

� Strained Si/ SiGe MOSFET Capacitance modeling based on band structure analysis , F. Gilibert, D. Rideau, F. Payet, F. Boeuf, E. Batail, M. Minondo, R. Bouchakour,T. Skotnicki and H. Jaouen, in Proceedings of the ESSERC 2005 (IEEE CAT 05EX1087) pp.281-285

� Low temperature characterization of effective mobil ity in uniaxially and biaxiallystrained N-MOSFETs , F. Lime, F. Andrieu, J. Derix, G. Ghibaudo, F. Boeuf and T. Skotnicki, in Proceedings of the ESSERC 2005 (IEEE CAT 05EX1087) pp.525-528

50

Page 51: IDESA CMOS Physics Using MASTAR Part 1of2x

Note : I on Enhancement by materials

DSDS

thGoxeDS VV

VVL

WCµI

−−=2

Transistor ArchitectureMaterialProperties Velocity Velocity saturation regime

T. Skotnicki & F. Boeuf

Carrier velocity under electric field E in the linear regime: v = µ E

µEcritical

Efield

Page 52: IDESA CMOS Physics Using MASTAR Part 1of2x

Note : Mobility In Silicon

E

carrier, mass m*

Shockwave from lattice vibration, or impurities, or

gate oxide rugosity every τseconds 1.1. Small m* : ligth Small m* : ligth

electrons or holeselectrons or holes

*

2mE

v c=

T. Skotnicki & F. Boeuf

2. High 2. High ττ (less possible (less possible collision)collision)

*mqµ

τ=

Page 53: IDESA CMOS Physics Using MASTAR Part 1of2x

Note : Periodic Potential & Band Structure

( )m

kkE

2

22h=

k

E

2

2

2

11

k

E

m ∂∂=

h

Free ElectronElectron in aPeriodic Potential � Kröning Peyney Model

V(x)

ψ

a

T. Skotnicki & F. Boeuf

k

?m=m0=9.1e-31 kg

Page 54: IDESA CMOS Physics Using MASTAR Part 1of2x

Note : Coupled States

Γ=ΨΨ 21

ΓΓ

=2

1

E

EH

E1(k) E2(k)E

Two electron states are coupled � Γ

T. Skotnicki & F. Boeuf

Γ 2E

( ) 02

1 =−ΓΓ−

λλ

E

ED

k

Eigenvalues ?

+Γ±+=

42

2221 δEE

E

Page 55: IDESA CMOS Physics Using MASTAR Part 1of2x

E (

u.a)

Note : Bangap and Effective Masses

2

2

2

11

k

E

m ∂∂=

h

Eg

m<m0 or m>m0

+Γ±+=

42

2221 δEE

E

T. Skotnicki & F. Boeuf

-50

-1.E+11 -5.E+10 0.E+00 5.E+10 1.E+11

k (1/m)

E (

u.a)

2

2

2

11

k

E

m ∂∂=

h

Page 56: IDESA CMOS Physics Using MASTAR Part 1of2x

Note : Silicon Band-StructureSilicon Band Structure ml

m

t

(y) 010

(z) 001

T. Skotnicki & F. Boeuf

(x)100

6 equivalent types of electrons are involved in conduction regime of

nMOS

2 types of holes are involved in conduction regime of pMOS : heavy and light

Page 57: IDESA CMOS Physics Using MASTAR Part 1of2x

Note : Longitutinal and Transverse Effective Masses of Electrons

Efield

ml =0.92m0

m =0.19m

If Electric field is // to the elipsoid, then conduction mass is ml

T. Skotnicki & F. Boeuf57

mt=0.19m0

Efield

If Electric field is ┴ to the elipsoid, then conduction mass is mt

Page 58: IDESA CMOS Physics Using MASTAR Part 1of2x

Note : Layout of Strain Module in MASTAR

Conduction band Iso-energy surface

Cristal and Deviceorientation configurator

T. Skotnicki & F. Boeuf58

StrainConfigurator

Page 59: IDESA CMOS Physics Using MASTAR Part 1of2x

Note : Choosing Proper Cristal & Device Orientation

Select (100) substrate

Move the camera

Choose Cristal Orientation

Choose Device in-plane Orientation

Select (011) orientation

T. Skotnicki & F. Boeuf59

Check deviceorientation here

Page 60: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex1-Electrons : Relaxed Silicon1. Load relaxed.xps (1)2. Observe the 6-equivalent valleys of the conduction band. All Elipsoid have the same size, and relative energy shift is 0.0 eV

(2)3. Remember that electric field for transport is parallel to the « Length », i.e. along the gate length direction4. Direction along the elipsoid, (named longitudinal) have a HEAVY mass, whereas transverse direction have a lighter mass.

(1)

Note : Average conduction mass is2/3 of mt (light)

T. Skotnicki & F. Boeuf60

(2)2/3 of mt (light)1/3 of ml (heavy)

Page 61: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex2- Electrons : Unixial Tensile Silicon1. In the strain configurator, click on «activate » along the gate length (1)2. Default value is 1000MPa of tensile strain3. Look at the energy diagrams : Green valleys becomes bigger, meaning that their population increases. Look at the energy

shift (2)4. Lower energy valley is now deltaZ (green), in which the smaller mass is // to the electric field

(2)

• What about the mobility in tensilestrained Silicon ?

Answer :Most of the carrier will populate a lowermt mass valley. Average conduction

T. Skotnicki & F. Boeuf61

(1)

mt mass valley. Average conduction mass is then decreasing leading to a higher mobility

Most of carriers willpopulate the lowestenergy valley (100)

Page 62: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex3 - Electrons : Bi-axial Tensile Strained Silicon1. In the strain configurator, click on «activate » along the gate width and the gate length (1)2. Inout a value of 1500MPa of tensile strain in both direction (this is typicall of Si/SiGe20% ). Resulting stress is then bi-axial and

tensile3. Look at the energy diagrams : Green valleys becomes bigger, meaning that their population increases. Look at the energy

shift (2). Shift is higher than in the uni-axial case.4. Lower energy valley is now deltaZ (green), in which the smaller mass is // to the electric field

(2)

• What about the mobility in biaxiallytensile strained Silicon ?

Answer :Most of the carrier will populate a lowermass valley. Average conduction mass is

T. Skotnicki & F. Boeuf62

(1)

(2)mass valley. Average conduction mass isthen decreasing leading to a highermobility

Most of carriers willpopulate the lowestenergy valley (100)

Page 63: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-4 : Electrons - Uniaxial Compressive Silicon1. In the strain configurator, click on «activate » along the gate gate length (1)2. Replace the value of 1500MPa of tensile strain by -1500 Mpa. This reprent a compressive uniaxial stress along the gate

length.3. Look at the energy diagrams : red and blue valleys becomes bigger, meaning that their population increases. Look at the

energy shift (2). 4. Lower energy valleys are now deltaX(red) and delta Y(blue), in which the average mass is 50%mt and 50% ml

• What about the mobility in uniaxiallystrained Silicon ?

T. Skotnicki & F. Boeuf63

Most of carriers willpopulate these lowestenergy valley (001) and (010)

Answer :The Z-valley has a lower enegy, so thatthere will be less light electrons. So, the average conduction mass is thenincreasing from {2/3mt,1/3ml} to {1/2mt,1/2ml} leading to a lower mobility

Page 64: IDESA CMOS Physics Using MASTAR Part 1of2x

Tutorial 6

Basic Physics of the Hole Mobility in SiliconBasic Physics of the Hole Mobility in Silicon

Page 65: IDESA CMOS Physics Using MASTAR Part 1of2x

Description

� Objectives� This series of exercices intends to describe a

simplified valence band-structure of Silicon� Valence band is analyzed using a 6x6 k.p. model.

Hole population and effective masses are analyzed as a function of stress

T. Skotnicki & F. Boeuf

a function of stress

65

Page 66: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex1 : Valence Band of Silicon1. Load relaxed.xps (1)2. In theview graphic menu, select 2D band diagram, and zoom on the Valence band3. Note : the valence band is here calulated using a 6x6 k.p. Hamiltonian, giving information on the fist 3 bands. These bands

are note UP (upper), MID (middle) and LOW (lower).4. Note the effective masses computed at gamma point

(1)

T. Skotnicki & F. Boeuf66

UP

MID

LOW

Note :Most of the carriersAre in the UP and MID (degenerated)Average conduction mass along L for holes is then(0.562+0.148)/2=0.355

Page 67: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex2 : Holes - Iso Energy in the Valence Band1. In the View Graphics menu, select « 3D VB Iso Energy »2. Compute the 3D curve for the upper band, starting from 25meV from the top of the band3. A highly anisotropic structure is calculated

T. Skotnicki & F. Boeuf67

Page 68: IDESA CMOS Physics Using MASTAR Part 1of2x

Note - Reading the Iso-Enegy of the Valence Band

1. The structure represent all the wave vectors of same energy. Remembering that E~k²/m*, this curve shows where k²/m* isconstant . The effective mass of holes is then highly anisotropic.

2. When m* is large (heavy holes) k² is also higher in order to keep energy constant. This is symbolized by the red « peaks » on the iso-enegy surface.

3. When m* is lower (ligh holes) k² is also lower to keep energy constant. This corresponds to the blue « divot » in the iso-energy surface

T. Skotnicki & F. Boeuf68

Direction with an heavy mass

Direction with an light mass

Page 69: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex3 – Holes : Uniaxial Tensile Strain1. In the strain configurator, click on «activate » along the gate length (1)2. Input a value of 1000MPa of tensile strain3. Look at the energy band diagram

(2)

(3)

• What about the hole mobility in unixaxial tensile strained Silicon ?

T. Skotnicki & F. Boeuf69

(1)

(2)

Answer :Most of the carrier will populate the heavier mass valley, which also becomeheavier than in relaxed silicon.Average conduction mass in thenincreasing.Mobility is decreasing

Page 70: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex4 – Holes : Uniaxial Compressive Strain1. In the strain configurator, click on «activate » along the gate length (1)2. Input a value of 2000MPa of compressive strain3. Look at the energy band diagram

(2)

(3)

• What about the hole mobility in unixaxial tensile strained Silicon ?

T. Skotnicki & F. Boeuf70

(1)

Answer :Most of the carrier will populate the UP valley, which also become lighter than in relaxed silicon.Average conduction mass in thendecreasing, and mobility is increasing

Page 71: IDESA CMOS Physics Using MASTAR Part 1of2x

Note : Iso Energy of Holes with compressive uniaxial strain

T. Skotnicki & F. Boeuf71

Hole mass along the channel direction are now lighter than on relaxed silicon

Page 72: IDESA CMOS Physics Using MASTAR Part 1of2x

Note : Redistribution in subbands and scattering reduction due to Strained-Si

0.0

0.1

0.2

E(LH-HH)

Si/Si0.5

Ge0.5

Ene

rgy

(eV

)

LH

BiBi--axialaxialStrainedStrained--SiSi

< 1 % in HH-0.2

-0.1

0.0

Si bulk

LH

HH

Ene

rgy

(eV

)

Unstrained SiUnstrained Si

>80 % in HH

NFermi-Dirac

T. Skotnicki & F. Boeuf

-0.3

-0.2

-0.1Ene

rgy

(eV

)

SO

[100] [110]Γ

HH

-0.5

-0.4

-0.3 SO

[110][100] Γ

Ene

rgy

(eV

)

EWhen straining Si, not only the effective mass of holes and the carrier population are changed, but also the electron-phonon interaction time is increasing leading to a better mobility

Page 73: IDESA CMOS Physics Using MASTAR Part 1of2x

Main Stress Configurations (1)

T. Skotnicki & F. Boeuf73

Page 74: IDESA CMOS Physics Using MASTAR Part 1of2x

Main Stress Configurations (2)

T. Skotnicki & F. Boeuf74

Page 75: IDESA CMOS Physics Using MASTAR Part 1of2x

Summary of Stress ConfigurationsElectron Hole

Tensile - biaxial + +-Compressive - biaxial - +Tensile uniaxial - along Lg + -Compressive uniaxial- along Lg - +

uniaxialBiaxial Compression

T. Skotnicki & F. Boeuf

Uniaxial Tensionalong Lg

uniaxialCompression along Lg

Biaxial Tension

Biaxial Compression

Page 76: IDESA CMOS Physics Using MASTAR Part 1of2x

Tutorial 7

Carrier Mobility in MOSFETsCarrier Mobility in MOSFETs

76

Page 77: IDESA CMOS Physics Using MASTAR Part 1of2x

Effective Mobility

� Goal of the exercise� Observe the Effective Mobility behavior as a function

of effective field� Use variation on channel doping and length� Use variation on gate oxide thickness

� Add/remove Mobility enhancement

T. Skotnicki & F. Boeuf

� Add/remove Mobility enhancement

77

Page 78: IDESA CMOS Physics Using MASTAR Part 1of2x

Bibliography

� On the universality of inversion-layer mobility in n-and p-channel MOSFETs S. Takagi; M. Iwase; A. Toriumi, Electron Devices Meeting, 1988. IEDM '88. Technical Digest., International Digital Object Identifier,10.1109/IEDM.1988.32840, Publication Year: 1988 , Page(s): 398 – 401

T. Skotnicki & F. Boeuf

� On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration Takagi, S.; Toriumi, A.; Iwase, M.; Tango, H.; Electron Devices, IEEE Transactions on.Volume: 41 , Issue: 12 Digital Object Identifier: 10.1109/16.337449 Publication Year: 1994 , Page(s): 2357 - 2362

78

Page 79: IDESA CMOS Physics Using MASTAR Part 1of2x

Note : Universal Mobility LawFrom S. Takagi et al.

Surface roughness limited mobility

Acoustic phonons limited mobilityµeff = f (Eeff)

log(

µ eff)

µAC=A0Eeff1/3

µSR=A1Eeff-2

SRACeff µµµ111 +=

log(

µ eff)

µAC=A0Eeff1/3

µSR=A1Eeff-2

SRACeff µµµ111 +=

T. Skotnicki & F. Boeuf79

Eeff depends on transistor parameters :

EeffEeff

Page 80: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-1: Effective Mobility (1)1. Load Baseline.pro (nMOS transistor).2. Open Auxiliary µeff/Eff in the View Graphics menu

T. Skotnicki & F. Boeuf80

Page 81: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-1: Effective Mobility (2)1. Click on the Mobility Tab2. Deactivate Strain Liner – Observe the yellow point going on the univesal curve

T. Skotnicki & F. Boeuf81

Page 82: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-2: Impact of Pockets

(2)

1. Click on the Pocket tab2. Increase the Dose to 9e13 at/cm3 (1)– Observe the yellow point going on the univesal curve

• When Pocket dose ↑, the effective Mobility (µeff) decreases : why ?

Answer :When pocket dose ↑ , the Vth value isalso ↑ (2) . Since Eeff ≈ (Vg+Vth)/6Tox , Eeffis therefore ↑ , therefore µeff ↓

T. Skotnicki & F. Boeuf82

(1)

Page 83: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-3 : Impact of Lgate1. Decrease gate length from 60nm down to 48nm

• Answer :When L ↓, due to short channeleffects, Vth is ↓ (1)Since Eeff ≈ (Vg+Vth)/6Tox , Eeff is also↓ , therefore µeff ↑ (2)

(1)

(2)

•Why is Effective Mobility (µeff) increasing when Lgate is ↓

T. Skotnicki & F. Boeuf83

Note to Pr : when decreasing L be carefull of too low Vth (<0)

Page 84: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex- 5 : Impact of Lgate at constant Ioff

1. Go back to L=60nm, then check Ioff=constant (1)2. Re-input L=48nm

(1)

(2)

(3)

T. Skotnicki & F. Boeuf84

Page 85: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex- 5 : Impact of Lgate at constant Ioff (2)• Effective Mobility (µeff) DECREASES with Lgate when Ioff is constant. Why ?

•Answer :1. When checking Ioff=constant,

Channel doping is adjustedautomatically to match the given Ioff

2. Due to short channel effects, the S factor is degraded from 90 to

T. Skotnicki & F. Boeuf85

factor is degraded from 90 to 115mV/dec when L ↓ (2)

3. To match the same Ioff, Vth has to behigher than before (307mV vs 230mV)

4. Since Eeff ≈ (Vg+Vth)/6Tox , Eeff is also↑, therefore µeff ↓ (3)

Page 86: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-6 : Optimal Gate Length1. Uncheck Ioff=constant and go back to L=60nm2. open Auxiliary Ion(L) in the View Graphics menu (1)3. Choose Lmin=45nm, Lmax=100nm, 30 points then click on start (2)

• Saturation current of the transistor isplotted as a function of Lgate, with Ioffkept constant

(1)

(2)

T. Skotnicki & F. Boeuf86

kept constant• Observe the optimum of saturation current around L ≈ 60nm• for 60nm < L < 100nm, Idsat is improvedby the decreased in L• for L<60nm, the increase in Eeff isdegrading µeff more rapidly and thereforeIdsat drops.

Note to Pr : The optimum value of L depends of several technological parameters, such as Tox and Xj

Page 87: IDESA CMOS Physics Using MASTAR Part 1of2x

Tutorial 8

Carrier Mobility and Drive Current in Strained -Carrier Mobility and Drive Current in Strained -MOSFETs

87

Page 88: IDESA CMOS Physics Using MASTAR Part 1of2x

Drive Current in Strained-Si

� Goal of the exercice� Objective is to link the previous exercice on basic of mobility to the

performance of MOSFETfabricated with strained-Silicon� First, techniques to create strained-Si transistors are shown� Second,example of bi-axial strained-si devices are analysed through

MASTAR� Finally, application of local-strained-Silicon techniques is described and

simulated with MASTAR

T. Skotnicki & F. Boeuf

simulated with MASTAR

� Pre-requisite : Basics of mobility and Mobility tutorials� Contents

� Background � Process techniques to create Strain in Silicon channel of a MOSFET transistor

88

Page 89: IDESA CMOS Physics Using MASTAR Part 1of2x

Bibliography� Non-Uniform Mobility Enhancement Techniques and the ir Impact on Device Performance

Fabrice Payet, Frédéric Boeuf, Claude Ortolland* and Thomas Skotnicki, Trans. Electron Devices Volume 55, Issue 4, April 2008 Page(s):1050 – 1057

� Stress Memorization Technique (SMT) Optimization fo r 45nm CMOS , C. Ortolland, P. Morin, C. Chaton, E. Mastromatteo, C. Populaire, S. Orain, F. Leverd P. Stolk, F. Boeuf & F. Arnaud , in Digest of Tech. Papers. Symposium on VLSI Technology 2006 (IEEE CAT No 06CH37743), pp 96-97.

� Mechanical and Electrical Analysis of Strained Line r Effect in 35 nm FD SOI Devices with Ultra Thin Silicon Channels , C. Gallon, C. Fenouillet-Beranger, S. Denorme, F. Boeuf, V. Fiori, N. Loubet, A. Vandooren, T. Kormann, M. Broekaart, P. Gouraud, F. Leverd, G. Imbert, C. Chaton, C. Laviron, L. Gabette, F. Vigilant, P. Garnier, H. Bernard, A. Tarnowka, R. Pantel, F. Pionnier, S. Jullian, S. Cristoloveanu and T. Skotnicki, Jpn. J. Appl. Phys. Vol. 45 (2006) Part 1, No. 4B, pp

T. Skotnicki & F. Boeuf

Jullian, S. Cristoloveanu and T. Skotnicki, Jpn. J. Appl. Phys. Vol. 45 (2006) Part 1, No. 4B, pp 3058-3063

� Strained Si/SiGe MOSFET Capacitance modeling based on band structure analysis , F. Gilibert, D. Rideau, F. Paye, F. Boeuf, E. Batail, M. Minondo, R. Bouchakour,T. Skotnicki and H. Jaouen, in Proceedings of the ESSERC 2005 (IEEE CAT 05EX1087) pp.281-285

89

Page 90: IDESA CMOS Physics Using MASTAR Part 1of2x

Note : Mobility Enhancement Techniques

SubstrateSubstrate--basedbased

SixGe1-x Based

Bulk SSOI

Tensile bi -axial stress

SiGe SD

Compressive

SiGe SEG

ProcessProcess--based Induced Stessbased Induced Stess

Liners

CESL SMT

Tensile Tensile

Cristal Orientation

In-plane Out of plane

Natural mobility boost

STI

SACVD

Tensile

T. Skotnicki & F. Boeuf

BULK SSOI

Tensile bi -axial stress

nMOS+pMOS

Si

SiGe box

Compressive

pMOS

nMOS

Tensile

nMOS

Tensile

pMOS

Compressive

Mod.Orientation Si Channel

pMOS

Natural mobility boost

Rotated substrate

Cristal Orientation

TensileBi-axial

nMOS+pMOS

Page 91: IDESA CMOS Physics Using MASTAR Part 1of2x

Note : Substrate-Base Strained-SiSilicon layer sees a bi-axial tensile stress when grown on relaxed Si(1-x)Ge(x)

T. Skotnicki & F. Boeuf91

Page 92: IDESA CMOS Physics Using MASTAR Part 1of2x

Note : mobility improvement

T. Skotnicki & F. Boeuf92

Maximum mobility improvement for electrons ~ x1.8

Page 93: IDESA CMOS Physics Using MASTAR Part 1of2x

Prepare the Exercise1. Load « baseline.pro », note the Ioff value (11.9nA/µm)2. Open the pocket tab and uncheck Pockets (1) – Ioff will increase to the lower doping

3. Adjust Nbulk to 1e18 in order to re-adjust Ioff to ~10nA/µm4. Open the mobility Tab and uncheck Activate Strain Liner

T. Skotnicki & F. Boeuf93

(1) (1)

(2)

Page 94: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex 1 : Global Strained by using substrate1. Open the Mobility Tab and input Kµ_sub=1.8 (i.e. max mobility improvement)2. Open the Auxiliary « Ion Strain Improvement L »Ion(L) 3. Computhe curve into a new Selection (red,blue, green or black)4. Observe how the Idsat is enhanced by the increased mobility, as a function of L

T. Skotnicki & F. Boeuf94

(1)

Page 95: IDESA CMOS Physics Using MASTAR Part 1of2x

Question

• Drive current improvement is not constant with Lgate . WHY ?

T. Skotnicki & F. Boeuf95

Page 96: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-1 : Answer

Long channel devices : L → ∞Vdsat → Vgt/(1+d)

Idsat ∝ µeff.vgt² ⇒ ∆Idsat/Idsat = ∆µeff/µeff

with

T. Skotnicki & F. Boeuf96

Full calculation of Id enhancement with L by F.Payet et al., T-ED

Short channel devices : L → 0Vdsat → L.Ec → L.Vsat/µeff

Idsat ∝ Vsat ⇒ ∆Idsat/Idsat = ∆ Vsat/ Vsat

Page 97: IDESA CMOS Physics Using MASTAR Part 1of2x

Uniaxial Stress By Stressed-Liner

1.E-07

1.E-06

Ioff

(A/µ

m)

Strained

Unstrained

Vdd=0.9V

+15.6%

2D mecanical Simulations

Impact on nMOSFETs performancesStrained MOSFET (Lg=30nm) by

CESL

CESL Tensile

T. Skotnicki & F. Boeuf

1.E-08

1.E-07

250 450 650 850Ion (µA/µm)

Ioff

(A/µ

m)

Tension

(F.Bœuf et al., IEDM 2004 , SSDM 2004)

Page 98: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-2 : Local Stressor vs µeff (1)

Local stressor deposited on the top of the transistor gate createsan important stress pocket on the channel edge

Stress depends on Lgate. Mechanicalcalculation shows that :

T. Skotnicki & F. Boeuf98

See F.Payet et al., TED 2007

Page 99: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-2 : Local Stressor vs µeff (2)1. Open the Mobility Tab and check Activate Local Strain2. Re-compute the Ion(L) curve into a new Selection (red,blue, green or black)3. Observe how the Idsat is enhanced by the increased mobility due to local stress

T. Skotnicki & F. Boeuf99

(2)

(1)

Page 100: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-2 : Local Stressor vs µeff (3)1. Change the scale of the graphics and plot Ion(L) for L varying between 10µm and 45nm

(use the red slot)2. Uncheck « Local Strain » in the mobility tab, and use the « blue » slot to plot the Ion(L)

•Ion is more improved for short gate lengththan for long gate length. Why ?

T. Skotnicki & F. Boeuf100

Page 101: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-2 : Local Stressor vs µeff (4)

• Effective Mobility (µeff) increases whenLgate decreases•This comes from the variation of the stress (deformation) applied to the transistor channel. •When L is reduced, the tensile stress pockets are overlapping, leading to and increase of mueff for shorter gate length

1. Open the view graphics tab, then select « Auxiliary Generic » (1)2. Select Lgate variation from 45nm to 10µm3. Set Lgate as X axis and Mueff as Y axis and plot the result

(1)

T. Skotnicki & F. Boeuf101

� with local stress , mobility is improvedon short channel transistors.(2)

Page 102: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-3 : Local Stressor impact on Ion1. Now, open the view graphics menu and plot Auxialiry Ion Strain Improvement (L)2. Plot the graphic between 45nm and 10µm

•Ion improvement is not monotonic Why ?

T. Skotnicki & F. Boeuf102

Page 103: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-3 : Local Stressor impact on Ion

Long channel devices : L → ∞Vdsat → Vgt/(1+d)

Idsat ∝ µ .vgt² ⇒ ∆I /I = ∆µ /µ

with

Answer :

T. Skotnicki & F. Boeuf103

Idsat ∝ µeff.vgt² ⇒ ∆Idsat/Idsat = ∆µeff/µeff

Short channel devices : L → 0Vdsat → L.Ec → L.Vsat/µeff

Idsat ∝ Vsat ⇒ ∆Idsat/Idsat = ∆ Vsat/ Vsat

Page 104: IDESA CMOS Physics Using MASTAR Part 1of2x

Tutorial 9

Coulomb Limited Carrier MobilityCoulomb Limited Carrier Mobility

104

Page 105: IDESA CMOS Physics Using MASTAR Part 1of2x

Description

� Objective of this tutorial is� To introduce the concept of Coulomb-Limited mobility� Analyse the impact of Coulomb Scattering (CbS) on

MOSFET performance when transistors are shrinked

� Content

T. Skotnicki & F. Boeuf

� Background� Coulomb-limited Mobility Modeling� Screening Effect Modeling

� Ex-1 : plotting µeff(Eeff) curves for various channeldopings

� Ex-2: Performance evolution of scaled MOSFETs withand without CbS

105

Page 106: IDESA CMOS Physics Using MASTAR Part 1of2x

Bibliography

� Modeling of carrier mobility against carrier concen tration in arsenic-, phosphorus-, and boron-doped silicon Masetti, G.; Severi, M.; Solmi, S.; Electron Devices, IEEE Transactions on . Volume: 30 , Issue: 7 Digital Object Identifier: 10.1109/T-ED.1983.21207 Publication Year: 1983 , Page(s): 764 - 769

� Impact of Coulomb Scattering on the Characteristics of NanoscaleDevices , Frédéric Boeuf, Gérard Ghibaudo* and Thomas Skotnicki, Extended Abstracts of the 2009 International Conference on Solid State Devices and Materials, Sendai, 2009, pp1048-1049

T. Skotnicki & F. Boeuf

Devices and Materials, Sendai, 2009, pp1048-1049� Accurate modeling of Coulombic scattering, and its i mpact on scaled

MOSFETs Mujtaba, A.; Takagi, S.-I.; Dutton, R.; VLSI Technology, 1995. Digest of Technical Papers. 1995 Symposium on . Digital Object Identifier: 10.1109/VLSIT.1995.520876 Publication Year: 1995 , Page(s): 99 - 100

� On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration Takagi, S.; Toriumi, A.; Iwase, M.; Tango, H.; Electron Devices, IEEE Transactions on.Volume: 41 , Issue: 12 Digital Object Identifier: 10.1109/16.337449 Publication Year: 1994 , Page(s): 2357 - 2362

106

Page 107: IDESA CMOS Physics Using MASTAR Part 1of2x

Note : Universal Mobility Law – Con’t

« Coulombic branch »

T. Skotnicki & F. Boeuf107

Page 108: IDESA CMOS Physics Using MASTAR Part 1of2x

Coulomb Limited MobilityS

ourc

e

Dra

in

+

Gate

-

V(r)~1/r

Sou

rce

Dra

in

+

Gate

- - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - -

--

--

- -

---

-

-

-

--

-

-

-

NeutralArea

Weak Inversion Strong Inversion

V(r)~1/r*e-k0r

T. Skotnicki & F. Boeuf108

-

Electron (holes) transport in the transistor channel is pertubated by the Coulomb potential created by fixed charges. This iscalled « Coulomb Limited Mobility »

In strong inversion, the Coulomb potentialcreated by impurities is screened by the inversion layer. This is the « Screening Effect », which lowers the impact of Coulombic interaction between carriers and impurities in the on-state of the transistor

Page 109: IDESA CMOS Physics Using MASTAR Part 1of2x

Weak Inversion Mobility Modeling

From Massetti et al., Coulomb-limited mobility can beexpressed as a function of substrate doping concentration

(i.e. impurities concentration)

(a)

T. Skotnicki & F. Boeuf109

(a)

(b)

G. Masetti et al. , IEEE Trans. Elec. Dev, 1983, p764

Page 110: IDESA CMOS Physics Using MASTAR Part 1of2x

Simple Modelisation of the Screening Effect

7.7E16 µ

T. Skotnicki & F. Boeuf110

2.2E18

7.7E17

3E17

7.7E16 µac

µsr

µc,n

µc,n

µc,n

F.Bœuf et al., SSDM 2009 S. Takagi et al, T-ED, VOL. 41, NO. 12, DECEMBER 1994

Page 111: IDESA CMOS Physics Using MASTAR Part 1of2x

Prepare the Exercise1. Load « baseline.pro », note the Ioff value (11.9nA/µm)2. Open the pocket tab and uncheck Pockets (1) – Ioff will increase to the lower doping

3. Adjust Nbulk to 1e18 in order to re-adjust Ioff to ~10nA/µm4. Open the mobility Tab and uncheck Activate Strain Liner

T. Skotnicki & F. Boeuf111

(1) (1)

(2)

Page 112: IDESA CMOS Physics Using MASTAR Part 1of2x

Plotting Mobility Law : µ eff vs E eff

Vdd is used to generate Eff variation

T. Skotnicki & F. Boeuf112

Select Eeff for X and µeff for Y axis

Click on ComputeIn order to avoid scale issue in the displayNB : select Red then compute, then select Blue and compute, Green and compute and finally Black and compute

Page 113: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex- 1 : Plotting µ eff vs E eff

T. Skotnicki & F. Boeuf113

Page 114: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-1 : Plotting µ eff vs Eeff with Coulomb Scattering[CbS] (1)

T. Skotnicki & F. Boeuf114

(1)

(2)

Page 115: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex- 1 : Plotting µ eff vs Eeff with Coulomb Scattering[CbS] (2)

• Change channel doping from 3e17 at/cm² to 1e18 at/cm² as shown on the graph (1)• Plot a new curve (color) for each case

(1)

T. Skotnicki & F. Boeuf115

3e17

7e17

1e18

(1)

Page 116: IDESA CMOS Physics Using MASTAR Part 1of2x

Exercise 2 : CMOS L-scaling w/o CbS

L=60nmµ=281cm²/Vs, Eeff=0.94MV/cmIon=692µA/µm

L=50nmµ=276cm²/Vs, Eeff=0.96MV/cmIon=694µA/µm

Same IoffL-shrink

T. Skotnicki & F. Boeuf116

Coulomb interaction is off

Performance increasesthanks to reduced L-GateNB : Ioff constant must be checked !

Page 117: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex- 2 : CMOS L-scaling w/ CbS

L=60nmµ=262cm²/Vs, Eeff=0.94MV/cmIon=679µA/µm

L=50nmµ=? , Eff = ? , Ion = ?

Same IoffL-shrink

?

T. Skotnicki & F. Boeuf117

Coulomb interaction is on

Performance ? Why ?NB : Ioff constant must be checked !

Page 118: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-2 : AnswerPerformance is this time degraded ! In order to keep Ioff constant, channel doping is increased when L isdecreased to 50nm. The CbS is then higher, and mobility is now decribes by the blue curve below which islower than the previous case (green). As a consequence, Ion is decreasing .

T. Skotnicki & F. Boeuf118

L=50nmIon=666µA/µm

L=60nmIon=678µA/µm

Page 119: IDESA CMOS Physics Using MASTAR Part 1of2x

Tutorial 10

Using the “System Layout Module”Using the “System Layout Module”

119

Page 120: IDESA CMOS Physics Using MASTAR Part 1of2x

Objective

� Objective is to review the basic operation of the « System Layout » module of MASTAR� Plotting I-V curves of nMOS and pMOS� Creating Layout of Inverters and SRAM� Simulating speed of Ring Oscillators

T. Skotnicki & F. Boeuf120

Page 121: IDESA CMOS Physics Using MASTAR Part 1of2x

Module Overview

SRAM LayoutInverter CellMOSFET window

T. Skotnicki & F. Boeuf121

Id-Vd and Id-Vg

Capacitance Window

Page 122: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex- 1 : Plotting I-V curves (1)

1-Click on the green arrow to load Device profiles :nMOSpMOSPass Gate transistor for SRAM calculation

2-I-V are automatically calculated

T. Skotnicki & F. Boeuf122

2-I-V are automatically calculated

Page 123: IDESA CMOS Physics Using MASTAR Part 1of2x

Click in View Graphic to display graphical output window

T. Skotnicki & F. Boeuf

Page 124: IDESA CMOS Physics Using MASTAR Part 1of2x

On any graphic window, right click to open a contextual menu

e.g. on Id(Vd) curve, right click then select

Ex- 1 : Plotting I-V curves (3)

T. Skotnicki & F. Boeuf

right click then select « Compute … »

Page 125: IDESA CMOS Physics Using MASTAR Part 1of2x

Smooth = 0

adjust = 1.13Reference point from device

T. Skotnicki & F. Boeuf

Smooth = 0.1

adjust = 0.93

device calculation (no interpolation)

Page 126: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-2 : Computing Inverter Delay (1)

� To start, you need to load at least two(inverter) or 3 (SRAM) device profile (n & p + PassGate)

T. Skotnicki & F. Boeuf

Page 127: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-2 : Computing Inverter Delay (2)

Cgd is automatically calculated by using Cgate+Miller (overlap+outerfringe), with gate heigth = 2*Lgate

T. Skotnicki & F. Boeuf127

3 – enter parasitic capacitance values

Cj,botCj,ch

Page 128: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-2 : Computing Inverter Delay (3)

T. Skotnicki & F. Boeuf128

4 – Input you inverter layoutIt can be saved independantly or with the whole system profile

Page 129: IDESA CMOS Physics Using MASTAR Part 1of2x

You can enter manually the layout parameters

And save/load them

Ex-2 : Computing Inverter Delay (4)

T. Skotnicki & F. Boeuf

Note : Gate length comesfrom the device profile

Page 130: IDESA CMOS Physics Using MASTAR Part 1of2x

Interter delay in then calculted automatically using a Cload= 1fFThen results for various FO are displayed

Ex-2 : Computing Inverter Delay (5)

T. Skotnicki & F. Boeuf130

Page 131: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-2 : Computing Inverter Delay (6)

Interter delay in then calculted automatically using a Cload= 1fFThen results for various FO are displayed

T. Skotnicki & F. Boeuf131

Page 132: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-2 : Computing Inverter Delay (7)

Result can be monitored by going into ViewGraphics > Tp inverter

T. Skotnicki & F. Boeuf132

Page 133: IDESA CMOS Physics Using MASTAR Part 1of2x

This graph show the Vout of each inverter node in the case of a single calculation

T. Skotnicki & F. Boeuf133

Preference can be modified (! FanOut is not used here)

Page 134: IDESA CMOS Physics Using MASTAR Part 1of2x

T. Skotnicki & F. Boeuf134

You can also generate random variation on inverter generation by checking the box, and enter the number of wanted calculation

Statiscal data on Tp @ C=1fF repartition is displayed

Page 135: IDESA CMOS Physics Using MASTAR Part 1of2x

Ex-3 : Computing Inverter Delay includinginterconnections

Another way to compute delay is proposed by including R and C lines

T. Skotnicki & F. Boeuf135