Identifying Unknowns: A challenge for Metabolomics · 309.2 164.9 171.2 291.1 208.9 191.1 247.2...

34
Identifying Unknowns: A challenge for Metabolomics Jeevan K. Prasain, PhD Department of Pharmacology and Toxicology, UAB [email protected]

Transcript of Identifying Unknowns: A challenge for Metabolomics · 309.2 164.9 171.2 291.1 208.9 191.1 247.2...

  • Identifying Unknowns: A challenge for Metabolomics

    Jeevan K. Prasain, PhDDepartment of Pharmacology and

    Toxicology, [email protected]

  • Outline• Introduction• How to interpret LC-MS and MS/MS

    data.• Identification of some conjugated

    metabolites.• Conclusions

  • Introduction• Identification of metabolites (lipids or any other

    metabolites) at a molecular level presents a great challenge due to their structural diversity (isobars and isomers) and dynamic metabolism.

    • Considering the number of metabolites is >2000,000, there is a lack of commercial analytical standards (only a few thousands available) or comprehensive databases.– Note that there is the opportunity to make specific metabolite

    standards through the NIH Common Fund– Go to http://metabolomicsworkbench.org

    • Inclusion of many artifacts in database.• Structural complexity of metabolites.• Low concentrations and difficult to isolate.

  • Metabolome

    LC-MS

    NMRGC-MS

    CE-MSPDA

    Adapted from Moco et al., Trend in Analytical Chemistry, 2007

    Majority of metabolites are yet to be identified; LC-MSand NMR are the most commonly used analytical techniques

    for metabolite identification

  • Keys to identifying chemical structures by mass spectrometry

    • Combination of the following:

    o Retention time in LCo Accurate masso Isotope distributiono MS/MS product ions of a precursor ion

  • Raw LC-MS data

    Interpretation of MS/MS of a precursor ion(accurate mass, isotope data and nitrogen rule)

    Putative identification(molecular formula determination)

    De novo structure elucidation (NMR and or LC-MS/MS)

    Metabolite identification workflow

    Metabolomics/chemical database search(known/new or novel)

    Data file processed by algorithms(e.g., XCMS)

  • Platform to process untargeted metabolomic data

    • XCMS (developed by the Siuzdak Lab at the Scripps Research Institute) Online, is a web-based version that allows users to easily upload and process LC-MS data. It provides links to METLIN database and produces a list of potential metabolites.

    • METLIN (developed by the Siuzdak Lab.) is a metabolite database for metabolomics containing over 64,000 structures and it also has comprehensive tandem mass spectrometry data on over 10,000 molecules.

  • LCMS-based metabolomics• Detection of intact molecular ions [M+H]+/[M-H]- is

    possible with soft ionization such as ESI• High mass accuracy of many instruments (

  • Points to be considered in LC-MS analysis

    • Choice of ionization mode- ESI Vs APCI +ve/-vemodes

    • Choice of eluting solvent- methanol Vs acetonitrile• Additives/pH in mobile phase• Molecular ion recognition (adduct formation) • Chromatographic separation- stationary phase C8,

    C18 ..• Evaluation of spectral quality- what to look for in a

    good quality spectra

  • Nielsen et al., J Nat Prod. 2011

    Adduct formation might complicate metabolite identification

  • Use of isotope pattern in identification of metabolites

    • Very close in mass, but different in isotope patterns.

    • Isotope ratio outlier analysis (IROA)– Used for LC‐MS (and possibly GC‐MS)– Designed to distinguish between metabolites of interest and background signals

    – Requires uniform labeling at the 95% and 5% 13C‐enrichment levels

  • Pairing the 5% and 95% 13C‐labeling distinguishes artifactual molecules

    Courtesy of IROA Technologies 

  • Value of knowing the carbon #

    IROA Technologies

  • Isotopic pattern intensity of [M-H]- and 13C and [M-H+2]-signals indicates the number of carbons and hetero atoms

    in the molecular ion

    287

    289288

    1H = 99.9%, 2H = 0.02%12C = 98.9%, 13C = 1.1%35Cl = 68.1%, 37Cl = 31.9%

  • 50 100 150 200 250m/z

    100

    75

    50

    25

    035 91

    139

    151

    167

    195

    223251

    287

    36 Da-HClCl-

    50 100 150 200 250m/z

    35 59 133139

    151

    167

    195

    223 251 287

    3’-chlorodaidzein standard

    Daidzein + PMA induced HL-60 cells

    Comparison of product ions between known and unknown can help elucidate the unknown

    Prasain et al., 2003; Boersma et al., 2003

  • Good chromatographic separation and accurate massindicate a number of diastereoisomer/enantiomer

    of PGF2alpha in worm extracts

  • m/z, amu40 100 160 220 280 340

    3.8e6193.1

    309.2164.9

    171.2 291.1208.9

    247.2191.1111.2 353.4263.1255.0173.0

    229.2273.2

    137.1 181.2281.2

    219.043.2 113.0

    124.8 299.2

    335.159.3 138.8

    ESI-MS/MS of the [M-H]- from PGF2a m/z 353 using a quadrupole mass spectrometer

    O-

    O

    OH

    HO

    HO

  • Fragmentation scheme of PGF2a [M-H]- m/z 353

    Ions m/z 309, 291, 273 and 193 are indicative of F2‐ring

  • Only in chiral normal phase column,PGF2alpha and its enantiomer can be distinguished

  • McKnight et al., (Science, 2014)

    Great similarities between C. elegans and Cox dKO pups PGF2 profile

    Great similarities between C. elegans and Cox dKO pups PGF2 profile

  • 220 280 300 320 360 380 m/z0

    %

    0

    100

    %

    255.050

    256.057

    297.043

    267.037

    268.041281.051

    307.065321.046

    363.046335.061351.044 381.055

    100

    240 260 340

    [A]

    [B]

    -162 Da

    Yo+

    -120 Da

    O

    OH

    O

    O

    O

    OHOH

    CH2OH

    OH

    daidzin

    Puerarin

    O

    O OH

    HO

    O

    HO

    OH

    OH

    CH2OH

    Ions break at weakest points; difference in O- and C-glucoside fragmentation

    Prasain et al., J. Agric. Food Chem., 2003

  • m/z

    100 311

    Identification of unknowns: comparing the MS/MS spectra of the known compound (puerarin)

    150 200 250 300 350 400

    %

    0

    255268

    282

    ‐120 431

    O

    OOH

    HO

    O

    HO

    OH

    OH

    H2COH

    +OH

    200 250 300 350 400

    100

    50

    0

    267 295

    \

    415

    ‐120

    Monohydroxylatedpuerarin

    Puerarin

  • Mass/Charge120 180 240 300 360 420 480 540 600 660 720 780 8400

    26000 283.2637

    419.2557

    721.4807

    437.2651301.2168152.9960

    722.4945284.2669

    420.2642808.5115

    281.2476438.2742302.2204257.2272 723.4921455.2236

    -87 Da

    Nitrogen rule-Odd number of nitrogens = odd MW

    Even nitrogens = even MW

  • 120 180 240 300 360 420 480 540 600 660 720 780 840 9000

    20000 883.5366

    884.5405

    301.2178

    283.2648885.5465241.0129

    419.2565 810.5110581.3109257.2312302.2218 811.5135223.0022 582.3122526.2935152.996

    4420.2590303.2327 810.5906

    -302 [M-FA C20:5]-

    Accurate mass (

  • Library search for eicosanoid http://www.lipidmaps.org/

  • Targeted metabolomics: identification of conjugated

    metabolites (glucuronide/sulfate conjugates/glutathione-GSH)

  • 100 200 300 400

    m/z

    100

    50

    0

    Relativ

    e Intensity

     (%)

    5985

    113133 181 224

    269

    Genistein[M‐H]‐

    -176 Da

    The loss of anhydrous glucuronic acid (176 Da)-the characteristic of all glucuronides

  • 60 120 180 240 300 360 420 480 540 600 660 720 780 840Mass/Charge, Da

    0

    70 317.2107

    306.0739

    272.0877143.0447128.0363 254.0739

    821.3264514.2514160.0111210.0907179.0504 249.0358

    177.0376288.0615

    197.055758.029599.0577

    74.0250

    -307.07 Da

    [M-H]-

    Inte

    nsity

    GSH conjugates can be identified with characteristicfragment ions m/z 306, 272, 254, 210, 179, 160

    and 143 in -ve ion mode

    HS

    HN NH

    -O

    O

    OO

    NH2HO

    O

    m/z 306.0765

    Jackson et al. unpublished results

  • The loss of 80 Da from the parent ion and the presence of m/z 80 in the product ion spectra indicates aromatic sulfate

    conjugates

    20 60 100 140 180 220 260 300

    5.5e6

    Intensity, cps

    116.9

    253.0

    134.9

    252.0132.991.0224.0

    207.980.0

    96.9 225.0197.0160.0

    [A] OHOO

    O

    SO

    O O-

    m/z, amu

    20 60 100 140 180 220 260 300 340

    1.4e7

    Intensity, cps

    121.0

    119.0

    135.0

    79.993.0 241.0

    147.091.0 320.9

    [B]

    OO

    OH

    SO

    O

    O-

    80 Da

    80 Da

  • Aliphatic sulfates typically show m/z 97 (HSO4-), whereas aromatics show m/z 80 (SO3-)

    Weidolf et al. Biomed. and Environ. Mass Spec. 1988 

  • Ionization mode Scan

    Glucuronides pos/neg NL 176 amuHexose sugar pos/neg NL 162 amuPentose sugar pos/neg NL 132 amuPhenolic sulphate pos NL 80 amuPhosphate neg Prec m/z 79, NL 80/98 GSH Pos/neg NL 129 amuGSH Negtaurines Pos Precursor of m/z 126N-acetylcysteins neg NL 129 amu

    NL = neutral loss.

    Conjugate

    Characteristic fragmentation of metabolite conjugates by MS/MS

    Kostiainen et al., 2003

    Prec m/z 272

  • Conclusions• Identifying uncharacterized metabolites in biological

    samples is a significant analytical challenge and it requires integrated analytical approaches.

    • A well separated metabolite signals in LC-MS/MS is crucial for unambiguous identification of new chemical entity.

    • Data processing and data analysis are important for putative identifications.

    • The use of high-resolution MS and MSn provides important information to propose structures of fragment and molecular ions.

    • Combination of MS with NMR (eg. LC-NMR) is one of the most powerful analytical strategies for structure elucidation of novel metabolites.

  • Acknowledgements• Stephen Barnes, PhD (UAB)• Michael Miller, PhD (UAB)• Lalita A. Shevde, PhD (UAB) • Ray Moore (ex-TMPL)• Landon Wilson (TMPL)• William P. Jackson (UAB)