Ideas About Quantum Metastability€¦ · PLAN ! Problem: relaxation & non-ergodicity in quantum...

27
Juan P. Garrahan (Physics & Astronomy, University of Nottingham) Ideas About Quantum Metastability M. van Horssen, E. Levi (Nottingham) K. Macieszczak, I. Lesanovsky, M. Guta (Maths) £:

Transcript of Ideas About Quantum Metastability€¦ · PLAN ! Problem: relaxation & non-ergodicity in quantum...

  • Juan P. Garrahan (Physics & Astronomy, University of Nottingham)

    Ideas About 
Quantum Metastability

    M. van Horssen, E. Levi (Nottingham) K. Macieszczak, I. Lesanovsky, 
M. Guta (Maths) £:

  • PLAN

    !

    Problem: relaxation & non-ergodicity in quantum systems

    (both closed = unitary & open = dissipative) 
vs. slow relaxation in classical glasses

    !

    !1. Slow relaxation in closed quantum systems due to 


    dynamical constraints !

    2. Signatures of many-body localisation in the absence 
of disorder

    !

    3. Towards a theory of metastability in (open) quantum systems

  • Generic Q. many-body systems “equilibrate” (become stationary):no degenerate E gaps → dephasing in E basis → diagonal ensemble {Short, Popescu, Linden, Reimann, Eisert, Goldstein, many others}

    �(t) �! � = limt!�

    1

    t

    Z t

    0Ut0�0U

    †t0dt0 |hA(t)i � Tr(A�)| small

    {Lesanovsky-Olmos-JPG, PRL 2010}

    H = �LX

    k=1��k + �

    LX

    k=1nk + V

    LX

    k 6=m

    nmnk|m� k|6

    E.g. (Rydbergs)

  • Generic Q. many-body systems “equilibrate” (become stationary):no degenerate E gaps → dephasing in E basis → diagonal ensemble

    �(t) �! � = limt!�

    1

    t

    Z t

    0Ut0�0U

    †t0dt0 |hA(t)i � Tr(A�)| small

    Most Q. many-body systems also “thermalise”: {Deutsch, Srednicki, Goldstein, Eisert, Rigol, Gogolin, 
many others}

    A

    B

    closed

    �th = e��H

    �A = TrB |�ih�| �! �A = TrB �th

    � set by h�0|H|�0i

    thermalisation ↔ ergodicity (independence of initial conditions)eigenstate thermalisation hypothesis (ETH):

    hE|Oloc�l|Ei = smooth F(E)

    {Short, Popescu, Linden, Reimann, Eisert, Goldstein, many others}

  • Ergodic & thermal → non-ergodic & many-body localised (MBL){Basko-Aleiner-Altshuler, Huse+, Prosen+,

    Abanin+, Moore+, Altman+, many others}

    Cf. Anderson localisation, but with interactions

    (excited states = Area law)MBL = breakdown of ETH

    (rnd h small = thermal, rnd h large = MBL)MBL transition driven by quenched disorder

    {Schreiber et al 2015}

    MBL often thought of as a “glass transition”

    What can we say about slow relaxation in Q.S. and MBL from

    what we know of classical glasses?

  • - Slowdown & eventual arrest

    - Timescales not divergent

    - No disorder

    e.g. 
50:50 L-J mixture 


    {Hedges 2009}

    t� ⇥� t � ⇥� t� ⇥�

    Classical glasses

    Relaxation is intermittent and spatially heterogeneous

    Due to (effective) local constraints on dynamics {JPG-Chandler, PRL 2002}

  • 1. Quantum slow relaxation due to dynamical constraints

    {van Horssen-JPG, 2016}

    H = �X

    h�ji(1� nkn�)n

    �(�+� ��j + �

    +j ��� )� (1� �)î

    n�(1� nj)� nj(1� n�)ó

    o

    constraint (“1-vacancy assisted” or 1-TLG)

    Rokhsar-Kivelson pt: � =1

    2�! H = � class. Master op. W �! �t |Pi =W|Pi

    Away from RK: � 6=1

    2�! Large-deviations:

    � >

    1

    2

    åactive

    � <

    1

    2

    åinactive

    Steric (excluded volume) constraint on hopping:

    classical = constrained lattice gas{Kob-Andersen, Jackle+}

    k

    l

    i j

  • 1. Quantum slow relaxation due to dynamical constraints

    H = �X

    h�ji(1� nkn�)n

    �(�+� ��j + �

    +j ��� )� (1� �)î

    n�(1� nj)� nj(1� n�)ó

    o

    |�(t)i = e��tH|�(0)i … …1

    2

    3

    4

    L-1

    L

    (1)

    (2)

    (L-1)

    (L)

    1234 L

    L-1� = 0.8� = 0.2

    metastability = memory of 
initial conditions

    {van Horssen-JPG, 2016}

    N = 24M = 20

  • 1. Quantum slow relaxation due to dynamical constraints

    H = �X

    h�ji(1� nkn�)n

    �(�+� ��j + �

    +j ��� )� (1� �)î

    n�(1� nj)� nj(1� n�)ó

    o

    |�(t)i = e��tH|�(0)i … …1

    2

    3

    4

    L-1

    L

    (1)

    (2)

    (L-1)

    (L)

    1234 L

    L-1

    λ

    0 0.5 1

    E0

    -8

    -6

    -4

    -2

    0

    2

    l = 6l = 7l = 8l = 9l = 10l = 11l = 12

    λ

    0 0.5 1

    dE0/d

    λ

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    λ

    0 0.5 1

    gap(H

    )

    0

    0.5

    1

    1.5

    2

    1st order singularity in g.s. cf. classical active-inactive transitions

    s

    0 0.5 1

    τΦ

    102

    104

    106

    108

    1010

    l = 7

    l = 8

    l = 9

    l = 10

    l = 11

    l = 12

    l = 13�

    T =�

    N = 24M = 20

    change at �RK ⇡

    1

    2

    {van Horssen-JPG, 2016}

  • s0 inactive transition ≡ quantum phase transition in g.s. of H0.00

    0.04

    0.08

    θ(s)

    -0.2 -0.1 0 0.1 0.2s

    0

    0.2

    0.4

    0.6

    K(s)

    0.00

    0.04

    0.08

    θ(s)

    -0.2 -0.1 0 0.1 0.2s

    0

    0.2

    0.4

    0.6

    K(s)

    0.00

    0.04

    0.08

    θ(s)

    -0.2 -0.1 0 0.1 0.2s

    0

    0.2

    0.4

    0.6

    K(s)

    N!�

    {JPG-Jack-Lecomte-Pitard-van Duijvendijk-van Wijland
PRL 2007}

    2. Dynamics of MBL in a quantum glass (w/o disorder)

    {van Horssen-Levi-JPG, PRB 92, 100305(R) 2015}

    H = �X

    �n�+1Äe�s��� � 1ä

    e�s = �/(1� �) �! sRK = 0

    Classical East glass model :(T =�) 11 ⇄ 01 10 ⇄ 00{Jackle+, Sollich-Evans, Aldous-Diaconis, JPG-Chandler, 
Chleboun-Faggionato-Martinelli, Blondel-Toninelli, 
many others}

  • H = �X

    �n�+1Äe�s��� � 1ä

    e�s = �/(1� �) �! sRK = 0|�(t)i = e��tH|�(0)i

    Signatures of MBL dynamics for s>0 (inactive):

    s

    -2 0 2

    0

    0.2

    0.4

    0.6

    0.8

    1

    N = 8N = 10N = 12N = 14

    (a)

    (b)

    t

    log t

    (c)

    Propagation of excitations

    s

    -2 0 2

    0

    0.2

    0.4

    0.6

    0.8

    1

    N = 8N = 10N = 12N = 14

    (a)

    (b)

    t

    log t

    (c)

    s

    -2 0 2

    0

    0.2

    0.4

    0.6

    0.8

    1

    N = 8N = 10N = 12N = 14

    (a)

    (b)

    t

    log t

    (c)

    2. Dynamics of MBL in a quantum glass (w/o disorder)

    {van Horssen-Levi-JPG, PRB 92, 100305(R) 2015}

  • H = �X

    �n�+1Äe�s��� � 1ä

    e�s = �/(1� �) �! sRK = 0|�(t)i = e��tH|�(0)i

    Signatures of MBL dynamics for s>0 (inactive):

    time averaged magnetisation 
dependence on initial conditions - ETH (active) v. no-ETH (inactive)

    E

    0 1 2 3

    -10

    -5

    0

    5

    10

    ⟨M⟩mc⟨Mfinal⟩E

    tJ

    100

    102

    104

    106

    108

    M̄w(t)

    -2

    -1

    0

    1

    2 s = 1

    tJ

    10-1

    100

    101

    102

    103

    M̄w(t)

    -4

    -2

    0

    2

    4 s = −1

    w = 1w = 2w = 3w = 4w = 5w = 6w = 7

    s

    -3 -2 -1 0 1 2 3

    VarM̃

    final(normalised)

    0

    0.2

    0.4

    0.6

    0.8N = 8N = 10N = 12N = 14

    E

    0 1 2 3

    -10

    -5

    0

    5

    10

    ⟨M⟩mc⟨Mfinal⟩E

    (a) (b)

    (c)

    s = 1(d)

    Es

    tJ

    10-1

    100

    101

    102

    103

    M̄w(t)

    -4

    -2

    0

    2

    4 s = −1

    w = 1w = 2w = 3w = 4w = 5w = 6w = 7

    tJ

    10-1

    100

    101

    102

    103

    M̄w(t)

    -4

    -2

    0

    2

    4 s = −1

    w = 1w = 2w = 3w = 4w = 5w = 6w = 7

    tJ

    10-1

    100

    101

    102

    103

    M̄w(t)

    -4

    -2

    0

    2

    4 s = −1

    w = 1w = 2w = 3w = 4w = 5w = 6w = 7

    Var

    ¯ Mfinal(normalised)

    E

    0 1 2 3

    -10

    -5

    0

    5

    10

    ⟨M⟩mc⟨Mfinal⟩E

    tJ

    100

    102

    104

    106

    108

    M̄w(t)

    -2

    -1

    0

    1

    2 s = 1

    tJ

    10-1

    100

    101

    102

    103

    M̄w(t)

    -4

    -2

    0

    2

    4 s = −1

    w = 1w = 2w = 3w = 4w = 5w = 6w = 7

    s

    -3 -2 -1 0 1 2 3

    VarM̃

    final(normalised

    )

    0

    0.2

    0.4

    0.6

    0.8N = 8N = 10N = 12N = 14

    E

    0 1 2 3

    -10

    -5

    0

    5

    10

    ⟨M⟩mc⟨Mfinal⟩E

    (a) (b)

    (c)

    s = 1(d)

    Es

    tJ

    10-1

    100

    101

    102

    103

    M̄w(t)

    -4

    -2

    0

    2

    4 s = −1

    w = 1w = 2w = 3w = 4w = 5w = 6w = 7

    tJ

    10-1

    100

    101

    102

    103

    M̄w(t)

    -4

    -2

    0

    2

    4 s = −1

    w = 1w = 2w = 3w = 4w = 5w = 6w = 7

    tJ

    10-1

    100

    101

    102

    103

    M̄w(t)

    -4

    -2

    0

    2

    4 s = −1

    w = 1w = 2w = 3w = 4w = 5w = 6w = 7

    Var

    ¯ Mfinal(normalised)

    2. Dynamics of MBL in a quantum glass (w/o disorder)

    {van Horssen-Levi-JPG, PRB 92, 100305(R) 2015}

  • H = �X

    �n�+1Äe�s��� � 1ä

    e�s = �/(1� �) �! sRK = 0|�(t)i = e��tH|�(0)i

    Signatures of MBL dynamics for s>0 (inactive):

    log t growth of

    entanglement entropy

    tJ

    100

    102

    104

    106

    108

    S(t)

    0

    1

    2

    3

    4

    N = 6

    N = 8

    N = 10

    N = 12

    N = 14∝ log(t)

    s = 1

    N

    6 10 14

    τ

    100

    102

    104

    106

    s = −1

    s = 0

    s = 1

    tJ10

    010

    210

    410

    610

    8

    Sw(t)

    0

    1

    2

    3

    4

    s = 1

    w = 2w = 4w = 6

    tJ100

    102

    Sw(t)

    0

    1

    2

    3

    4

    s = −1

    w = 2w = 4w = 6

    tJ

    100

    102

    104

    106

    108

    S(t)

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5s = -1s = 0s = 1

    (a)

    (b)

    (c)

    s-2 0 2

    S̃/N

    0.24

    0.26

    0.28

    0.3

    0.32

    (d)

    S̄(t)

    S̄(t)

    S̄eq/N

    S̄w(t)

    S̄w(t)

    {Serbyn-Papic-Abanin, Moore+, others}

    2. Dynamics of MBL in a quantum glass (w/o disorder)

    {van Horssen-Levi-JPG, PRB 92, 100305(R) 2015}

  • H = �X

    �n�+1Äe�s��� � 1ä

    e�s = �/(1� �) �! sRK = 0|�(t)i = e��tH|�(0)i

    Signatures of MBL dynamics for s>0 (inactive):

    2π/k2 4 6 8 10 12

    τ

    100

    101

    102

    103

    104

    105

    s = −1

    s = 0.5

    s = 1

    N = 8N = 10N = 12

    0

    0.5

    1s = −1D(k; t)(N = 12)

    tJ10

    010

    210

    410

    610

    80

    0.5

    1s = 1D(k; t)(N = 12)

    k

    e�1

    e�1

    (a)

    (b) (c)

    D(k, t) = Tr Fk(t)Fk(0)

    F(k) =X

    j�zj e

    �kj

    relaxation of correlations

    MBL or quasi-MBL 
{cf. Yao-Laumann-Cirac-Lukin-Moore, 


    De Roeck-Huveneers}

    �(k) ⇠ e1/k�

    � ⇠ � log t ! �(k) ⇠ e1/k�

    2. Dynamics of MBL in a quantum glass (w/o disorder)

    {van Horssen-Levi-JPG, PRB 92, 100305(R) 2015}

  • 3. Towards a theory of quantum metastability

    {Macieszczak-Guta-Lesanovsky-JPG, arXiv:1512.05801}

    Note: if ρ = diagonal, H = 0 and = rank 1 (e.g. ) then QME → classical MEJ� J� = |C0ihC|

    E.g. 2-level system at T = 0:

    quantum jump trajectory

    H = � ⇥⇤

    L1 =⇥�⇥�

    |1�

    |0�

    �J =p���

    {Dalibard-et-al, Belavkin}

    stochastic wave function:

    He� = H�

    2

    X

    �J�†J�

    !|�t3 i|�t2 i|�t1 i

    |�t0 i

    He� He�

    Jk1 |�t1 i Jk2 |�t2 i

    AB

    → in A+B (closed) = difficult

    → in A only (open) = easier by analogy with classical {Gaveau-Shulman, Bovier et al.}{Lindblad, Gorini-et-al}quantum master equation:

    �t� = ��[H,�] +X

    îJ� � J�† � 12¶J�†J�,�©ó⌘ L(�)

  • 3. Towards a theory of quantum metastability

    {Macieszczak-Guta-Lesanovsky-JPG, arXiv:1512.05801}

    Examples of metastability in open quantum dynamics

    AB

    → in A+B (closed) = difficult

    → in A only (open) = easier by analogy with classical {Gaveau-Shulman, Bovier et al.}{Lindblad, Gorini-et-al}quantum master equation:

    �t� = ��[H,�] +X

    îJ� � J�† � 12¶J�†J�,�©ó⌘ L(�)

    (i) 3-level system (electron shelving, blinking q. dot ...)

    |0�

    |1� |2�

    ⇥1⇥2�1

    �2 ⌧ �1, �1H = �1|0ih1|+�2|0ih2|+ c.c.J =p�1 |0ih1|

    intermittency

    {Hegerfeldt-Plenio}

  • 3. Towards a theory of quantum metastability

    {Macieszczak-Guta-Lesanovsky-JPG, arXiv:1512.05801}

    intermittency

    spac

    e

    time

    (ii) dissipative transverse field Ising model

    H = �X

    ���� + VX

    h�,ji�z� �

    zj

    J� =p����

    stationary state transition

    (## · · · #) �! (!! · · ·!)(## · · · #) �! (!! · · ·!)ferro → para

    Examples of metastability in open quantum dynamics

    AB

    → in A+B (closed) = difficult

    → in A only (open) = easier by analogy with classical {Gaveau-Shulman, Bovier et al.}{Lindblad, Gorini-et-al}quantum master equation:

    �t� = ��[H,�] +X

    îJ� � J�† � 12¶J�†J�,�©ó⌘ L(�)

    {Ates-Olmos-JPG-Lesanovsky PRA 2012}

  • metastable states from spectrum :

    �1 = 0 , L1 = 1 , R1 = �ss but Rk>1 < 0�ss

    R2

    Re(�)

    0�2

    �3...

    small

    gap{

    3. Towards a theory of quantum metastability

    {Macieszczak-Guta-Lesanovsky-JPG, arXiv:1512.05801}

    L(Rk) = �kRk , L†(Lk) = �kLk , Tr(LkR�) = �k�

    AB

    → in A+B (closed) = difficult

    → in A only (open) = easier by analogy with classical {Gaveau-Shulman, Bovier et al.}{Lindblad, Gorini-et-al}quantum master equation:

    �t� = ��[H,�] +X

    îJ� � J�† � 12¶J�†J�,�©ó⌘ L(�)

    �(t) =etL�0

    =�ss +mX

    k=2et�kRkTr(Lk�0) + · · ·

    ⇡�ss +mX

    k=2RkTr(Lk�0) O(t�m)

    metastable state ∈ manifold dim=m-1 (dimH)2 ! (m� 1)dimensional reduction

  • metastable states from spectrum :

    �1 = 0 , L1 = 1 , R1 = �ss but Rk>1 < 0�ss

    R2

    Re(�)

    0�2

    �3...

    small

    gap{

    3. Towards a theory of quantum metastability

    {Macieszczak-Guta-Lesanovsky-JPG, arXiv:1512.05801}

    L(Rk) = �kRk , L†(Lk) = �kLk , Tr(LkR�) = �k�

    AB

    → in A+B (closed) = difficult

    → in A only (open) = easier by analogy with classical {Gaveau-Shulman, Bovier et al.}{Lindblad, Gorini-et-al}quantum master equation:

    �t� = ��[H,�] +X

    îJ� � J�† � 12¶J�†J�,�©ó⌘ L(�)

  • |0�

    |1� |2�

    ⇥1⇥2�1

    0

    �⌦1

    �2⌦1

    �3⌦1

    �ssR2

    �̃1 = �ss + cm�x2 R2

    �̃2 = �ss + cmin2 R2

    cm�x,min2 =max/min evals of L2

    C(t)

    1 10 102 103 104 105 W1t

    0.2

    0.4

    0.6

    0.8

    1.0

    · ‡Û ÚÁ Ê

    W2êW1=1ê100W2êW1=1ê50W2êW1=1ê25

    ⌦1t1 10 102 103 104 105 W1t

    0.2

    0.4

    0.6

    0.8

    1.0

    · ‡Û ÚÁ Ê

    W2êW1=1ê100W2êW1=1ê50W2êW1=1ê25 |1ih1|� |2ih2|autocorrelation of

    ⇢̃1

    ⇢̃2

    ⇢ss

    ⌦1t1 10 102 103 104 105 W1tÁ Ê

    distance to metastable manifold

    metastable

    manifold

    is 1d

    simplex

    3. Towards a theory of quantum metastability

    {Macieszczak-Guta-Lesanovsky-JPG, arXiv:1512.05801}

  • |0�

    |1� |2�

    ⇥1⇥2�1

    0

    �⌦1

    �2⌦1

    �3⌦1

    �ssR2

    �̃1 = �ss + cm�x2 R2

    �̃2 = �ss + cmin2 R2

    cm�x,min2 =max/min evals of L2

    3. Towards a theory of quantum metastability

    {Macieszczak-Guta-Lesanovsky-JPG, arXiv:1512.05801}

    sA s�

    K

    χ

    s

    K

    ss

    K

    ��

    �A

    O(�2)

    eigenstates of

    Connection to s-ensemble?

    1 L2

    Ws ⇡

    �ss

    R2...

    0BBBB@

    0 �s J†J · · ·

    �s J†J �2 · · ·...

    .... . .

    1CCCCA

    �A = �̃1 +O(t�2)�� = �̃2 +O(t�2)�A = �̃1 +O(t�2)�� = �̃2 +O(t�2)

    almost degenerate P.T.

    �A , ��

    Ls

    Ls

  • SUMMARY

    !

    !

    1. Slow relaxation through dynamical constraints Constrained hopping, fast-slow crossover at RK point

    !

    !

    2. Signatures of MBL dynamics in absence of disorder Quantum East model, thermal-MBL (quasi-MBL) transition at RK point

    !

    !

    3. Theory of metastability of open quantum systems
Metastable states and effective dynamics from spectrum of dynamical generator 


    Reduction to low-dimensional metastable manifold