IDDQ Testing Outline - University of Cincinnatieecs.ceas.uc.edu/~wjone/iddq.pdf · IDDQ testing.27...

66
IDDQ testing.1 IDDQ Testing Outline ! Introduction ! Inductive Fault Analysis ! Faults That Can Be Detected ! Circuit Constrains ! Design and Test Rules ! ATPG for IDDQ Testing ! Current Monitoring Methods ! Built-in Current Sensors ! QTAG Standard ! Deep Sub-micron Issues ! Some Specific Examples ! Conclusions

Transcript of IDDQ Testing Outline - University of Cincinnatieecs.ceas.uc.edu/~wjone/iddq.pdf · IDDQ testing.27...

IDDQ testing.1

IDDQ Testing Outline! Introduction! Inductive Fault Analysis! Faults That Can Be Detected! Circuit Constrains! Design and Test Rules! ATPG for IDDQ Testing! Current Monitoring Methods! Built-in Current Sensors! QTAG Standard! Deep Sub-micron Issues! Some Specific Examples! Conclusions

IDDQ testing.2

IDDQ TestingIDD --- Current flow through VDDQ --- Quiescent stateIDDQ Testing --- Detecting faults by monitoring IDDQ

Normal IDDQ: ~10-9Amp.Abnormal IDDQ: >10-5Amp.

CMOScircuit

Inputs Outputs

VDD

IDD

IDDQ testing.3

Advantages of IDDQ Testing

" Fault effect is easy to detect" Many realistic faults are detectable" ATPG is relatively simple" Test length is shorter" Built-in current sensing is possible

IDDQ testing.4

Inductive Fault Analysis (IFA)

• A systematic method to generate realistic fault lists• Taking into account

—Circuit fabrication technology—Defect statistics—Physical layout

IDDQ testing.5

Framwork of Inductive Fault AnalysisTechnology

Analysis

LayoutParsing

DefectGeneration

Primitive FaultExtraction

Circuit FaultTranslation

TechnologyDescription

CircuitLayout

DefectStatistics

Primitive FaultTaxonomy

Layout Data Structures

Defects

PrimitiveFault List

Ranked CircuitFault List

IDDQ testing.6

Calculation of Defect LikelihoodDefect spot

Extra conductance Missing insulator

Whether a fault presents depends on

1. Size of spot (defect statistics)2. Distance of two conductors (layout)3. Fabrication process

IDDQ testing.7

Defects in a Poly Path

(a) Defect-free poly path (b) insignificant missing poly

(d) significant missing poly(c) insignificant missing poly

IDDQ testing.8

Results of IFA�

Defect Type Fault Categories

pin- holes

miss. metal

extra metal

m iss. poly.

extra poly.

m iss. diff.

extra diff.

m iss. p-wel

l

extra p-wel

l

m iss. cont.

all def.

% of fault

s Bridges 42 - 61 - 52 - 8 31 35 - 229 48% Breaks - 82 - 78 1 10 - - - 9 180 38% Combin. - - - - 1 - - - - - 1 0.2% New T - - - - 2 - .1 - - - 2 0.4% T-SON - - - 62 - - - - - - 62 13% T-SOP - - - - - 0.5 - - - - .05 0% Except. - - - - - - 1 - - - 1 0.2%

(5,5,4)Counter

Defect Type Fault Categories

pin- holes

miss. metal

extra metal

m iss. poly.

extra poly.

m iss. diff.

extra diff.

m iss. p-wel

l

extra p-wel

l

m iss. cont.

all def.

% of fault

s Bridges 111 - 257 - 125 - 12 62 78 - 645 48% Breaks - 281 - 230 4 21 - - - 29 565 42% Combin. - - - 134 - - - - - - 134 10% New T - - - - 3 - .- - - - 3 0.2% T-SON - - - - 3 - <1 - - - 3 0.2% T-SOP - - - - - <1 - - - - <1 0% Except. - - - - - - 2 - - - 2 0.2%

4 x 4 Multiplier

Combin. : Both bridge and break presentT-SON(SOP): Transistor struck-on (stuck-open)New T : New transistor created

IDDQ testing.9

New Transistors

(A) Caused by extra poly (B) Missing thinox

diffusion

IDDQ testing.10

Faults That Can Be Detected

• Bridge & stuck-on faults

• Break faults— Line break— Gate break— Drain break— Source break

• Transistor stuck-open faults

• Other faults

IDDQ testing.11

Bridging & Stuck-on Faults

Logic monitoring is inadequate !

logic 0: 0Vlogic 1: 5V

0

12.5V

0 or 1?

0 or 1?

IDDQ testing.12

Line Break Faults5V 5V

Induce large current

A floating node may drift to 1.5V~3.5Vand hence may turn on both PMOSand NMOS transistors

IDDQ testing.13

Circuit Model to Analyze BreakFaults (Sheu TCAD-88)

BCgd0

Cdg

Cgd

Cgs

Csg

Csg0

D

Cjd

Cjs

Cgb

G

D

S

D B

S S

C1

C2

GG

Cgb

C3

C4

IDDQ testing.14

Gate Break Faults

B

S

D

C1

C3

C4

Cgb

C2

d2

In a gate large IDDQ

OV

1. Off for VDS<Vth2. Conducts a small Current for

Vth<VDS< α α α α.Vth3. IDS (VGS-VDS) 2 for αααα.vth<VDS

where α= ∼2α= ∼2α= ∼2α= ∼2c1+c2 c2

∝∝∝∝

(Maly ICCAD 1988)

IDDQ testing.15

Source or Drain Break FaultsB

DC1

C3

C4

Cgb

C2d1

G

BC1

C3

C4

Cgb

C2

d3

G

SIn a gateMay drift tointermediatevoltage

1

IDDQ testing.16

Stuck-open Faults

A B C D O

T1 = 1 1 1 1 0

T2 = 0 0 0 1 ?

When T2 is applied, chargesharing among x, y and ooccurs, hence may draw alarge current in the inverter.

B

C

x

y

D

O

CBA

D

A

IDDQ testing.17

Other Faults That Can Be Detected

• Gate-oxide short (Hawkins ITC85, D&T 86)• Most stuck-at faults (Fritzmeyer ITC-90)• Latch-up• Delay faults• Any other fault due to extra conductor, missing

isolating layer, excess well/substrate leakage,etc.

IDDQ testing.18

Circuit Constraints

To ensure IDDQ detectability, two conditionsmust be satisfied:

1. Normal IDDQ must be small

2. Faults must result in large IDDQ

IDDQ testing.19

A Good Circuit That May Be IdentifiedAs Being Faulty

Problem due to high impedance node

x=11?z=x0?

1MUX0

Output

Sel=0 if AB=10

A=011

B=110

When the third pattern AB=10 is applied, change sharingbetween x, z occurs, and a large current may exist in theinverter. However the output is still correct.

largecurrent

IDDQ testing.20

A BF That Cannot Be Detected By IDDQ

Problem due to feedback loop

Φ=1: a=0, b=1Φ=1: Eventually x=y, no big current

Φ

Φ

Φ

Φ

Φ

Φ

a x

by

x

y

0

1

IDDQ testing.21

A BF That Is Masked By Another BF In aSequential Circuit

��

Φ� Φ�

Φ�

w

To detect (x,y) A=0, B=1, W=0

To set W=0, z must be 0 during Φ1

If (x,z) exists, then z will become 1 during Φ1

IDDQ testing.22

A BF That Is Masked By Another BF In aCombinational Circuit

A

B

C

w

z

x

y

A

O

To detect (x,y), we need A=0and z=0So we have to set ABC=1x1 first and then ABC=010If another fault (w,z) exists, then (x,y) cannot be detected

IDDQ testing.23

Problems with Dynamic Logic

Problems: 1. Large current in normal circuits due to charge sharing

2. Very few faults are detected because of the precharge property

3. Fault masking of BF(a, b) due to BF(o, p)

Inputsx

y

φφφφ

φφφφ

φφφφ

o a

b

pO

IDDQ testing.24

Transistor Group

Transistor group (TG) ---"Channel-connectedcomponent"

Connections between twoTGs are unidirectional

Control direction or loopcan be defined

A

B

C

D

Output G3 G2

G1

E

IDDQ testing.25

A Minimum Set of Design & Test Rule for IDDQ Testing (Lee TCAD'92)

A1. Gate and drain (or source) nodes of a transistor are not inthe same TG.

A2. No conducting path exists from VDD to GND during steadystate.

A3. Each output of a TG is connected to VDD or GND duringsteady state.

A4. No control loops among TGs exist.

A5. The bulk (or well) of an n-(p-)type transistor is connectedto GND (VDD).

A6. During testing, each PI is controlled by a monitored powersource.

IDDQ testing.26

Results of Design & Test RulesTheorem 1: All irredundant single BFs in a circuit satisfying

A1-A6 can be detected using IDDQ testing.

Theorem 2: For a circuit satisfying A1-A6, a test detecting asingle BF f also detects all multiple BFs thatcontain f.

Theorem 3: If any one of A1-A6 is removed, then circuitsexist for which IDDQ testing cannot give correcttest results.

Strategies for dealing with circuits not satisfying each ruleare required to ensure IDDQ detectability.

IDDQ testing.27

Fault Simulation1. Fault models --- Bridging, break, stuck-open,

stuck-at ?

2. Fault list generation --- need inductive faultanalysis

3. Fault coverage ?

4. Easy for bridging and stuck-on faults

5. Difficult for break and stuck-open faults

6. Stuck-at faults may or may not be modeled asshort to VDD or GND

IDDQ testing.28

Fault simulation for BFsIf A1-A6 are satisfied, then fault simulation is

quite simple

1. Perform a good circuit simulation for the given test pattern.

2. Any BF between a node with logic 1 and a node with logic 0 is detected.

No simulation on faulty circuit is needed.No fault list enumeration is needed.

IDDQ testing.29

Test Generation1. Conventional test generation for stuck-at faults

can be modified to detect BFs.

2. No fault propagation.

3. Must make sure the faults result in a conductingpath between VDD and GND. Switch level test generation may be necessary.

4. Break and stuck-open faults are difficult to detect.

IDDQ testing.30

Test generator for BFs

Again, assume A1-A6 are satisfied

1. For the BF (a, b) to be detected, add an XORgate with its inputs connected to a and b.

2. The test generator work is simply to set theoutput of the XOR gate to be 1.

No Fault propagation.

IDDQ testing.31

Test Length Using IDDQ Testing for BFs

Prob. (a BF is detected by a random vector) = 1/2 Prob. (a BF is not detected by n random vectors) = ( ) If n=20, Prob. (a fault is not detected) = In general, the length of a complete test set for BFs is quite small. Usually 30 is enough for a combinational circuit.

12

n

1061

IDDQ testing.32

Comparison Between IDDQ and Logic Testing

#faults IDDQ Testing Fault Coverage(%) Logic Testing

Circuit (reduced) 4 vec. 8 vec. 12 vec. 16 vec. 20 vec. time(s) #vec. FC Time(m)

c432 263 97.65 99.62 99.96 - - 4.04 50 79 11.4

c499 284 97.46 98.93 99.37 99.62 99.73 9.15 184 87 30.5

c1908 617 97.24 98.82 99.32 99.59 99.75 21.4 138 84.8 28.6

s386 350 93.1 96.78 98.00 98.74 99.07 7.51 288 75 28.6

s526 1337 94.48 97.04 98.15 98.63 98.95 11.9 192 18.8 56.1

s832 680 91.78 95.64 97.23 98.15 98.54 18.8 967 75.7 3.08

IDDQ testing.33

Test generation results for IDDQ test(Source:1996 IDDQ Testing Workshop)

Total Not CoveredCircuit Targets Tests Give-up Untestable Time(s) Missing Rate(%)

c432 432 22 0 18 0.24 4.2c499 546 82 0 0 0.57 0c880 934 14 0 0 0.39 0c1355 1482 83 3 0 5.4 0.2c1908 1604 104 0 2 3.89 0.1c2670 2253 23 9 17 4.59 1.2c3540 3314 35 5 50 44.32 1.7c5315 4955 24 0 2 6.13 0.1c7552 6956 32 0 20 14.27 0.3Average 2497 46 2 12 8.87 0.8

IDDQ testing.34

Current monitoring Techniques

CUT

BICSCurrent Supply

Monitor

DUTDUT

ATEATE

Externalmonitoring

TestFixture

Built-In Current Sensor

IDDQ testing.35

External Devices (Hawkins 86, 89)

Problems:

1. Current resolution is limitted. 2. Test equipment must be modified. 3. Current cannot be measured at the full speed of the tester. 4. Cannot partition circuit.

TEST POWER SUPPLY

S (STROBE)

NCNIDD

DUT

VSS pin

VDD pinVDD

RM

IDDQ testing.36

Built-in Current Sensors (BICSs)

BICS

CUT

Test Pass/Fail

VDD

Inputs Outputs

OR

CUT

BICS

Inputs Outputs

Test Pass /Fail

VDD

Sometimes called ISSQ testing

IDDQ testing.37

BICS Based on Bipolar Transistor and DifferentialAmplifier (Maly, ICCAD '88)

Pass/FailFlag

VR

VDD

φ1

φ2

φ1

CMOSModule

VirtualGround

Switchingcircuit

CMOS

Module

VDD

+ -

GNDI

VVR

VDD-GND Shorts

VR

NOdefect Defect

V

Shorts causingstruck-at faults

Shorts causingbridging faults & oxide pin-holes

Junctionleakages

NO defect

When large IDDQ exists, V>VR and Failflag is set.

The switching circuit may switch off afaulty module to prevent large powerconsumption

V

IDDQ testing.38

BICS Based on Logic ThresholdFavalli (JSSC-90)

Pull-up

Pull-down

Pull-up

Pull-down

Pull-up

Pull-down

MTt

Gnd

MTD

Gnd

MT

MTD

MT

MTD

Gnd

tout

VDD VDD VDD

inputs ...

...

...

Normal : t = 1Test : t = 0tout = 1 if no fault = 0 if fault exists

IDDQ testing.39

Improvement on Favalli's design

Pull-up

Pull-down

Pull-up

Pull-down

Pull-up

Pull-down

MT

MTD

Gnd

tout

VDD VDD VDD

inputs ...

...t

Merge all MT and MTDrespectively

IDDQ testing.40

Using BiCMOS design

Pull-up

Pull-down

Pull-up

Pull-down

Pull-up

Pull-down

MT

MTD

Gnd

tout

VDD VDD VDD

inputs ...

...

Improvement on Favalli's Design

IDDQ testing.41

BICS Based on IntegratorsMiura & Kinoshita (ITC-92)

CMOSLogicCircuit

VDD TVDD

Tmode

NGND GND

MN1

MP2

MP1

MN2

MP3

MN3MP5MN4

MP4MN4 MN8

MN7

MP8

MP7

MP6MN6

Tout

V-I Translator Level Translator Integral CircuitryFault effect can be accumulated through several clock cycles

I

VX Y

IDDQ testing.42

Verhelst's BICS Patent

O2

Vss

Vref

-+

I2

I1

O1 M

In Z IrefCMP

SPCCMSVDD'

A1

CUT

Ts T1

Virtual Short VDD' ~ VDDCurrent Mirror IDD ~ I0

IDDVDD

Io

IDDQ testing.43

BICS Based on Dual Power Supply &Operational Amplifier

-

+

Vin=3V Threshold detector

Fault indication

CUT

VDD=3V

RS

Vout+ Vout-

VDD'=5V

VSS

I-

I+

VirtualShort

IRS

IDD

Virtual short VDD~VinInfinite input impedance of OP I-=0 and IRS=IDD

IDDQ testing.44

BICS Based on Current Conveyor

VirtualShort

V'DD=5VIz

IxVDD

CUT

Current Conveyor Iy

Fail/Pass

ThresholdDetector

Virtual short VDD ~ VDD'Current Conveying Iy ~ Ix

IDDQ testing.45

Advantages of Built-In Current Sensors(BICS)

• Higher test rate compared to external devices

• Easier to partition circuits

• Easier to control current resolution

• Suitable for mixed-mode circuits

• Built-In self test capability achievable

• Lower test equipment cost

• On-Line testing possible

IDDQ testing.46

Disadvantages of BICS

• Impact on circuit performance

• Reliability of itself

• Area overhead

• Power consumption

IDDQ testing.47

QTAG Standard

• Motivation :— ATE based IDDQ facilities are not flexible or effective.— Circuit designers are reluctant to use BICS.

• Goal : To provide a de-facto standard for IDDQ monitors on test fixture for production test.

IDDQ testing.48

Partnership of QTAG

• Semicoductor test department:Users, must drive the standard

•ATE Vendors:must supply the software to operate themonitors from ATE

•Test Fixture Vendors:must provide a small area close to CUT on alltest fixtures to mount the monitors.

•Monitor Developers:must supply the desired monitors.

IDDQ testing.49

Development of the Standard• Kick-off meeting at ITC’95, define 4 development phases --- phase 1: Monitor standard definition --- phase 2: Monitor design --- phase 3: Monitor evaluation --- phase 4: Working toward a standard• Results are reported in 4 papers presented in ITC’94• 1994 OCIMU (off-chip measurement unit) was developed by Alcatel• in 1995 ITC, the Monitor Description Format(MDF) language is presented• 1996 OCIMU POCIMU (threshold programmable)

IDDQ testing.50

QTAG IDDQ Test Configuration(Baker, ITC '94)

Ip

IDDQMONITOR

Vss

DUT

ATE

Power Supply Unit

Do

Di

Bypass

V DD

PSU

V DD

MO

N

V ref

VDD DUT

IDDQ testing.51

QTAG Monitor on a Probe Card123

4 567

8

Power QTAG Monitor

Power Ring

Probe Nails

Control

10 cm

IDDQ testing.52

An example of Interface to Digital ATE

MO

NIT

OR

Vss

DUT

ATE

Power Supply Unit

V DD

PSU

V DD

mon

itor

1

3

6

4

8

2 7Sample

Threshold

Pass-Fail

On-Off

VDDdevicePIN FunctionVDDdevice to device under testVDDpsu to power supply VDDmonitor to secondary power source for monitorVSS group pin

Logic output indicate result of samplePass/fail High-level: under threshold when last sampled

Low-level: above threshold when last sampledSample Positive clock edge to indicate sampling point

On is the monitoring modeON-OFF OFF stops monitoring, but gives low Ohms pat

VDDpsu to VDDdeviceThreshold Sets threshold limit for P/F as input voltage lev

IDDQ testing.53

Circuit Diagram of IDUNA-1monitor

CUT

+

-

A2

Iout

T2

T3

T1T11

T10

T9T7 T8

T5 T6VREF

VSS VDM

IDDQ testing.54

IrefInternal Output

Bypass Front Back

Device under testVDD

VSS

VDD_MON

KICK

VDD_PSU

BYPASS

VREF 1

9

12

7

5

IREF DI TRIGGER

DO

NC

8 3 6

2

10

411

100nF VSS

Top-level Block Diagram of IDUNA II

IDDQ testing.55

+-

+-

VDD_PSU

VREF

IREF

VSS

VDD_DUT iddq/2

op_1

op_2

p1p2

p3

NICNIA NIB

Front-end Circuit Diagram of IDUNA II

IDDQ testing.56

Back-end Circuit Diagramof IDUNA-2

iref

OP_3

+-

N5N4

N8

P3P1 P2

N6

N2N1

VSS

aspass

iddq/2

VDDA

N3

N7

IDDQ testing.57

Companies with Members in QTAG

AMD Ericson NECAT&T GEC PhilipsATTEST HP Sandia Lab.BNR Intel SchlumbergerBosch ITT SequentBrooktree LIRM SiemensChips&Technologies LTX SunCadence MCT SynopsysCredence Megatest TeradyneCrossCheck Motorola TIDigital National Semicon. Vertex

IDDQ testing.58

Deep Sub-micron IDDQ Test Issues

• Reverse biased p-n junction leakage current- State dependent reverse based p-n junction.

e.g., drain-substrate leakage

- State independent reverse biased wells.

• Sub-threshold leakage When VGS < VT, IDS = 0

Components of Defect-free IDDQ

\

IDDQ testing.59

Sub-Threshold Leakage Current

• When VGS < VT, IDS is an exponential function of (VGS-VT)

• Define�����

��

��

���

��

����

−= the inverse rate of decrease

of IDS in volts per decade

Typically S=80 ��������

IDDQ testing.60

• In deep-submicron region,low voltage power supplylow threshold voltageincreased subthreshold current

Example:VT: 0.6 V→ 0.3 V

IDS increase by �������������

���� =−

times

≈ 5600

IDDQ testing.61

Deep Sub-micron IDDQ test Options

•Technology solution

•Technology solution

•Technology solution

Ex: Silicon On Insulator (SOI) sharper sub-threshold current slope

Ex: Separate Source and substrate connection in the test mode

Ex: Hierarchical power-line distribution with multiplethreshold transistors

Switched-Source impedcance (can reduce IDS to 0.3% of its original value, very useful in Giga-bit DRAM)

IDDQ testing.62

Applications and Examples

• Low power design

• Power management

• Memory coupling test

• CPU testing

• Boundary scan + IDDQ Testing

IDDQ testing.63

Applications of IDDQ and IDDT Testings������

���

����

���

������

�����

���

�� ����������

���������

�������

������

���������

� �����������

�����

�����������

����

���

����! ����! ����!

IDDQ testing.64

Vn-2V6V3

Gn-2

VTCM

GTCM

G1

G2G3

G4

G5G6

Gn-1

Gn

V1 V2 V4 V5 V7 Vn-1 Vn

��������������������

������� �

������� �

������� �

������� �

����������������������������������������

����������������������������

��������������������

��������������������

����������������������������������������

������������������������������������

������������������������������������

������������

����� ����������� ����������� ����������� ������

IDDT-Testable SRAM Structure

IDDQ testing.65

Some Experimental Results(for a Dynamic Combinational logic)

Total Defect Coverages(%)

Tested IDDQ IDDT IDDQ+IDDT Transition Test

Open drain/source 128 28.1 96.9 100 72.7

single floating gate 56 92.9 100 100 64.3

double floating gate 44 90.9 100 100 90.6

Short defects in the precharge chips 8 0 100 100 100

IDDQ testing.66

Conclusions

• Extremely important to achieve high-quality test.

• BICS can be either extremely profitable or nothing.

• ATPG for faults other than BFs needs further research.

• Deep sub-micron issues have to be addressed.