ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

66
ICRA03 Tutorial http://www.cc.gatech.edu/fac/Sven.Koenig/icra03-tutorial.html ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust Navigation and Coverage with Single Robots and Robot Teams Abstract Ant robots are simple and cheap robots with limited sensing and computational capabilities. This makes it feasible to deploy teams of ant robots and take advantage of the resulting fault tolerance and parallelism. Ant robots cannot use conventional planning methods due to their limited sensing and computational capabilities. Rather, their behavior is driven by local interactions. For example, ant robots can communicate via markings that they leave in the terrain, similar to ants that lay and follow pheromone trails. In the past couple of years, researchers have developed ant robot hardware and software and demonstrated, both in simulation and on physical robots, that single ant robots or teams of ant robots solve robot-navigation tasks (such as path following and terrain coverage) robustly. Thus, ant robots might provide a promising alternative to the currently very popular probabilistic robot navigation approaches. Researchers have also developed a theoretical foundation for ant robotics, based on ideas from real-time heuristic search, stochastic analysis, and graph theory. This half day tutorial on the current state of the art in ant robotics is given by experts who will give an overview of this exciting area of mobile robotics without assuming any prior knowledge on the topic. It will cover all important aspects of ant robotics, from theoretical foundations to videos of implemented systems. To this end, it will bring together the various research directions for the first time, including theoretical foundations, ant robot hardware, and ant robot software. Its primary objective is to give non-specialists a comprehensive overview of the state of the art of the field, for example, to allow researchers and students to do research in the area and to allow practitioners to evaluate the current state of the art in ant robotics. Consequently, it is of interest to anyone who is interested in mobile robotics and artificial intelligence. Speakers The material for the tutorial will be provided by the five researchers listed below, all of which are experts on the topic of ant robotics. They have been selected to cover the theory of ant robotics as well as practical approaches, including ant robot software and hardware. Sven Koenig (Georgia Institute of Technology, USA) Sven Koenig became an assistant professor in the College of Computing at Georgia Institute of Technology after receiving his Ph.D. in computer science from Carnegie Mellon University. He is the recipient of an NSF CAREER award, an IBM Faculty Partnership Award, the Raytheon Faculty Fellowship Award from Georgia Tech, and a Fulbright Fellowship Award. He is currently on the editorial board of the Journal of Artificial Intelligence Research (JAIR) and will co-chair the International Conference on Automated Planning and Scheduling (ICAPS) in 2004. Sven’s research centers around techniques for decision making (planning and learning) that enable situated agents to act intelligently in their environments and exhibit goal-directed behavior in real-time, even if they have only incomplete knowledge of their environment, limited or noisy perception, imperfect abilities to manipulate it, or insufficient reasoning speed. He has published over 60 papers on this topic in the artificial intelligence and robotics literature.

Transcript of ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Page 1: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

ICRA03 Tutorial http://www.cc.gatech.edu/fac/Sven.Koenig/icra03-tutorial.html

ICRA-03 Tutorial on Ant-Based Mobile Robots: RobustNavigation and Coverage with Single Robots and Robot

Teams

AbstractAnt robots are simple and cheap robots with limited sensing and computational capabilities. This makes it feasible todeploy teams of ant robots and take advantage of the resulting fault tolerance and parallelism. Ant robots cannot useconventional planning methods due to their limited sensing and computational capabilities. Rather, their behavior is drivenby local interactions. For example, ant robots can communicate via markings that they leave in the terrain, similar to antsthat lay and follow pheromone trails. In the past couple of years, researchers have developed ant robot hardware andsoftware and demonstrated, both in simulation and on physical robots, that single ant robots or teams of ant robots solverobot-navigation tasks (such as path following and terrain coverage) robustly. Thus, ant robots might provide a promisingalternative to the currently very popular probabilistic robot navigation approaches. Researchers have also developed atheoretical foundation for ant robotics, based on ideas from real-time heuristic search, stochastic analysis, and graphtheory. This half day tutorial on the current state of the art in ant robotics is given by experts who will give an overview ofthis exciting area of mobile robotics without assuming any prior knowledge on the topic. It will cover all important aspectsof ant robotics, from theoretical foundations to videos of implemented systems. To this end, it will bring together thevarious research directions for the first time, including theoretical foundations, ant robot hardware, and ant robot software.Its primary objective is to give non-specialists a comprehensive overview of the state of the art of the field, for example, toallow researchers and students to do research in the area and to allow practitioners to evaluate the current state of the art inant robotics. Consequently, it is of interest to anyone who is interested in mobile robotics and artificial intelligence.

SpeakersThe material for the tutorial will be provided by the five researchers listed below, all of which are experts on the topic ofant robotics. They have been selected to cover the theory of ant robotics as well as practical approaches, including antrobot software and hardware.

Sven Koenig (Georgia Institute of Technology, USA)

Sven Koenig became an assistant professor in the College of Computing at Georgia Institute ofTechnology after receiving his Ph.D. in computer science from Carnegie Mellon University. He is therecipient of an NSF CAREER award, an IBM Faculty Partnership Award, the Raytheon FacultyFellowship Award from Georgia Tech, and a Fulbright Fellowship Award. He is currently on theeditorial board of the Journal of Artificial Intelligence Research (JAIR) and will co-chair theInternational Conference on Automated Planning and Scheduling (ICAPS) in 2004. Sven’s researchcenters around techniques for decision making (planning and learning) that enable situated agents to actintelligently in their environments and exhibit goal-directed behavior in real-time, even if they haveonly incomplete knowledge of their environment, limited or noisy perception, imperfect abilities tomanipulate it, or insufficient reasoning speed. He has published over 60 papers on this topic in the

artificial intelligence and robotics literature.

Page 2: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

ICRA03 Tutorial http://www.cc.gatech.edu/fac/Sven.Koenig/icra03-tutorial.html

Israel Wagner (Technion and IBM Haifa Research Lab, Israel)

Israel Wagner received his B.Sc. degree in computer engineering from the Technion (Israel Institute ofTechnology), Haifa, in 1987, cum laude, an M.Sc. degree in computer science from Hebrew University,Jerusalem, in 1990, cum laude, and a Ph.D. degree in computer science from the Technion in 1999. Hewas a research engineer at General Microwave, Jerusalem, from 1987 until 1990, when he joined theIBM Haifa Laboratories as a member of the technical staff. Israel is currently an adjunct senior lecturerin the Computer Science Department at the Technion. His research interests include multi-agentrobotics, manual and automatic VLSI design, computational geometry, and graph theory. He haspublished over 25 papers on these topics in the artificial intelligence, robotics, and VLSI literature andco-edited a special issue of the Annals of Mathematics and Artificial Intelligence on ant robotics in2001.

Andrew Russell (Monash University, Australia)

Andrew (Andy) Russell received his B. Eng. and Ph.D. degrees in 1972 and 1976, respectively, from theUniversity of Liverpool, in the U.K. After a brief period in the computer industry he took a position asEngineer working on robot design and applications in the Department of Artificial Intelligence at theUniversity of Edinburgh, Scotland. For the past 19 years he has been a member of academic staff at theUniversity of Wollongong and now at Monash University (both in Australia). Andy’s research interestsinclude robot tactile sensing, the design of robotic mechanisms and olfactory sensing for robots. He haswritten books on robot tactile sensing and odour sensing for mobile robots and published over 70refereed conference papers and journal articles describing his work in intelligent robotics.

Andrew will give a video presentation.

David Payton (HRL Laboratories, USA)

David Payton is principal research scientist and manager of the Cooperative and Distributed SystemsDepartment at HRL Laboratories in Malibu, California. He received his B.S. degree from UCLA in1979 and his M.S. degree from MIT in 1981. David is currently principal investigator for the DARPAPheromone Robotics project and is also involved in development of agent-assisted multi-usercollaboration tools. After joining HRL Laboratories in 1982, David has been involved in numerousprojects for the development of intelligent autonomous agents. This includes work on the DARPAAutonomous Land Vehicle project, the Unmanned Ground Vehicle and the development ofbehavior-based robot control. David has over 25 publications in the area and holds six patents.

Richard Vaughan (HRL Laboratories, USA)

Richard Vaughan received a D.Phil. in Computation from Oxford University in 1999, and a B.A.(Hons.) in Computing with Artificial Intelligence from Sussex University in 1993. He was apostdoctoral research associate at the Robotics Laboratory of the University of Southern California from1998 to 2001, and is currently a member of the technical staff at HRL Laboratories. Richard’s researchconcerns the mechanisms of intelligent behavior in individuals and groups of people, animals, robotsand software agents. His projects emphasize dynamic autonomy, scalability, interaction and simplicity.The majority of his more than 20 publications concern the functional analysis and recreation of aspectsof animal behavior, a methodology he calls "constructive ethology". His other papers are on simulation,interfacing and networking for robotics applications. Richard is a founding member of the Player/Stageproject, which creates tools for robotics and sensor network research.

Page 3: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Sven KoenigGeorgia Institute of TechnologyUSA

Page 4: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

31

Sve

n K

oeni

g

Col

lege

of C

ompu

ting

Geo

rgia

Inst

itute

of T

echn

olog

y

Ant

Rob

otic

s

Terr

ain

Cov

erag

e

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

32

join

t wor

k w

ith:

Ove

rvie

w

- M

otiv

atio

n

- E

mpi

rical

Res

ults

- S

imul

atio

n-

Act

ual R

obot

s

- T

heor

etic

al R

esul

ts

One

-Tim

e or

Rep

eate

d C

over

age

of K

now

n or

Unk

now

n Te

rrai

n

- M

ine

Sw

eepi

ng-

Sur

veill

ance

- S

urfa

ce In

spec

tion

- G

uard

ing

Terr

ain

Str

uctu

re:

Ove

rvie

w:

- R

eal-T

ime

Sea

rch

Jona

s S

venn

ebrin

g, B

oles

law

Szy

man

ski (

RP

I), a

nd Y

axin

Liu

with

Sin

gle

Ant

Rob

ots

orTea

ms

of A

nt R

obot

s for

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

33

Mot

ivat

ion

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

34

chea

pgr

oups

of r

obot

s

limite

d co

mpu

tatio

nal a

nd s

ensi

ng a

bilit

ies

faul

t tol

eran

ce

para

llelis

m

DC

06

Rob

omow

Cye

Koa

la

Mot

ivat

ion

Page 5: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

35

Mot

ivat

ion

You

wan

t to

build

a te

am o

f rob

ots

that

cov

er te

rrai

n re

peat

-ed

ly, f

or e

xam

ple,

to g

uard

a m

useu

m a

t nig

ht.

The

terr

ain

coul

d be

initi

ally

unk

now

n.T

he te

rrai

n co

uld

chan

ge d

ynam

ical

ly.

The

rob

ots

have

ver

y no

isy

actu

ator

s or

sen

sors

.T

he r

obot

s ca

n fa

il.

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

36

App

roac

h 1:

PO

MD

P-B

ased

Nav

igat

ion

Arc

hite

ctur

e

You

wan

t to

build

a te

am o

f rob

ots

that

cov

er te

rrai

n re

peat

-ed

ly, f

or e

xam

ple,

to g

uard

a m

useu

m a

t nig

ht.

The

terr

ain

coul

d be

initi

ally

unk

now

n.T

he te

rrai

n co

uld

chan

ge d

ynam

ical

ly.

The

rob

ots

have

ver

y no

isy

actu

ator

s or

sen

sors

.T

he r

obot

s ca

n fa

il.

Pro

babi

listic

Pla

nnin

g

R. S

imm

ons

and

S. K

oeni

g. P

roba

bilis

tic R

obot

Nav

igat

ion

in P

artia

lly O

bser

vabl

e E

nvi-

ronm

ents

. In

Pro

ceed

ings

of t

he In

tern

atio

nal J

oint

Con

fere

nce

on A

rtifi

cial

Inte

llige

nce,

1080

-108

7, 1

995.

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

37

App

roac

h 1:

PO

MD

P-B

ased

Nav

igat

ion

Arc

hite

ctur

e

sim

ulat

orin

terf

ace

to X

avie

r

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

38

- ex

plic

itly

mod

els

all u

ncer

tain

ty u

sing

pro

babi

litie

s-

mai

ntai

ns a

rbitr

ary

prob

abili

ty d

istr

ibut

ions

ove

r th

e po

ses

- ut

ilize

s al

l ava

ilabl

e se

nsor

dat

a (la

ndm

arks

, rob

ot m

ovem

ents

)-

robu

st to

war

ds s

enso

r er

rors

(no

exp

licit

exc

eptio

n ha

ndlin

g re

quire

d)

Adv

anta

ges

of N

avig

atio

n w

ith P

OM

DP

s

- un

iform

, the

oret

ical

ly g

roun

ded

fram

ewor

k

App

roac

h 1:

PO

MD

P-B

ased

Nav

igat

ion

Arc

hite

ctur

e

Xav

ier

Page 6: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

39

App

roac

h 2:

Ant

Rob

otic

s

You

wan

t to

build

a te

am o

f rob

ots

that

cov

er te

rrai

n re

peat

-ed

ly, f

or e

xam

ple,

to g

uard

a m

useu

m a

t nig

ht.

The

terr

ain

coul

d be

initi

ally

unk

now

n.T

he te

rrai

n co

uld

chan

ge d

ynam

ical

ly.

The

rob

ots

have

ver

y no

isy

actu

ator

s or

sen

sors

.T

he r

obot

s ca

n fa

il.

Pro

babi

listic

Pla

nnin

g

no lo

catio

n es

timat

es!

no p

lann

ing!

no d

irect

com

mun

icat

ion!

sim

pler

har

dwar

e an

d so

ftwar

e!A

nt R

obot

ics:

Ter

rain

Cov

erag

e; S

ven

Koe

nig;

Geo

rgia

Inst

itute

of T

echn

olog

y; 2

003

10

- sh

ort l

ived

trac

es-

alco

hol [

Sha

rpe

et a

l.]-

heat

[Rus

sell]

- od

or [R

usse

ll el

at.]

- vi

rtua

l tra

ces

[Vau

ghan

et a

l.; P

ayto

n et

al.]

App

roac

h 2:

Ant

Rob

otic

s

Pat

h F

ollo

win

g us

ing

Phe

rom

one

Trac

es

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

311

- lo

ng li

ved

trac

es [S

venn

ebrin

g an

d K

oeni

g]

App

roac

h 2:

Ant

Rob

otic

s

Exp

lora

tion

and

Cov

erag

e us

ing

Phe

rom

one

Trac

es

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

312

The

oret

ical

Res

ults

(Rea

l-Tim

e S

earc

h)

Page 7: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

313

44 3

3 44

54 5

44 3

3 44

54 5

The

oret

ical

Res

ults

(R

eal-T

ime

Sea

rch)

u(s

):=

1 +

u(s

)

Initi

ally

, the

u-v

alue

su(s

)are

zer

o fo

r al

l sta

tess.

1.s

:= s

tart

loca

tion

2.s’

:= a

nei

ghbo

ring

loca

tion

ofs w

ith a

min

imal

u-v

alue

3. 4. m

ove

the

ant r

obot

to lo

catio

ns’5.

go

to 2

.

Nod

e C

ount

ing

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

314

00

00

0

00

00

0

00

00

00

00

00

00

00

00

30

00

0

00

00

0

00

00

00

00

00

00

00

00

31

00

0

20

00

0

00

00

00

00

00

00

00

00

31

00

0

22

00

0

10

00

00

00

00

00

00

00

31

00

0

22

10

0

12

00

00

00

00

00

00

00

31

10

0

22

10

0

12

00

02

00

00

00

00

00

31

10

0

22

20

0

12

00

02

10

00

01

00

00

31

20

0

22

20

0

12

00

02

10

00

11

10

00

time

step

0tim

e st

ep 1

time

step

2tim

e st

ep 3

time

step

4tim

e st

ep 5

time

step

6tim

e st

ep 7

31

20

0

22

20

0

12

00

02

10

00

11

10

00

The

oret

ical

Res

ults

(R

eal-T

ime

Sea

rch)

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

315

The

oret

ical

Res

ults

(R

eal-T

ime

Sea

rch)

prog

ram

min

g: J

onas

Sve

nneb

ring

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

316

The

num

bers

(=

mar

king

s) c

oord

inat

e th

e an

t rob

ots!

010

2030

4050

6070

8090

100

0

1000

2000

3000

4000

5000

6000

Cov

erag

e N

umbe

r

Cover Time (steps)

Nod

e C

ount

ing

Ran

dom

Wal

k

node

cou

ntin

g

rand

om w

alk

cover time

cove

rage

num

ber

The

oret

ical

Res

ults

(R

eal-T

ime

Sea

rch)

Page 8: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

317

05

1015

0

200

400

600

800

1000

1200

1400

Nod

e C

ount

ing:

Sha

red

Mar

king

s

Nod

e C

ount

ing:

Indi

vidu

al M

arki

ngs

Time (steps)

Num

ber

of R

obot

s

node

cou

ntin

g (in

divi

dual

mar

king

s)

node

cou

ntin

g (s

hare

d m

arki

ngs)

num

ber

of r

obot

s

The

num

bers

(=

mar

king

s) c

oord

inat

e th

e an

t rob

ots!

cover time

The

oret

ical

Res

ults

(R

eal-T

ime

Sea

rch)

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

318

u(s

) :=

1 +

u(s

’)if

u(s

)≤ u

(s’)

then

u(s

) :=

1 +

u(s

)u

(s):

=m

ax(

1 +

u(s

), 1

+ u

(s’))

Kor

f’s L

RTA

* (=

Wag

ner’s

VA

W)

u(s

):=

1 +

u(s

)N

ode

Cou

ntin

g

Initi

ally

, the

u-v

alue

su(s

)are

zer

o fo

r al

l sta

tess.

1.s

:= s

tart

loca

tion

2.s’

:= a

nei

ghbo

ring

loca

tion

ofs w

ith a

min

imal

u-v

alue

3. 4. m

ove

the

ant r

obot

to lo

catio

ns’5.

go

to 2

.

or or or

44 3

3 44

54 5

44 3

3 44

54 5

Wag

ner’s

Upd

ate

Rul

eT

hrun

’s U

pdat

e R

ule

The

oret

ical

Res

ults

(R

eal-T

ime

Sea

rch)

Add

ition

al R

eal-T

ime

Sea

rch

Met

hods

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

319

The

orem

:

Team

s of

ant

rob

ots

that

all

use

the

sam

e re

al-t

ime

sear

ch m

etho

d co

ver

all s

tron

gly

conn

ecte

d gr

aphs

Pro

of:

The

oret

ical

Res

ults

(R

eal-T

ime

Sea

rch)

repe

ated

ly.

QE

D

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

320

The

oret

ical

Res

ults

(R

eal-T

ime

Sea

rch)

num

ber

of v

ertic

es

time to reach goal (log scale)

Kor

f’s L

RTA

*

Nod

e C

ount

ing

2#ver

tices

/2+

1/2 -3

cove

r tim

e gu

aran

teed

to b

e no

wor

se th

an O

(#ve

rtic

es d

iam

eter

)on

any

str

ongl

y co

nnec

ted

grap

h

10100

1000

1000

0

1000

00

1e+0

6

1e+0

7

1e+0

8

1e+0

9

1e+1

0

1e+1

1

1e+1

2 050

100

150

200

250

300

350

400

num

ber

of v

ertic

es (

n)

star

tgo

al

[Koe

nig

and

Sim

mon

s, 1

992]

[Koe

nig

and

Sim

mon

s, 1

992]

Page 9: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

321

The

oret

ical

Res

ults

(R

eal-T

ime

Sea

rch)

num

ber

of v

ertic

es

time to reach goal (log scale)

Nod

e C

ount

ing

#ve

rtic

essq

rt((

1/6-

epsi

lon)

#ver

tices

)

10100

1000

1000

0

1000

00

1e+0

6

1e+0

7

1e+0

8

1e+0

9

1e+1

0

1e+1

1 050

100

150

200

250

300

350

400

num

ber

of v

ertic

es (

n)

sim

ulat

ion

form

ula

star

t

goal

Kor

f’s L

RTA

*co

ver

time

guar

ante

ed to

be

now

orse

than

O(#

vert

ices

dia

met

er)

on a

ny s

tron

gly

conn

ecte

d gr

aph

[Koe

nig

and

Sim

mon

s, 1

992]

[Koe

nig

and

Szy

man

ski,

1999

]

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

322

u(s

) :=

1 +

u(s

’)if

u(s

)≤ u

(s’)

then

u(s

) :=

1 +

u(s

)u

(s):

=m

ax(

1 +

u(s

), 1

+ u

(s’))

poly

nom

ial c

over

tim

epo

lyno

mia

l cov

er ti

me

poly

nom

ial c

over

tim

e

u(s

):=

1 +

u(s

)ex

pone

ntia

l cov

er ti

me

Initi

ally

, the

u-v

alue

su(s

)are

zer

o fo

r al

l sta

tess.

1.s

:= s

tart

loca

tion

2.s’

:= a

nei

ghbo

ring

loca

tion

ofs w

ith a

min

imal

u-v

alue

3. 4. m

ove

the

ant r

obot

to lo

catio

ns’5.

go

to 2

.

or or or

The

oret

ical

Res

ults

(R

eal-T

ime

Sea

rch)

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

323

Is th

e w

orst

-cas

e co

ver

time

of a

sin

gle

ant r

obot

that

use

s no

de c

ount

ing

poly

nom

ial o

r ex

pone

ntia

lin

the

num

ber

of v

ertic

es (

an a

dver

sary

can

cho

ose

the

grap

h to

polo

gy, t

he s

tart

ver

tex,

the

goal

ver

tex,

and

the

tie-b

reak

ing

rule

),

- if

the

stro

ngly

con

nect

ed g

raph

s ar

e di

rect

ed?

- if

the

stro

ngly

con

nect

ed g

raph

s ar

e un

dire

cted

?-

if th

e st

rong

ly c

onne

cted

gra

phs

are

undi

rect

ed g

rids?

yes

(see

3 s

lides

ago

)ye

s (s

ee 2

slid

e2 a

go)un

know

n

The

oret

ical

Res

ults

(R

eal-T

ime

Sea

rch)

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

324

The

oret

ical

Res

ults

(R

eal-T

ime

Sea

rch)

num

ber

of r

obot

s

cover time

Kor

f’s L

RTA

*N

ode

Cou

ntin

g

Wag

ner’s

Upd

ate

Rul

e

Thr

un’s

Upd

ate

Rul

e

[Koe

nig

et. a

l., 2

001]

Page 10: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

325

The

oret

ical

Res

ults

(R

eal-T

ime

Sea

rch)

Nod

e C

ount

ing

Kor

f’s L

RTA

*

Wag

ner’s

Upd

ate

Rul

eT

hrun

’s U

pdat

e R

ule

[Koe

nig

et. a

l., 2

001]

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

326

Em

piric

al R

esul

ts(S

imul

atio

n an

d A

ctua

l Rob

ots)

BO

RG

Lab

[Sve

nneb

ring

and

Koe

nig,

200

3]

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

327

Em

piric

al R

esul

ts (

Act

ual R

obot

s)

Ant

rob

ots

that

all

use

node

cou

ntin

g ar

e ea

sy to

impl

emen

t!

40

4

40

4

43

2

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

328

Ant

Rob

ot H

ardw

are

A: t

rail

sens

orB

: tra

il se

nsor

C: p

enD

: mic

ro-c

ontr

olle

rE

: RS

232

inte

rfac

e

Tha

nks

to A

shw

in R

am fo

r th

e ha

rdw

are.

Em

piric

al R

esul

ts (

Act

ual R

obot

s)

Page 11: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

329

Ant

Rob

ot S

oftw

are

our

ant r

obot

s us

e a

sche

ma-

base

d na

viga

tion

stra

tegy

with

an

obst

acle

avo

idan

ce b

ehav

ior

and

a tr

ail-a

void

ance

beh

avio

r

Em

piric

al R

esul

ts (

Act

ual R

obot

s)

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

330

our

ant r

obot

s us

e a

sche

ma-

base

d na

viga

tion

stra

tegy

with

an

obst

acle

avo

idan

ce b

ehav

ior

and

a tr

ail-a

void

ance

beh

avio

r

Ant

Rob

ot S

oftw

are

Em

piric

al R

esul

ts (

Act

ual R

obot

s)

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

331

Em

piric

al R

esul

ts (

Act

ual R

obot

s)

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

332

Our

ant

rob

ots

cove

r cl

osed

terr

ain

even

if-

they

don

’t kn

ow th

e te

rrai

n in

adv

ance

or

the

terr

ain

chan

ges,

- so

me

ant r

obot

s fa

il,-

som

e an

t rob

ots

are

mov

ed w

ithou

t rea

lizin

g th

is, o

r-

som

e tr

ails

are

des

troy

ed.

dest

roye

d ar

eas

of tr

ails

low

-inte

nsity

trai

ls

Em

piric

al R

esul

ts (

Sim

ulat

ion

and

Act

ual R

obot

s)

Page 12: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

333

end

of fi

rst c

over

age

end

of th

ird c

over

age

The

terr

ain

gets

sat

urat

ed w

ith tr

ails

ove

r tim

e.

Em

piric

al R

esul

ts (

Act

ual R

obot

s)

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

334

40

4

40

4

43

2

rand

omly

dro

p a

drop

of in

k in

to th

is c

ell

incr

ease

this

num

ber

by o

new

ith p

roba

bilit

y (1

6-4)

/16

with

pro

babi

lity

(170

-u(s

))/1

70 d

o:u(s

):=

1 +

u(s

)

Initi

ally

, the

u-v

alue

su(s

)are

zer

o fo

r al

l sta

tess.

1.s

:= s

tart

loca

tion

2.s’

:= a

nei

ghbo

ring

loca

tion

ofs w

ith a

min

imal

u-v

alue

3. 4. m

ove

the

ant r

obot

to lo

catio

ns’5.

go

to 2

.

Em

piric

al R

esul

ts (

Mod

elin

g w

ith R

eal-T

ime

Sea

rch)

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

335

010

2030

4050

6070

8090

100

0

500

1000

1500

2000

2500

3000

Cov

erag

e N

umbe

r

Cover Time (minutes)

Mod

ified

Nod

e C

ount

ing T

eam

Bot

s S

imul

atio

n of

Peb

bles

Tea

mB

ots

Sim

ualti

on o

f Ran

dom

Wal

k

Cover Time (steps)

0

2000

0

1666

6

1333

3

1000

0

6666

3333

mod

ified

nod

e co

untin

g

robo

t(w

ithou

t tra

il re

mov

al)

cove

rage

num

ber

cover time

Em

piric

al R

esul

ts (

Sim

ulat

ion)

rand

om w

alk

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

336

trai

ls a

fter

first

cov

erag

etr

ails

afte

r te

nth

cove

rage

cleaningno cleaning

with

one

ant

rob

otw

ith o

ne a

nt r

obot

Em

piric

al R

esul

ts (

Sim

ulat

ion)

end

of fi

rst c

over

age

end

of te

nth

cove

rage

withwithouttrail removal trail removal

Page 13: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

337

010

2030

4050

6070

8090

100

050100

150

200

250

300

350

400

450

500

Cover Time (minutes)

Cov

erag

e N

umbe

r

Tea

mB

ots

Sim

ulat

ion

of P

ebbl

es w

ith C

lean

ing

Tea

mB

ots

Sim

ulat

ion

of P

ebbl

es w

ithou

t Cle

anin

g

robo

t (w

ithou

t tra

il re

mov

al)

robo

t (w

ith tr

ail r

emov

al)

cove

rage

num

ber

cover time

Em

piric

al R

esul

ts (

Sim

ulat

ion)

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

338

terr

ain

size

cover time

Em

piric

al R

esul

ts (

Sim

ulat

ion)

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

339

num

ber

of a

nt r

obot

s

cover time

Em

piric

al R

esul

ts (

Sim

ulat

ion)

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

340

25 x

25

met

ers

85 h

ours

with

out a

nyan

t rob

otge

tting

stu

ck

10 a

nt r

obot

s

Em

piric

al R

esul

ts (

Sim

ulat

ion)

Page 14: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

341

The

Fut

ure

smal

l inf

rare

d tr

ance

iver

s as

sm

art m

arke

rs(s

imila

r in

tere

stin

g w

ork

is p

erfo

rmed

at U

SC

and

oth

er in

stitu

tions

)

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

342

Sum

mar

y

Rea

l-tim

e se

arch

met

hods

pro

vide

an

inte

rest

ing

mea

ns fo

rco

ordi

natin

g si

ngle

ant

rob

ots

or te

ams

of a

nt r

obot

s th

atco

ver

know

n or

unk

now

n te

rrai

n on

ce o

r re

peat

edly

. The

yle

ave

mar

king

sin

the

terr

ain,

sim

ilar

tow

hats

ome

ants

do.

The

ant

rob

ots

robu

stly

cov

er te

rrai

n ev

en if

the

robo

ts a

rem

oved

with

out r

ealiz

ing

this

, som

e ro

bots

fail,

and

som

em

arki

ngs

get d

estr

oyed

. The

rob

ots

do n

ot e

ven

need

to b

elo

caliz

ed.

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

343

Sel

ecte

d P

ublic

atio

nsA

nt R

obot

ics

[Sve

nneb

ring

and

Koe

nig,

2002

]J.S

venn

ebrin

gan

dS

.Koe

nig.

Bui

ldin

gTe

rrai

n-C

over

ing

Ant

Rob

ots.

Tech

nica

l Rep

ort,

GIT

-CO

GS

CI-

2002

/10,

Col

lege

of C

ompu

ting,

Geo

rgia

Inst

itute

of T

echn

olog

y,A

tlant

a (G

eorg

ia),

200

2

[Koe

nig

et. a

l., 2

001]

S. K

oeni

g, B

. Szy

man

ski a

nd Y

. Liu

. Effi

cien

t and

Inef

ficie

nt A

nt C

over

age

Met

hods

. Ann

als

of M

athe

mat

ics

and

Art

ifici

al In

telli

genc

e, 3

1, 4

1-76

, 200

1.

[Sve

nneb

ring

and

Koe

nig,

2003

]J.S

venn

ebrin

gan

dS

.Koe

nig.

Tra

il-La

ying

Rob

ots

forR

obus

tTer

rain

Cov

erag

e. In

Pro

ceed

ings

of t

he In

tern

atio

nal C

onfe

renc

e on

Rob

otic

s an

d A

utom

atio

n, 2

003.

Rea

l-Tim

e S

earc

h

[Koe

nig

and

Szy

man

ski,

1999

] S. K

oeni

g an

d B

. Szy

man

ski.

Valu

e-U

pdat

e R

ules

for

Rea

l-Tim

eS

earc

h. In

Pro

ceed

ings

of t

he N

atio

nal C

onfe

renc

e on

Art

ifici

al In

telli

genc

e, 7

18-7

24, 1

999.

[Koe

nig

and

Sim

mon

s, 1

996a

] S. K

oeni

g an

d R

.G. S

imm

ons.

Eas

y an

d H

ard

Test

beds

for

Rea

l-Tim

eS

earc

h A

lgor

ithm

s. In

Pro

ceed

ings

of t

he N

atio

nal C

onfe

renc

e on

Art

ifici

al In

telli

genc

e, 2

79-2

85,

1996

.

[Koe

nig

and

Sim

mon

s, 1

996b

] S. K

oeni

g an

d R

.G. S

imm

ons.

The

Influ

ence

of D

omai

n P

rope

rtie

s on

the

Per

form

ance

of R

eal-T

ime

Sea

rch

Alg

orith

ms.

Tec

hnic

al R

epor

t, C

MU

-CS

-96-

115,

Sch

ool o

fC

ompu

ter

Sci

ence

, Car

negi

e M

ello

n U

nive

rsity

, Pitt

sbur

gh (

Pen

nsyl

vani

a), 1

996.

[Koe

nig

and

Sim

mon

s, 1

995]

S. K

oeni

g an

d R

.G. S

imm

ons.

Rea

l-Tim

e S

earc

h in

Non

-Det

erm

inis

ticD

omai

ns. I

n P

roce

edin

gs o

f the

Inte

rnat

iona

l Joi

nt C

onfe

renc

e on

Art

ifici

al In

telli

genc

e, 1

660-

1667

,19

95.

[Koe

nig

and

Sim

mon

s, 1

992]

S. K

oeni

g an

d R

.G. S

imm

ons.

Com

plex

ity A

naly

sis

of R

eal-T

ime

Rei

n-fo

rcem

ent L

earn

ing

App

lied

to F

indi

ng S

hort

est P

aths

in D

eter

min

istic

Dom

ains

. Tec

hnic

al R

epor

t,C

MU

-CS

-93-

106,

Com

pute

r S

cien

ce D

epar

tmen

t, C

arne

gie

Mel

lon

Uni

vers

ity, P

ittsb

urgh

(P

enns

ylva

-ni

a), 1

992.

Ant

Rob

otic

s: T

erra

in C

over

age;

Sve

n K

oeni

g; G

eorg

ia In

stitu

te o

f Tec

hnol

ogy;

200

344

Add

ition

al In

form

atio

n

http

://w

ww

.cc.

gate

ch.e

du/fa

c/S

ven.

Koe

nig/

ants

.htm

l

Page 15: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Israel WagnerTechnion andIBM Haifa Research LabIsrael

Page 16: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

�������������� ��

������� ���������������� !���������"�!�#$��"�!�#���%&!������

' ( ) * + ,.-0/ 12* 3546+ )

7 869;:�< = > <�? < @ AB C D

7 E F G H H = I G E F J K A F G LMA5? < @N6O L�P Q F G R S J T = G E T G6U�G P < R F L�G E F V W G T X E = O E

Y Z Z [�\ ] ] ^6^6^�_ ` a _ Z b ` Y C c d C _ B ` _ c e ] f ^ B g C b h ]

i j k l m n m k o p q r s q t u v w i x y u z j v t { s | }�~6� v p � j o m j { � � � � �

�����.� ������� ���

�&��� ( + ) �6* � � �64�� * 46� (�* � �6� + �6+�� ���6) + ( ( � �6+�) + ( �6, � ( �6+ ( �6+ � � * , ,  ) � � �6( � 46+ ( ( �6¡6+ ( �6� � +�� 46�6+ ) + 46��, � ��� � * � � �646(�* 46¡£¢ ) + ¤6�6+ 46�.¢ * � , �6) + (�&¥ �6+ ( � � �646(.�¦�§;¨ © ª6«�© ¬ ­ ®�©�¯ ° ± ² ³�± ´.® µ «�³ ¶ ­ · ¶ µ «�µ ª ­ ¸�¹ ° ­ © ª ² ° ­ ®«�² ¹ ¨�«�± ° ­�­ ´ ´ µ ¹ µ ­ º ª5ª ¨ © º�© º »�® µ º ¯ ¶ ­�± º ­�¼

¦�½�© º�¾�­�¿ ± ° ° ± ¾0µ ¸ ­ © ®�´ ± °.° ± ¿ ± ª µ ¹ ®M¼�&� �6)M* ( ( �6���6� � �64��ÀÁ�6+�* 46�  (�( � ) + 4636� ��� (�) + , * � + ¡�� �£� � (�Ã�+ * Ä646+ ( (��, � ��� � + ¡�( + 46( � 4636�6� �6���6�6� � 463�* 46¡£� �6�����646� � * � � �64£� ���6, � + (��

Å6Æ£Ç È Å É�Ê Ë�Ì6È Í�Æ Î�È Å Î Æ6Ï Ð�Ñ6Í È Æ6Å�È Ç�Ò Ï È Í È Ò Ñ6Ê Ê Ó;È Ð�Ô�Æ6Ï Í Ñ6Å6Í� ' 4£� �6+�( + ¤6�6+ , �Á( �6��+�+ Õ�* ���6, + (��6¢M* 46* ,  5( � ( �6( � ���6, * � � �64�* 46¡, * � + Õ6�6+ ) � ��+ 46� ( �6¡6+ ���646( � ) * � � 463�� �6+�) � � �6( � 46+ ( (��6¢�* 46� Ö ) � � �6� (

Page 17: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

i j k l m n m k o p q r s q t u v w i x y u z j v t { s | }�~6� v p � j o m j { � � � � ×

ØÚÙ ��Û � �0Ü

� -�46� (�* 46¡�Ý�) * �6�6(Þàß�á�â�ã�ä å æ.çÁä ä6á�è é æ�å ê ë£é ì í�ä6á�æ�î�ï é ð�ñ�äÞàò£æ�å ê ë�é ì í�ä6é æ�ó�ô5õ�ô ì ç�ä

ö�÷ ø.ù < E ú.F X G ÷ Q H G R T K T H Gö�û.ø.ù < E ú.F X G6:�< L�= H F O E�T K T H GÞàüMé å ï á�ì ì ý æ�î�é æ�ó�å ñ�ç�þ , * 46Ä�+ ��� � ��+

ÿ���� � ��� ��� �� � � � � � � � �Þ���ò��ê ü��Þ���é â�üMï á�� ç ô å ä �

ö 9 ø N < E ú � Nö N ø.ù�� N6O E F = E Q O Q A ø E F ù < H � �ÿ�� � �"! � � � � � � ��# � $�� � � % & � � � � � �' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '( � � � � )*� + ,�-�� � ./ + $ $ 0�1 + � % , � � � � 2 3�� % # 4�� � $ � 5 # � �62 7 & � �"8 � �6� � 29 & # $ � �6� +�:�# � � ; � , � 2 <"� # �>=�� + $ � � 2 8�� � ��?� � $ # +

i j k l m n m k o p q r s q t u v w i x y u z j v t { s | }�~6� v p � j o m j { � � � � @

A �0� B�C ��Û D>E ���GFIH��*J>K>EL � < R < ú = I L�M

Þàë£é ì í�é ï á�ã�æ�ó�å ñ�ç�î�ï é ð�ñÞàì ç é N�ç�å ï é ô ç�äÞàæ�é N�ý î�é å ç�ã�ä ý æ�î�å ñ�ç�å ï é ô ç�ä

LÚ÷ O < L�P H G M ÷ ú I G ø E F ù < H � � P�Q R �TS < U � U < U V ÷ ú I G N6O Q E F = E I W X M-�( ( �6���6� � �64�� � �6+ ) +�� (�*ZY 46+ Õ�� [��6�6� 46� + )M� 4�+ * � �£�6+ ) � + Õ6��6�6� 46� � 463�� �£�646+��6¢M� �6+��6�6� 35�6� 4�3�+ ¡636+ (\T]_^ ß�ã�ì ç"�

` a�b c d e d f g d h f e d i c j k i l f g g m n l e d o n p�q6d c�r�s p n e�t u v w x q y{z |"} ~� a�b e n l f e d i c p j � n d c ��f e m n l e n ��q � i

� � J G F b.\ � C b � Z � � � �� � J G F C b � Z � � �M\ �T� C b � Z � � � �_� ��� d D�D b g � � � �� � � O < H O E I b �

b � e ��i�� i l � i l n � f � n c e p i o o � � �{e � n p f � n m n l e n � sg n e e � n �Tf o e p n � � n c e d f g g �{� ��p i � n f l � d e l f l ��i l � n l

Page 18: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

i j k l m n m k o p q r s q t u v w i x y u z j v t { s | }�~6� v p � j o m j { � � � �  

¡ A C¢B�ÜT£��¥¤¦J0Û Ü

§ ¨

©

ª ��

��

« # � �¬�­

i j k l m n m k o p q r s q t u v w i x y u z j v t { s | }�~6� v p � j o m j { � � � � ®

¡ A C¢B�ÜT£��¥¤¦J0Û Ü

§ ¨

©

ª ��

��

« # � �¬¥­ ¯ ° ± ­�² ¯ ± ¯ ° ± ­ ³ ´

Page 19: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

i j k l m n m k o p q r s q t u v w i x y u z j v t { s | }�~6� v p � j o m j { � � � � µ

¡ A C ���>¶ ��K0Ü·¡ Ù Û ÜTH·¸º¹*»�Û Ü

� -�( ( �6��+�* 4_¼Á¡636+�-�46�.12* , Ä£�64�*�35) * �6�¾½_¿ À�Á Â�Ã� ¼Á�6, + )�Ä� 5� , +ZÅ Æ6ÇÉÈ�Ê�*��  5� , +�� 4£Ã��6� � ��+ * � �£+ ¡636+�� 4ZÂ2� (�6� ( � � + ¡ Ë Ë�Ñ6Ò Í Ê Ó �646� +

� ÀÁ�6+ �6) + �2�' ¢�Ì2� ("¼Á�6, + ) � * 4�Å Í Î Ï ± Ð Ñ Ò Ð Ð Ó Ô Õ ¬�Ö Ô × Ï ± Ð Ñ Ò Ð Ð Ó Ô Õ ¢ �6)M* , ,.�6+ ) � � � + ( Ô È �� �6+ 4�* 4¥Æ6ØÉÙÚ�6) �6� + ( (�� �646�6+ ) 36+ (�� ��* 4�¼��6, + )M�  5� , +�·Ú �6Ã�, �6463�¡6�6+ (�� �.� * Ä6+ZÛ

ÜIÝ¥Þ ß¥à á�â ã¥äTå æ�åZߥçÉè é6è â à ç_è ê�èë 1 # � � 2 7�; � 2 =�+ � 5 + ì 2 í�# 0 # +Éî ï ï ð ñ

ÜòÝ¥Þ ß¥ó"á�â{ã¥äTå æ�å6ó¥ç_ô õ ö ß¥Þ ÷�áë :�# � � ; � , � 2 )*# ì � + 2 1 + � % , � � � �"î ï ï ð ñ

i j k l m n m k o p q r s q t u v w i x y u z j v t { s | }�~6� v p � j o m j { � � � � ø

¡ A Cúùüûþý>ÿ ��� ���>¶Gû���� �������üû ý>ÿ ���� 1��6* ��� ¢�Ì�� (�46�646Ö ¼Á�6, + ) � * 4_Û� ¼ÁÕ6� + 46¡6+ ¡�¼��6, + )�Ä� 5� , +ZÅ ÆZÆ6ÇTÈ6�*��  5� , +�� 4£Ã��6� � ��* , ,.+ ¡636+ (�� 46Â2* ) +��6� ( � � + ¡� �6+�( * ��+�46�6� � + )M�6¢M� � ��+ (

� ¼ÁÕ6* ���6, +��* Å6Æ6Å�� Â� Ê Ë Ï È Ñ6Å 36) * �6���

* 4�¼�¼�Ä��6¢M�6) ¡6+ )������ ����������������������� ���Å *��  5� , +�Ã���+ ) +�+ * � �£+ ¡636+��6� � �6) (�+ Õ6* � � ,   Í ��È Ò Ë È

��

� "!$#§

¨ ©

ª

Page 20: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

i j k l m n m k o p q r s q t u v w i x y u z j v t { s | }�~6� v p � j o m j { � � � � %

¡ A Cúùü¡ Ù Û ÜTH&���>¶G¡þ£���Ü��>¶0ÜT¶G¡ Ù Û ÜTH

� ÀÁ�6+ �6) + �2�ÀÁ�6+��646� ¢ � + ¡��6* � �£�6¢M*�35) �6�6�£�6¢'&�* 36+ 46� (* �6�6,   � 4�3�� �6+TÆZØÉÙÚ) �6, +�+ �6+ 46� �6* , ,  �+ 46� + ) (

* 46 Ë�Í Ë Å�(6Ë ( Â� Ê Ë Ï*)6Ó�Ò Ê Ë Å �6¢M( �6��+��6) ¡6+ ) È�·Ú �6Ã�, �6463�¡6�6+ (�� �.� * Ä6+ZÛ+ ( � � ��* � � �64£Ã�� � �£( � ���6, * � � �54�� , + ( (�� �6* 4�+,� Ý��6+ ( (.�� � ��+�¡6+ � ) + * ( + (�Ã�� � ��&5� � �6�.46���6) �6�6¢M 5+ � /� -��6�6, � � * � � �64�� Ô�Ñ6Í Ï Æ6Ê Ê È Å É *�46+ � Ã��6) Ä6�6� �6* ��� (��� �646� � 46�6�6�6( ,  �+ Õ��6, �6) � 463�* , ,�+ ¡636+ ( �£* (- Å6È Î Æ6Ï Ð�Ê Ó * (��6�6( ( � � , +�/. + �.�6(�¢ � ) ( �.� �646( � ¡6+ )�*�( � ���6, + )M��+ � �6�6¡��6¢�Å ( � �6� �6* ( � � � È�6* � ) �6, , � 46310

i j k l m n m k o p q r s q t u v w i x y u z j v t { s | }�~6� v p � j o m j { � � � � 2 3

� -�4 Ç È Ð�Ô�Ê Ë�Ï Ñ6Å�(6Æ6Ð4��Ñ6Ê 5 �64¥Ì-6�798 :�;�85) �6, + ¡ �  

� (�* 4 Ë Ï É�Æ�(6È Ò �6) �6� + ( (�� �6* �.+ �6+ 46� �6* , ,  �* ) ) � �6+ (�* �.* Ç Í Ñ6Í È Æ6Å6Ñ6Ï Ó(6È Ç Í Ï È Ì Í È Æ6Å�<<<<=

* 46¡£� �6+�� �646�6+ ) 36+ 46� +TÅ Y ��� Õ6� 463{[ ÈM) * � +�� � < � * 4 � +�+ Õ6�6) + ( ( + ¡�  �� �6+ Ì6Ê Ñ6Å�5 Ë Í�Í È Ð�Ë > ë )*� � , & +�2 ?�� % , + �6# �"î ï @ ð ñ .

A�����H���Û Û � �BDC>¹��DE ���>¶0�*¤ C ��Û D

F GHGIG JJ KLMLMN O PLM QQ RST

UV W�XZY�[�\ ] [V \ X�^ _�_ \ `a bcd e�f g he�f i h f g hjf i hji�k glm nn

o poqr stu v�w x9y z {*| } y~������ � ����� ����� �

Page 21: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

i j k l m n m k o p q r s q t u v w i x y u z j v t { s | }�~6� v p � j o m j { � � � � 2 2

A�����H���Û Û � �BDC>¹��DE ���>¶0�*¤ C ��Û D

ÿI1�& # � , � � � �6�î $ ì ; + � � � � ð .í� �� � + � � � � �"�# � -� � % 2 � � +�# � 0�� -��" $ ì ��� � �¾� ���"2

ÿü5 0�+ # � $ � � -�# & , .��� � � ¬���Ó ��Ó � Ö Ñ�� Ö Ñ Î Õ � Õ î � � % � $ ð

-� + Z�ò� ��� � � � % � $"% � ; +�� � �"�� �-�ë ?�# � 2 ?�� �Z2 4�� ; # � � 2 9 �"î / �����9� � � ð ñ  Ö × Ð ¡��_% # ��5 �# ��& # + ì �# ��¢Z£ ¤ ¥ ¦ ë # ��� �"#�� Ö � � Í § Ö § ì + # � ñÿü5 0©¨�ªZ«�. �­¬�® ¯�° î $ � + �6� � � � � � % ð

±²³ ²³µ´¶· ¸ ¹�¸ º ¹¼»· ¸ ¹�¸ º ¹ ½ ½

i j k l m n m k o p q r s q t u v w i x y u z j v t { s | }�~6� v p � j o m j { � � � � 2 �

¾ � ¤ Ù Û ���.� ���>E Bà� Ù Û ��� A B�Ü��0� A �0� C ��Û D

Page 22: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

¿ À Á Â Ã Ä Ã Á Å Æ Ç È É Ç Ê Ë Ì Í ¿ Î Ï Ë Ð À Ì Ê Ñ É Ò ÓÕÔ�Ö Ì Æ × À Å Ã À Ñ Ø Ù Ù Ú Û Ü

Ý-Þ ßáàâ ã�ä�Þ å�æçéè1ê�â ã�æë1ì�äíä�Þ ßáì

î ï�ð ñ ò ó ô ñ õ�ö ð ñ ò�÷ ø ø�ò ó ù õ ö úZî û9ü ô ò ó ý þ ÿ ��� � þ�� ø�ð ñ ò � � � ñ ÿ ü�� � � �

� � ��� � ��� � � � � � � ����� � � ��� � � � � � � � � ��� ! � � � " ��� � � � � � � � � #$ " % � & � � � � �'� ( � � � ��� � � � � �)� � !�* � � � +

, - . / 0 1 0 . 2 3 4 5 6 4 7 8 9 : , ; < 8 = - 9 7 > 6 ? @�A�B 9 3 C - 2 0 - > D E E F G H

IKJMLONQPSRUT�VSWYXZNQ[]\ ^ T�_QPU`Kacb�^ W

dfehg iQj k l m�npo�q r k s�t uQvhw�xyg�r q)r k s�j n{zh|�j r |ps g r |~} � � � � �pj nQ��j �� j � j l s �{s ��g r l k qhm�n�r s

d�uQ�h����� m���k s i��� j � s npg � � g ��|�����m�s ��j l�r m�n�l g j npg n{eho��

� �'� � � � � � � � � � ��� �   ¡ ��¢¤£ ¥ ¦ § ¨ © ª «�¬ ¥ ¨ § ­ ®)§ £ ­ ¯ ª�°�£ ¯ ± ¨ § ²³d�uQ�h��j ��´hn�m�zhn{l mp��s�µ{¶'· ¸ ¹�ºy»¤¼ ½ ¾ ½ �{|�s n¿r s�n�m�l�� m�k � g ��k s�j nl j iQs¤ÀÁ� Ã'Ä Å Æh��Ç�n�k s � �¶'Ȥµh¶

dfÉhÇ��'Ê�ˤ¾ · Ì Ë¤Í »¤Ì Î ½ ÏQg ����� m�g r |pt ÐhÑhÒÓ��Ô'ÕÖ×ÑSØ w��Ù � s ��s g l s ��k qhl � g � s � � s�l |�s � � g ��|���iQg � Ú�j n � l |�s � s � l j r s �Ù g k zhg q)� � mpl m{l |�s�n�s j � |���m¿��zhj l |{iQj n�j iQÇ�iÛl � g r s

dfo�g n{l |�j ��Ü � s � l s ��Ý�Þ k g � m���m�Þ�ß×ÑhÒàk s g �{l mpg n{eho��

Page 23: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

, - . / 0 1 0 . 2 3 4 5 6 4 7 8 9 : , ; < 8 = - 9 7 > 6 ? @�A�B 9 3 C - 2 0 - > D E E F G á

IKJKLONcPSRUXâJKã

äpå�æ �cç�è é ê è ë�ì íŤê ì�îhï� ðyñ ò � s � l s �'ó ôõ öh÷cø ùûú ü �� � � ( � � % "�ý� � ����� � ��� �)� � � & ��% ��þ ÿ � � �� ö ÿ¿þ ú � ø ù ÿ¿þ ú � ���� ö � þ ú � ø ù �� ö � ø ù � �� � ( %�� % �� ����ç)è é ê è ë�ì í�Ťê ì)î{ï� ð��

Ñhn�g k q)l j r�� s � Ç�k l ���� ���� ��� � � % � � �� # � � ��� ��� � � ��� ��� ��� � �¤% ��� �� � % ����� � ��� � � � # � � � ��� " ��!#" � �� ��� � � % � �

, - . / 0 1 0 . 2 3 4 5 6 4 7 8 9 : , ; < 8 = - 9 7 > 6 ? @�A�B 9 3 C - 2 0 - > D E E F G $

% \ ['&S^ NcT¿\ _cP(�) *�+,) - . * / 0 1 ) +32#/ +54 6 . ) 0,7 * / 8 9 - :; ) 0 < = * 7 = 0 ; =�. ),/ 0#2,>4 -�? / - .@ A 4 . 9 4 0,B C DE�F . G54 . 1 = 8 = 0 1 -�) 0IH J. 9 =�K L M�K N�O P Q R Q S T S U V2#= 0 ; = WX 8 ) - - 4 Y 6 =�9 = F * 4 - . 4 ; ? ) * Z\[

] ^ _ ` a b c d e d f g f h i�j a k

l m noopmm qr str uvw sr xp

Page 24: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

y z { | } ~ } { � � � � � � � � � � y � � � � z � � � � � �\��� � � � z � } z � � � � � � �

� ��������� ��¡I�#�¢�£¥¤ ¦§���©¨«ª���¬ � ­¯®±°Iª�²�³��´±µ 9 / . 9 / 8 8 = 0 -�. )�¶�·�¸¥4 ?�= / ; 9,= 1 7 =�? / 4 6 - A 4 . 9�8 * ) Y / Y 4 6 4 . ¹�Hº´¼» 9 = ) * = +\W½ ?�= / ; 9,= 1 7 =�4 -�8 * ) 0 =�. )#? / 4 6 F * = A 4 . 9�8 * ) Y / Y 4 6 4 . ¹�H�:. 9 = 0

A 9 = * =¾¾ ¾¾ ¿ +5/ À 4 +,F +3< = * . = À,1 = 7 * = =�4 05ÁÂÄÃ 0 F +�Y = *�) ?�= 1 7 = -Å Ã 1 4 / +,= . = *�) ? Á

ÆÇÈÉÊË ÌÍÎÍÏ ÐÑÒÓ Ô Õ ÖÓ Ô ÕÒÒ ×××Ø�ÙÚ�Û Ü�Ý

y z { | } ~ } { � � � � � � � � � � y � � � � z � � � � � �\��� � � � z � } z � � � � � � Þ

ß ��à�¡ °Iá ��⯪ ß ������á ���������äã ��å'ª�á �æ±çéè ê ë ê ì í î ï ð ñ ê ì ò ë è�ó ì ð ô î ê õ,ö÷¥ø ò ñ ê ë ö í�ù ê ú ð û üéí è ê ë ú ù ý ì ð ô ð ú ù þ í ì ô ò ú ì í ì ò î ÿ�� ò ù ú ì ò ô � ú ê ��ò ë�í ë�� ë � ë ð ��ëï ð ë ú ò ë � ð � ù ì ê è ò ð ë��\ð û ó ð ù ò ú ò ñ ê�õ�ê í ù � ì ê÷¥ø ð í î ö � ê ú ê ì õ�ò ë ê�í�ì � î ê�ð û õ�ð ú ò ð ë�û ð ì ê í ï ��ì ð ô ð ú þù � ï ��ú � í ú í û ú ê ì û ð î î ð � ò ë è�ò ú û ð ì í�ó ê ì ò ð �� þú � ê�ì ê è ò ð ë��\ò ù�ï ð ñ ê ì ê � þ÷ ú � í ú ò ù ö û ò ë � þ û ð ì ê í ï ��ì ð ô ð ú þ í�û ê í ù ò ô î ê�ù ê ú ð û ó ð ò ë ú ù öù � ï ��ú � í ú

��� ê ì ê � � � ��ò ù ú � ê�í ì ê í�ï ð ñ ê ì ê ��û ì ð õéó ð ò ë ú � �÷�� ë�í ë ú � ì ð ô ð ú ò ï ù þ ù í õ�ê�ó ì ð ú ð ï ð î í ó ó î ò ê ù ú ð�í î î ì ð ô ð ú ùæ � ù ù � ê ù ö÷ ç î è ð ì ò ú � õ÷�� ð � ë ��ð ë�ï ð ñ ê ì ú ò õ�ê�� ò ú � üéí è ê ë ú ù þ � � ü �÷�� ð ô � ù ú ë ê ù ù ú ð�ö��� ` � � f � _�` b b c b ���� � ^ f � f ^ � e g e f g � b ` �

!"!#$

%& $(')*+ ,-, ./.00

1-12343 5 6 6 6 5743 584 9::: ;;;

Page 25: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

y z { | } ~ } { � � � � � � � � � � y � � � � z � � � � � �\��� � � � z � } z � � � � � � <

=?>A@CBEDF G�HJIJ=?>CG�K F G�L�>AL�MON�>CPQICF G´QRTSVU W S S XEYCZ X [ \ B ] S XEU W S S X�^ W Z B Z _ Z \ W Z ` W a´cb�d aEX S `/S e�f Z BCg a B g aES ` g e Z f W a g h a _ Z ^/S X Z e \ B ] e X Z f a g h Z B ij B f S _ a X a i Z X a ZTk a l ] l i \ X e m´Qn e�f Z BCg a B g a�\ B e d aEf W a Z B \ B ] Z X a ZTZ B i ZW \ e e W a�`/a o S B i lprq s tuq v�w(xzy { | sC} pr~zx��~z� � y s � � ���J�� � � � � � � � �����A��� � � � � �C��� � � � ����z���  ¡z¢ £ ¤ ¥ ¦ § ¦E¨ © ª «T¬ « ­ ® ¯ ¦ § ¦ °± ® ¨ « ¤ ¨ «T¤ ¥ ¦© ¦ « © ¨ « ²Tª § ¦ ª ³´/µ & ¶ · ¸ ·¹ º » ¼A½ · º ¾ ·E& ¸ º ¿ · ÀÁ/ ¤ ¥ ¦ § è © ¦ ³Ä Å ·E& ¶ ·E& ¸ º ¿ ·E& µTÆ º ¿ Ç & ¸ º ¿ ÇÁ ¢ £ « ® ÃE¥ ¦ § ¦�¤ ®EÈ ª ­ É ¤ § ª ­ É/³Å & µ Ê

Ë Ì Í Î Ï Ð Ï Í Ñ Ò Ó Ô Õ Ó Ö × Ø Ù Ë Ú Û × Ü Ì Ø Ö Ý Õ Þ ßCà á Ø Ò â Ì Ñ Ï Ì Ý ã ä ä å æ ç

èêéìëîíïéñðóòuô õ�öT÷ öøcùzú û ü ý þ ÿ � � �������� � ûVÿ ����������� � ü������ ÿ ��� � ÿ � � ��� ú���� � ��� ý ÿ ��! ��� û üCþ ü ý � � � ü ûVÿ ý ü�� � ü � � ý � � ü û#" � ü ��� ü ý ûø%$ü ����ÿ��& ÿ � ��' (�) *�+�) ,Cû � ü �� � þ ü ý ûVÿ ��� ü ÿ û �-+ . /0� ü ! ÿ ý ü ÿø%12� ü � ý ü ��! � ü ý ü��3547698 :�; 8 < =?> @BA�6�C D E CGF H I E D E J�K L�CGD H K H M�N O�H O E2P M E Q3SR?6�D H K H M T PUD C J N V P W X�6�Y2; :�Z [9; \ ; :�< =?>ø%]���� ü�� � � üCû � ÿ üCÿ ^ ^ ü � � ûG� � þ ü ýU� � ��ü þ�� ÿ-_

`a

bcdfe2g#h ijklnmo

Page 26: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Ë Ì Í Î Ï Ð Ï Í Ñ Ò Ó Ô Õ Ó Ö × Ø Ù Ë Ú Û × Ü Ì Ø Ö Ý Õ Þ ßCà á Ø Ò â Ì Ñ Ï Ì Ý ã ä ä å æ p

qsr�t�u v t�w�r�w�x5y�r�z%{�v t}|S~�r�t�u �

ø71�� ü ý � ú�����ý ü � � ý � ûG� ��� ��� � � ÿ �� ���� ��� �� �?� � �ø7��ÿ û � ü ýU� � ÿ �� ý ü ��� � � ü ��ú����������ø ù� �� � ��ÿ �� ÿ � ��� ûG]��f� ÿ ý ���ø�� ü � û � � � þ ü � ��� � ÿ ��� ü ûG� ��^ � ��� ý �� ÿ ���ø7������ ü ý ÿ � � þ üCú ü � ÿ þ�� � ý � ûG ý ü û ü ����ú����û ü ü ���� �� ûG� � ! ü ý��ø71�� ü ý ü û ��� � � ����� ý ÿ � ü � ûVÿ�� ��+������ � �� ) � �2��^U� � üCý ü ��� �����

� � �9�?� ��� � ���

� � � � � � � �   ¡ ¢ £ ¤ ¢ ¥ ¦ § ¨ � © ª ¦ « � § ¥ ¬ ¤ ­ ®�¯�° § ¡ ± �   � � ¬ ² ³ ³ ´ µ µ

¶¸·º¹¼»�½2¾f¿s¹

ÀÂÁ�ÃsÄ Å Æ?Ç È�É�Ê É�Ë Ì Ë Í Î Ë Ï�Ð�È�Ñ�Ò Ç Ë Ó�Ô�Õ ÖU×�Ê Ç Ê Ó�Ø�È�ÙÛÚ�Ê Ì Ü�Ë Ó�ÝÀ%Þ2ß�à�Ò Ï Î Ò Ø�Ï È�Ñ�Ò Ç Ë Ó�Ô�Î Ë Ù�Ò Ë ÍGÉ�È�á�Ó�Ø�Ò Ø�â

ã�ä#å�æ?ç è5ésê�ëë ëë�ì í�î�ï ð?ñ ò ó�ì í�î�ï ðô�õ�ö ÷ ö2ø Ë ÍGÎ ù�Ò Ù�Ê ß�Ë Ù�á�ÙÛÇ Ò Í Ë Í Î Ê Ó�Ï Ò Ë Ó�ú�ûË üUÙ�Ê Ø�Ò�È�üUÊ Ù�Ê Î Ò Ç Ë Ê Ì#Ú�Ë Î ù�á�Ó�Ë Î ý�Í ù�Ò Ò Î þ Ç Ò Í Ë Í Î Ê Ó�Ï ÒÄ Ê Ì Ú�Ê ý�ÍGÌ Ò Í ÍGÎ ù�Ê Ó�Î ù�Ò Ø�Ë Ê Ù�Ò Î Ò Ç Ö

À%ÿ�Ò Ó�Ï Ò�âÆ?Ð0Ë Í�� � � ô�ö ÷ Î ù�Ê Ó�����Ð0É�á�Î�Ù�á�Ï ù�Ù�È�Ç Ò ÷ ��� � Î ÈGâ�� �� � ��� � � � ����� � � � ��� � � � � � !� � � � � ���"#� � � $ � � � � � ��� � � � � �

À&%�á�ÇUÒ ß�à�Ò Ç Ë Ò Ó�Ï Ò�â �'��Ð)(#Æ?Ð0ù�ý�É�Ç Ë Ø�Ë ÍGÉ�Ò Í Î

Page 27: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

� � � � � � � �   ¡ ¢ £ ¤ ¢ ¥ ¦ § ¨ � © ª ¦ « � § ¥ ¬ ¤ ­ ®�¯�° § ¡ ± �   � � ¬ ² ³ ³ ´ µ *

+',�-#.�/#-10 2 314!5�67-#8:9�5 0 8!;<7=�=�-1/)>�.!9�?�@�8A.!?B31.!C�-#/)0 2 D&-)>�EF4!?�0 G H�4�5 I�8

J KML Ê Ä Ô�Ò Ö Ó�Î Í û ø K Ç Ò Í Ë Í Î Ê Ó�Ï Ò ûON K à�Ò Ç Ë Ù�Ò Î Ò Ç ûP KML Ñ�Ò Ç Î Ë Ï Ò Í ûRQ KML Ò Ø�Ô�Ò Í û&S K Ø�Ë Ê Ù�Ò Î Ò Ç û)T K ü Ê Ë Ì á�Ç Ò à�Ç È�É�UV K Î È�Î Ê Ì#Ê Ç Ò Ê ûBW K Ç È�É�È�Î X Í�Ê Ç Ò Ê û ÷ K Ç È�É�È�Î X ÍGÇ Ê Ø�Ë á�Í

Y ZM[ \:] ^ _ ` a b[ \c] ^ _d e d fghY i] jckml n o [ \c] ^ _p q r s tumvwh

x e d p s d y y z

{#| [ } k ~ _ ] [ } � ~ _f � � f ��cv#�� | [ } k ~ _ ] [ } � ~ _� f q p s x f ��#v#�

� q r ���

� � ������ � �:� ��� � � � � � � �:�� � ��� � �

� � � � � � � �   ¡ ¢ £ ¤ ¢ ¥ ¦ § ¨ � © ª ¦ « � § ¥ ¬ ¤ ­ ®�¯�° § ¡ ± �   � � ¬ ² ³ ³ ´ µ �

�����m�A���� '�m¡�½£¢ ¤¦¥§�� 

¨ Ò�Ò ß�Ê Ù�Ë Ó�Ò Ø�Î Ú�È�Ú�Ê ý�ÍGÎ È�Ë Ù�à�Ì Ò Ù�Ò Ó�Î�Ò Ñ�Ê à�È�Ç Ê Î Ë Ó�Ô�Î Ç Ê Ë Ì Í?âÀª©�Ë Ç Î á�Ê Ì�Î Ç Ê Ï Ò ÍGË Ó�Ç È�É�È�Î X Í�Ù�Ò Ù�È�Ç ý2â����Ð0Ç È�É�È�Î#Ú�Ë Î ù�ü Ë Ø�á�Ï Ë Ê Ì ÍÄ «�¬�­�Ê É�û�ÐA¬�®�Ò à�Î U û¯�Ò Ï ù�Ó�Ë È�Ó�Ö

À Þ2Ñ�Ê à�È�Ç Ê Î Ë Ó�Ô�Ì Ë °�á�Ë Ø�È�Ó�Î ù�Ò ü Ì È�È�Ç�â©�� ¨ Ç È�É�È�Î�Ú�Ë Î ù�Ò Ñ�Ê à�È�Ç Ê Î Ë Ó�Ô�Î Ç Ê Ï Ò ÍÄ � Ò Ï ù�Ê Î Ç È�Ó�Ë Ï Í�­�Ê É�û� Þ±®�Ò à�Î U û¯�Ò Ï ù�Ó�Ë È�Ó�Ö

Page 28: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

� � � � � � � �   ¡ ¢ £ ¤ ¢ ¥ ¦ § ¨ � © ª ¦ « � § ¥ ¬ ¤ ­ ®�¯�° § ¡ ± �   � � ¬ ² ³ ³ ´ µ ²

¶¸·º¹³���� '�m¡)´µ�·¶�� �f½#�&� �m��¸

¹ º » ¼ ½ ¾ ½ » ¿ À Á Â Ã Á Ä Å Æ Ç ¹ È É Å Ê º Æ Ä Ë Ã Ì Í!ÎÏ Æ À Ð º ¿ ½ º Ë Ñ Ò Ò Ó Ô Õ

ÖØ×�Ù7Ú ÖØÛÜ ÝÞ×�ßMàmÙ�áâã Ü ä1å�áæMáç1è ßmç éMã!ê ëmì!Ûæíïî�ðwñ�ò ó ô�ó õö ÷�ø î�ð1ùwú ô�û ü ý þ ÿí���þ ó �!ý õ ò � ú � ò ý ý�� û � � û õ � ó � � ü � � � ý � � � � � � þ � � � û � üû � þ��!ý �!ó ò � � ý þ��!û ò � � � ü

í���� õ ������ � � ��� � ! " # � $ %'&(�" � $ ! ��)*� + , - &.�� / � !*(�� 0 1 &�21 0 � '3 � 1 � � � 4

Page 29: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

5 6 7 8 9 : 9 7 ; < = > ? = @ A B C 5 D E A F 6 B @ G ? H I�J�K B < L 6 ; 9 6 G M N N O P Q

R S R T U V W V X Y Z X [ \ ] ^ _ ` Wa bdc e fhg'i j k�ldc m�j k n o j p q�r�p s�t c u i c n v2j w2x2p e p k2yzr�{ |�l j } u i ~

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ����� � � � � � � � � � � � � � �

��� ��¡2¢ £�¤�¥ � �

¦�§�¨ª©�«¬§�¨®­d¯�°²±³§�´�µ ¶·´¸­�¹ º�»�¼*½ ¾ ¿�ÀÂÁÃÁ ¿2»�ĸ¾ ¿�Å­�°2Æ�­�¯2¾ ­�ºdÅ�Á »dÇ�§�¯�¾�´h»�Æ�Å*¼*½ ¯2º�©�´�È�É*¹ ½ ¯�ºÊ­�¯�°¶·­d¾ ¼*»�¹ ¹ ½ ¯�ºdË

ÌÎÍÐÏ�Ñ�Ò Ó Ô Õ×Ö Ø Ô Ù Ú×Ï�Û×Ù�Ü×Ï�Ý Ô Ù Ô Ï�Õ×Ô Õ×ÖÌÎÞÐÛ×Ù Ï*ßáà�Ù Ô â ã*ßáÏ�ä×Û×å à�Ó�â Ï*Ï�Ü×Ò Ó à�Ù Ô Ï�ÕÌÎæ×Ô ßáÜ×å Ô â Ô Ù çÃÒ Õ×à�è×å Ò Ý�Ó Ò ä×Û'Õ×ä×à�Õ×â çÃà�Õ×äéÓ Ï�è×Û×Ý Ù Õ×Ò Ý Ý Ù Ï

Ý Ò Õ×Ý Ô Õ×Ö Ò Ó Ó Ï�Ó Ý ã�Ó Ï�è×Ï�Ù�ê à�Ô å Û×Ó Ò Ý�à�Õ×äéÒ Õ×Ñ�Ô Ó Ï�Õ×ßáÒ Õ×Ùdâ Ú×à�Õ×Ö�Ò ÝÌÎëÐÒ Ù�ìÃßáà�Õ×ç í×Û×Ò Ý Ù Ô Ï�Õ×Ý�à*Ó Ò�Ý Ù Ô å å'Ï�Ü×Ò ÕÂî

Page 30: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ����� � � � � � � � � � � � � � ï

ðÐñ¬òôó³õ�öÊó·÷ùø�úÊó·û ü*ý ñé÷Êû

Ìÿþ²Û×å Ù Ô �ÐÏ�è×Ï�Ù�� ��� � ��� ��� Ü×Ü×Ò Ó·è×Ï�Û×Õ×ä×Ý�Ï�Õ��� � �2ê Ï�Ó��2Þ�� ã��ÐÞ�� à�Õ×äéþÂÞÐÍ

Ì���Ú×Ò�Ò ê ê Ò â Ù�Ï�ê�� � ����������� � � â Ú×Ï�Ï�Ý Ò�Ù Ú×Ò�Õ×Ò ��Ù�Ý Ù Ò ÜéØ Ô Ù ÚáÜ×Ó Ï�è×à�è×Ô å Ô Ù ç� Ô Õ×â Ó Ò à�Ý Ò·Ó Ï�è×Û×Ý Ù Õ×Ò Ý Ý�Ù ÏÃÕ×Ï�Ô Ý çÃÝ Ò Õ×Ý Ï�Ó Ý! �"

ÌÿÞÐÜ×Ü×å çÃÙ ÏÃßáÏ�Ó Ò·â Ï�ßáÜ×å Ò �#��� ��$�% � ��� Ò & Ö�&�à�Ý�à�Õéà�Õáà�Ü×Ü×Ó Ï�à�â ÚéÙ Ï â Ï�Ï�Ü×Ò Ó à�Ù Ô Ñ�Ò�Ü×Ó Ï�è×å Ò ß Ý Ï�å Ñ�Ô Õ×Ö' ( ) * * + , + - .�* , / 021 34- .657/ 8 / - 9;:4< . ) 0;) = > . ) / - ?!' 3457:4@ A * / B - ( + (!C 9 AD / , ) E /!+ .�> 8 A B F ) - E!B F +�E 8 / CG> 8 H - / I78 + ( E + @

Ìÿæ×Ú×à�Ü×ÒKJ ��� ��� L M ��� è×Ó Ô Õ×ÖÃÙ Ú×Ò·Ö�Ó Ï�Û×ÜéÙ Ï àÃä×Ò Ý Ô Ó Ò äáâ Ï�Õ×ê Ô Ö�Û×Ó à�Ù Ô Ï�Õ×ãØ Ô Ù Ú×Ï�Û×Ù�â Ò Õ×Ù Ó à�å*â Ï�Õ×Ù Ó Ï�å

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ����� � � � � � � � � � � � � N O

ðÐó�P ó�Q·ü'ó�RTSÂú2U2P ý Q�Véü*ý ñé÷Êû

WYX�Z [K\ Z ]�^ _ \ \ ` ^ a b c�b d d e�c d�c \ ` ^ a f Z \ ^ _ g!_ a h ]!ij k�l m;l n o p q r s t u v w x m;y t z u {|y t v q y } ~ w t u } } v � u w q u oG� � � � �W�� �4] b b ^ c�^!h d ���6� \ ^ \ a d _ ^ b ` ] c d � ` h ]|�

^!b ] c c d _!��]�h ^ _!b ] ^ ` _ � ` d ��\ Z ]|^ _ \j ~ l k�l �Ky � w u o x m;l � v w � u w � y p {|x k�l m!l n o p q r s t u v w x ~ � � �G��� � � � �W��|�4� �4���4� fG] � _ \ c � �7] \ ��d ` e c �G� ` ] ] c�^ _ g4� � � f ` ^ ��Z cj ~ l k�l �Ky � w u o x m;l � v w � u w � y p {|x k�l m!l n o p q r s t u v w x � �6�G�6�       �W¢¡K�7£�¤ c ¥ ¦�£#§ ¨;] \ ] ` �4a _ a c �©^ _ g4ª6^ _ g d �7_ ] c c�^ c�£|d ���|b ] �4] _ \ ^ ` [�G� �6` d ^ h Z ] c�\ d7ª|d � d \ a h|«G¬ �6b d ` ^ \ a d _!d �!£|d _ \ a _ � d � c!­6_ e _ d �|_�¨;d �7^ a _ c® ~ l k�l �Ky � w u o x m;l � v w � u w � y p {|x k�l m!l n o p q r s t u v w x�~ ¯ °G°!�       �

W��#¨;a c \ ` a � � \ ] g���_ \ ��b fGd ` a \ Z �;� d `�« � � a h a ] _ \ b [!¦6^ \ ` d b b a _ fK^��4] \ ��d ` ej ±�l ²�y w ³ ´ s r v x ~ l k�l �Ky � w u o x k�l m!l nGo p q r s t u v w x kGµ�� � ¶ �       �W 34- - > 8 F6/ *G·©> . ¸ + 0;> . ) ¹ F|> - (;34, . ) * ) ¹ ) > 8 º - . + 8 8 ) E + - ¹ + A» ¼ ½ ¾ ¿ À Á ¿   à ½�Ä Å ��_ \ ª|d � d \ a h c® ~ l k�l �Ky � w u o x k�l m;l nGo p q r s t u v w�Æ6ÇG� v t ³ o s x �     � �

È�ÉGÊ Ë�Ì Í Í Î Ï Ì ÐGÑ6Ò�ÓGÔ Õ�Ö Ð × Ð Ø Ù Í × Ú Û Ü Ï Ý Þ Î Ø Ý Ð Ê Ì ß Þ Ð Û × Ì Í Ì Î Ê Ë�Ð Ê à Ï Ý Ê Í Ì Ý Ñ6Û Ï Î Ø Ð × Ì áâ ã ã ä6å æ æ ç�ç�ç6è é ê è ã ë é â ì í î ì è ï é è í ð æ ñ çGï ò ì ë ó æ

Page 31: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

David PaytonRichard VaughanHRL LaboratoriesUSA

Page 32: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2/18/2003

1

Virtual Pheromone Robotics

[payton,vaughan]@hrl.com

David PaytonRichard Vaughan

OverviewWe seek the benefits of Ant Algorithms while using more convenient robot communications technologyWe describe two systems that perform realistic tasks in unknown indoor environments

1. An ant-like resource transportation team2. A swarm of simple robots that locates a target Both use conventional comms (serial IR and

802.11 wireless) to create environmental gradients

Page 33: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2/18/2003

2

System 1: Ant-like Resource transportation

Team of N robots starts from a `home’ location A in an unknown environmentExplore to find supply of resource at BCarry resource home and return for moreExemplified by foraging of ants & bees

Insect trail-following

Ants lay & follow directional chemical trails -stigmergyHoney bees communicate parameters of successful missions to their sisters Pros: adaptive, robust, distributed, scalableCons: not necessarily optimal, emergent, tricky mechanism

Page 34: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2/18/2003

3

Trails in localization spaceAbstract away the chemical trailCommunicate landmarks in shared localization spaceWill work as long as localization spaces are correlated to within the system’s noise tolerance Pros: adaptive, robust, distributed, scalable + lightweight, simpleCons: not necessarily optimal, robots must be localized (not trivial indoors, but many options exist)

Crumb trailsA crumb is a landmark/signpost in localization space, indicating the direction to move nextTrail represented by a linked list of “crumb” data structuresEach crumb contains:

a position (x,y)a suggested heading θa timestamp t

Page 35: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2/18/2003

4

Trail laying algorithm

Obstacle

Trail reading algorithm

Robot

Suggested movement = vector sum of crumbs within sense radius

Page 36: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2/18/2003

5

Simulation study

Trail following outperforms random walk and directed searchTolerates significant localization errorEmergent resistance to interference

Whistling in the Dark: Cooperative Trail-Following in Uncertain Localization SpaceVaughan, Stoy, Sukhatme & Matarić, Proc.Int.Conf Autonomous Agents 2000

Real world evaluationTransfer the earlier results to real 4 x Pioneer 2 robot team in a structured environmentUse trail-following with a different, specialized local navigation controllerCommunicate via wireless ethernet using UDPLocalize using odometryHow quickly will real-worldodometric drift cause system failure?

Page 37: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2/18/2003

6

ResultsFour robots ran for 27 mins, completing 28 round trips of 60m each (total 1.68km) before accumulated odometry errors defeated system.The 4 robots performed 3 times better than a single ideal-performing robot.

1 2 3 4

Self-correcting trailsRobots agree on a set of task-relevant events (e.g. get-resource, drop-resource)A crumb is a landmark/signpost in localization space, indicating the distance to a goal eventEach robot announces a crumb on the network every T secondsReceived crumbs stored in a linked list, representing a ‘trail’Each crumb contains:

an event name Ea position (x,y)a distance-to-event estimate da timestamp t

Page 38: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2/18/2003

7

Using the trail

Suggested movement = towards the crumb within r with lowest distance-to-goal

Results

“LOST: Localization-Space Trails in Robot Teams”, Vaughan, Stoy, Sukhatme & Mataric, IEEE Transactions on Robotics and Autonomous Systems18:5 2002

Page 39: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2/18/2003

8

Resource transport summaryDemonstrated cooperative search and transport

4 robots traveled 8.2km (5.1 miles) over 3hrs 10mins until batteries or other hardware failed

The trail laying/following methodis robust wrt. real-world odometry errorscales to N sources, M sinks, O population is independent of navigation strategy: therefore independent of robot hardwareBuilds just enough world model for stigmergyhas low computation and bandwidth requirements (16 bytes/second per robot)

T

T

System 2: Swarm finds hidden target

TT

Deployment Dispersion Detection

Pheromone Propagation

Path Visualization

Page 40: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2/18/2003

9

Key ThemesIR Virtual Pheromones

a message protocol that emulates pheromone diffusionrobot behaviors based on attraction & repulsion to gradients

World Embedded Computationthe structure of a distributed computation is directly entailed by the environment

World Embedded Displayrobots distributed in the environment become pixels contributingto a larger overall picture

Dispersion With Pheromone Propagation

Target

Pheromone messages propagate when

target is detected

Arrows show shortest path to target

Page 41: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2/18/2003

10

IR Virtual PheromonesPheromone

Source

Pheromone Relay

decrement pheromone strength

ignore packets of lower pheromonestrength

The virtual pheromone is inspired by properties of chemicalpheromones used by social insects such as ants and termites.

Facilitates emergent coordinatedactivity of thousands of

cooperating agentsyes

Sender needs not know identity ofrecipient

yes

Sender needs no acknowledgementof message receipt

yes

Information conveyed throughintensity gradients

Yes, but by using intensity-taggedmessage packets

Propagation is sustained passivelythrough the environment

Propagation is sustained by activerelaying between robots

Different chemical types neededfor different messages

Messages may be tagged withadditional data

Chemical Pheromones Virtual Pheromones

Directional IR Digital Receiversmodified to provide signal strength output

Directional IR TransmitBeacons(under each receiver)

CommunicationsPIC

Transceiver Hardware

MAPSINGLE

PROCESSOR

RESULT

MANYMOBILEPROCESSORS

RESULTS

WORLD

WORLD

World-Embedded Computation

The structure of the computation is entailed by the structure of the

environment itself.

Many complex graph-theoretic algorithms can be performed without creating an intermediate representation. The world is its own map.

The computation remains the same,

only the data is changed.

ABSTRACTION

DISPERSION

CONVENTIONAL

WORLD-EMBEDDED

Page 42: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2/18/2003

11

TT

World-Embedded Computationof Dijkstra's Algorithm

Dispersed Robots

T

1009998979695

94

93

92

Pheromone Wave Front

Local Gradient Points Toward

Objective

0/2

1/2

1/1

2/1

2/0

T1

T2

T1

T1

T2

T2T2

Using Multiple Pheromone GradientsOverlapping pheromone wavefronts allow each robot to determine which target is nearest.

Page 43: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2/18/2003

12

Multiple Gradients to Find Choke Points

TS

T

S

T

S

T

S

Opposing pheromone gradients drive robots toward median

User’s View Through Display

World-Embedded DisplayInformation about the environment can be conveyed to the user even though robots have no explicit maps of their locale.

Enemy 30m

Enemy 55m

Camera

Blinking Beacon

on Robot

See-ThroughDisplay

Labels andInformation

User’s View

Augmented-Reality System

Page 44: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2/18/2003

13

Augmented Reality MastTransmits 8 distinct codes in 8 directions

Codes convey a gradient arrow that retains constant orientation from any viewing angle

Augmented Reality HMDVirtual IO Display uses Pencil Cam For Tracking IR

User Sees Virtual Pheromone Vectors Overlaid Over Real World

Page 45: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2/18/2003

14

Commanding Robot SwarmsCommand Pheromone allows switching between different control systems

PDA

PDA

Narrow Infrared

Wide Infrared

• Commanding Individual Robots

• Commanding Swarms

Aim Beam with Laser

Command is not Propagated

Robots Propagate Command to Neighbors

Controlling DispersionThe handheld beacon triggers remote robots to halt and emit a repelling pheromone, creating a barrier to other robots

Barrier Pheromone

Page 46: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2/18/2003

15

Reinforcing pheromones reduce false positives in detecting an intruder.

Multi-Sensor Detection From Combined Pheromones

Motion Detector

Sound Detector

ConclusionWe introduce Virtual Pheromones:

frequent, small packets of data encoding a ‘distance’propagated via an artificial mediumimplement parallel, local, gradient-based algorithms

Our systems demonstrate how VP can create coordinated global behavior in teams/swarms of robotsThe example systems are very different

Broadcast vs. line-of-sight commsAnt algorithm vs. Dykstra’s algorithmAbstract (localization) space vs. world-embedded

The VP technique:Combines attractive features of Ant Algorithms with convenient communications technologyExtends to non-ant algorithms

Page 47: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Andrew RussellMonash UniversityAustralia

Page 48: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

1. Ant robot hardware

In order for a robot to be able to work with physical chemical trails it will require asensor system to detect and accurately determine the location of chemical markings on

the ground. The robot will also need the means to deposit volatile chemicals in acontrollable way.

1.1.2 Tin oxide sensors

There are many sensors that respond to volatile chemicals. However, very few aresuitable for use in robotic applications. Taking into account physical size, response time,

sensitivity, cost, robustness, and power consumption, three technologies are commonly

used in robotics. Probably the most convenient of these chemical sensors are those basedon the changing conductivity of tin oxide.

1.1 Chemical sensors

Tin oxide sensors are available commercially. They are inexpensive, small in size, easy

to interface and the latest miniature devices made by thick-film technology have

relatively low power consumption. Some research groups have manufactured their ownsensors. The tin oxide sensor element is heated to about 300˚C where the presence of

reducing gasses causes a drop in sensor resistance. Sensitivities of the order of 1 ppmare claimed and sensors have been developed with responses optimized for solvents,

halocarbons, and a range of combustible gasses. The relationship between sensor

resistance and the concentration of detected gas is non-linear. Over a limited range ofconcentrations this relationship can be approximated by (Watson, 1984):

R≅ KRoCα (1.1)

where

α = sensitivityR = sensor resistance on exposure to target chemical

Ro = sensor resistance in clean air

K = scaling constant

C = concentration

As shown in Figure 1.1, a simple potential divider provides a signal that can be directly

digitized by an analogue to digital converter.

Page 49: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Figure 1.1 Circuit to energize the Figaro TGS800 air quality sensor (redrawn from

Figaro advertising material).

1.1.2 Quartz crystal microbalance

Quartz crystal microbalance sensors use a quartz crystal as a sensitive balance to weigh

odor molecules. A chemical coating on the crystal is chosen to have a specific affinityfor the target odorant molecules. When air containing molecules of this odor is drawn

over the crystal some of the molecules become temporarily attached to the coating. Thisincreases the effective crystal mass and lowers its resonant frequency. A simple model

proposed by Sauerbrey predicts the effect of small amounts of added mass (Lu, 1984):

∆f = −2 f 2∆m

ρv(1.2)

where:∆f = change in crystal resonant frequency

f = crystal resonant frequency∆m = increase in mass of the crystal per unit area,

ρ = density of crystal materialv = velocity of sound waves in the crystal material

A crystal coated with silicone OV-17 and camphor as target odorant provide a good

combination for robotics experiments (Deveza, et al. 1994). However, a wide range of

different coatings have proved useful. Here is a list of coating materials given byMoriizumi, Nakamoto, and Sakuraba (Moriizumi, et al. 1992):

• dioleyl phosphatidylserin,

• sphingomyelin (egg),• lecithin (egg),

• cholesterol,

• polyethylene glycol,

Page 50: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

• ethyl cellulose, and• acetyl cellulose.

For the quartz crystal microbalance frequency shift is reported to be proportional to target

odorant concentration. The circuits shown in Figure 1.2 produces a digital output at thedifference frequency between a reference 10MHz oscillator (SG351P) and the sensor

oscillator (HA7210IP). The low-pass filter on the output of the SN74HC74 removes

spurious high frequency transitions caused by metastable failure.

Figure 1.2 Quartz crystal microbalance sensor circuit.

1.1.3 Conducting polymer sensors

Conductive polymers have also been used to make chemical sensors for use in robotics.A cheap and safe method of making polypyrrole has been developed using

electrochemical polymerisation of pyrrole between a pair of electrodes. The materialsand processing techniques used to make conductive polymer sensors are cheap and

readily available. Conductive polymer sensors are also easy to use for robotics

applications being very small in size and exhibiting a substantial resistance change onexposure to volatile chemicals. Typical device exposed to methanol produced a 14%

change in resistance with a response time to go from 0 to 95% of the final value of 24seconds. However, there are problems of consistency between sensors and of stability

and aging. The circuit shown in Figure 1.3 converts a change is sensor resistance into avarying frequency output. There is no d.c. component in the voltage across the polymer

sensor.

Page 51: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Figure 1.3 Conducting polymer sensor oscillator.

1.2 The control of airflow

Ants detect pheromone markings by tapping their antennae on the ground. At the

interface between a solid surface and a fluid there is a thin layer of fluid that is essentiallyimmobile. Volatile chemicals can only pass through this layer by a process of diffusion.

The relatively slow rate of diffusion means that the chemicals within this layer ofstagnant air do not move very far parallel to the surface and remain close to the source.

When the ant's tapping antenna penetrates the stagnation layer it can gather reliable

concentration readings for localizing the chemical markings. Larger scale robots measurechemical concentration at a much greater distance from the surface where local airflow

can affect the measurements.

The fluid flow simulation shown in Figure 1.4 demonstrates that air drawn over a sensorcrystal can originate some distance from the sensor inlet. In this case the sensor system is

very poor at localizing chemical markings on the ground.

Figure 1.4 A simulation of airflow around an aspirated sensor. Four chemical particles

originate on the ground below the sensor and four others are carried towards the sensor

by a current of air travelling left to right.

Page 52: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

When a chemical sensor moves up-wind towards a chemical marking on the grounderroneous results are produced as the chemical is detected well before the sensor arrives

at the trail (Figure 1.6). A solution to this problem has been developed which involvesproviding an air curtain surrounding the sensor inlet. This establishes an outward current

of air that prevents external chemical getting to the sensor inlet. In Figure 1.5 a fluidflow simulation shows that the air curtain deflects chemical carried towards the sensor by

an external airflow.

Figure 1.5 Simulation of the effect of an air curtain around the sensor inlet. Chemicalparticles introduced on the left-hand side are excluded from the sensor.

The improved localization capability of the air-curtain sensor is demonstrated in Figure

1.6. Once again the sensor approaches a chemical marking in an up-wind direction. Inthis case the sensor does not respond to the chemical until it is close to the marking.

Page 53: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Figure 1.6 Response of a quartz crystal microbalance sensor with and without air curtainapproaching in an up-wind direction and then passing over a camphor trail at 0.2 cm/sec.

1.3 Laying chemical trails

A simple solution for depositing chemical markings on the ground is based on a felt-

tipped pen (Russell, 1999b). As shown in Figure 1.7, a plug of felt is soaked in themarking chemical (camphor dissolved in ethanol in this case) held in a reservoir. A

motorized cam lowers the pen to the floor when a trail is to be deposited.

Figure 1.7 A simple chemical applicator.

The felt-tipped pen applicator is simple but has the drawback that there is no control overthe quantity of chemical deposited. By using the metered pump arrangement shown in

Page 54: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Figure 1.8 there is much more control of the deposition of chemical and the supply ofchemical can be completely cut off which is not possible with the simple applicator.

Figure 1.8 Metered camphor applicator.

References

Deveza, R., Thiel, D., Russell, R.A. and Mackay-Sim, A. 'Odor sensing for robot

guidance', The International Journal of Robotics Research, Vol. 13, No. 3, June 1994,pp. 232-239.

Lu, C., 'Theory and practice of the quartz crystal microbalance', in Applications of

Piezoelectric Quartz Crystal Microbalances, (C. Lu and A.W. Czanderna eds.), Elsevier,

1984, pp. 19-61.

Moriizumi, T., Nakamoto, T. and Sakuraba, Y., 'Pattern recognition in electronic nosesby artificial neural network models', in Sensors and Sensory Systems for an Electronic

Nose, J.W. Gardner and P.N. Bartlett (eds.), Kluwer Academic Publishers, 1992, pp. 217-236.

Russell, R.A., 'Laying and sensing odor markings as a strategy for assisting mobile robotnavigation tasks', IEEE Robotics and Automation Magazine, September 1995, pp. 3-9.

Russell, R.A. Odour Sensing for Mobile Robots, World Scientific, ISBN 981023791X,

217pp. 1999b.

Page 55: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Watson, J., 'The tin oxide gas sensor and its applications', Sensors and Actuators, Vol. 5,1984, pp. 29-42.

Page 56: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2 Ant robot software

Mobile robots are being employed in increasing numbers as a means of transportingmaterial and partly finished assemblies within factories. Such robots are known as

automated guided vehicles (AGVs) and most find their way around by following somesort of permanent guide path such as a reflective tape or buried wire. Chemical trails can

serve a similar purpose by acting as a short-lived navigational marker. However, the

characteristics of the available chemical sensors means that care must be taken indeveloping the method of trail following. A number of research groups have formulated

algorithms to allow a robot to track a chemical trail.

2.1 The robot vehicle Sauro

At the Instituto Elaborazione Segnali ed Imamagini in Bari, Italy, Ettore Stella and co-

workers have built a chemical trail following robot that uses alcohol as a chemical markerand conductive polymer sensors to detect the trail (Stella, et al. 1995). This vehicle,

called Sauro, uses a pair of chemical sensors spaced 10 cm apart and located 1 cm abovethe ground to follow a 15 cm wide felt strip soaked in alcohol. The control algorithm

consists of starting the vehicle with both sensors over the felt strip. As the robot proceeds

it might deviate sufficiently that one sensor loses contact with the strip. The resulting fallin response from the sensor causes the robot to turn to bring the sensor back onto the tape

(Figure 2.1). Using this algorithm Sauro has been able to follow the tape with a trackingspeed of 60 mm/sec.

Figure 2.1 The robot Sauro follows a chemical trail using two sensors.

2.2 Robot control by neural network

Barbara Webb from the University of Nottingham investigates neural control in animals.

By implementing the control schemes using mobile robots the capabilities of the schemes

Page 57: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

can be tested. In the area of chemical sensing Webb has developed a neuron model of antosmotropotaxis (pheromone gradient following) and tested it using a small mobile robot

built from Lego bricks (Webb, 1998). On this robot two Figaro chemical sensors playedthe part of the ant's antennae. The output from each chemical sensor was processed

through seven neurons to produce a temporal difference signal. Difference values fromleft and right sensors were then combined with a speed signal to drive the left and right

wheel motors. The result of this was to turn the robot towards higher chemical

concentrations and away from lower concentrations. Unreliable chemical readingscaused by air movements were stated to be a problem in these experiments.

2.3 Ant-like trail following

The trail-following algorithm employed by the ant Lasius fuliginousus seems to be verysimple (Hangartner 1967). The normal mode of trail following for the ant is to curve to

the left until the right antenna detects the trail and then to curve to the right until the leftantenna contacts the trail. In this way the ant maintains the trail between its two

antennae. An important feature of the ant's tracking algorithm involves turning backtowards the trail after an extended period even if the appropriate antennae does not detect

the pheromone (see Figure 2.2). This prevents the ant walking in circles when it loses the

trail. Instead the ant moves forward in the general direction of the trail sweeping widelyto left and right which gives a good chance of picking up the trail again. The following

algorithm was derived from this and implemented on a six-legged robot having twochemical sensors mounted ahead of the robot simulating antennae (Russell, 1999a).

• Take 8 paces bearing to the right until completed or until trail detected by theleft antenna.

• Take 8 paces bearing to the left until completed or until trail detected by theright antenna.

• Repeat

(If the left sensor detects the chemical trail then the sequence of 8 paces to the left is

started or restarted and stimulation of the right sensor starts or restarts the sequence of 8paces to the right)

Page 58: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Figure 2.2 Robot trail following based on the ant Lasius fuliginousus.

2.4 Trail following with a single sensor

If the ant Lasius fuliginousus has a damaged antennae then the algorithm described abovewill still allow it to follow a pheromone trail with its remaining good antennae. A

modification of this 'one antennae' algorithm is effective in guiding a mobile robot along

a chemical trail (Russell, et al. 1997). In order to find the trail the robot moves forwardsin a straight line ('u' in Figure 2.3). Upon detecting the trail the robot continues moving

straight forwards 'v' to cut across the trail. The slow recovery of the chemical sensormeans that edge of the trail is not detected until the robot is 'w' past the true edge. The

robot then follows the left-hand edge of the trail using the following algorithm:

• Starting away from the odor trail, rotate 'x' until the edge of the trail is detected . Once

again the slow response of the sensor means that the robot moves past the edge.• Rotate a fixed distance 'y' away from the edge of the trail.

• Move forward a fixed distance 'z' .• Repeat

This algorithm has been developed to ensure that the chemical sensor is given the maximum

time to recover after being exposed to the chemical trail. After detecting the chemical thesensor is moved clear of the trail by quickly rotating distance 'y'. The robot then waits at this

point until the sensor reading has returned close to its clean air reading before continuing.

Page 59: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Figure 2.3 Following a chemical trail with a single sensor.

If a robot has the ability to lay and to detect chemical markings it is possible to formulate

a number of generic applications for this technology (Russell, 1999b).

2.5 Virtual umbilical

A mobile robot may be required to explore a partially known or unknown environment. This

could be the site of an accident where no accurate maps are available or where an explosion hasdamaged the building. It would usually be essential that the robot finds its way back to the

starting point at the end of its mission. If the robot paid out an umbilical cable on the outward

journey it could follow the cable to return to its starting point. However, umbilical cables tendto snag and the equipment to pay out and retrieve an umbilical is bulky and cumbersome . The

navigational effect of the cable can be gained by laying a trail of volatile chemical as illustratedin Figure 2.4. To return to its starting point the robot simply follows the trail it has laid.

Following the trail will be made more difficult if the trail crosses itself or if the trail is crossedby the trail laid by another robot.

Figure 2.4 Finding the way back to the starting point - the virtual umbilical

Page 60: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

2.6 Repellent marking

Many useful applications of mobile robots involve sterilizing, cleaning or searching large areas

of floor. Floor area which has already been covered can be marked with a volatile chemical.The robot will avoid the marked areas and concentrate on new areas which have not been

covered. Thus large areas can be cleaned, sterilized or searched without the need for accurate

localization of the robot. A spiral area coverage technique using a repellent marking isillustrated in Figure 2.5. To start with the robot tracks around the room keeping its left side to

the wall. When the robot meets the chemical trail it changes to keeping the trail on its left side.In this way the robot spirals in towards the center of the room covering all of the floor area. For

complicated or cluttered rooms this basic algorithm will require further development.

Figure 2.5 Efficient area coverage - the repellent marking

2.7 Pathfinder

One robot may lay a trail of volatile chemical in order to pass information to other robots. If alarge quantity of material is to be transported a pathfinder robot could establish a clear path

from the start to the goal. The path finder robot would be equipped with a range of sensors andthe 'intelligence' to find a clear path through a cluttered and changing environment. This robot

lays a trail of volatile chemical to mark its path. The bulk of the material is then transported by

simple slave robots which only have sensors to follow the chemical trail and a proximity sensorto avoid bumping into the robot in front if it slows down. In Figure 2.6 the pathfinder robot is

labeled 'A' and the slave load carrying robots 'B' and 'C'.

Page 61: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Figure 2.6 Marking a trail for others to follow - the pathfinder.

Is also envisaged that chemical markings could be used to warn of nearby hazards or torecruit individual robots from a circulating swarm of robots so that they can provide

assistance with some task

References

Hangartner, W. 'Spezifität und inaktivierung des spurpheromons von Lasius fuliginosus

Latr. und orientierung der arbeiterinnen im duftfeld', Zeitschrift für vergleichendePhysiologie, Vol. 57, 1967, pp. 103-136.

Russell, R.A., 'Ant trails - an example for robots to follow?' Proceedings of the IEEE

International Conference on Robotics and Automation, Detroit, Michigan, May 1999a,

pp. 2698-2703.

Russell, R.A. Odour Sensing for Mobile Robots, World Scientific, ISBN 981023791X,217pp., 1999b.

Russell, R.A., Thiel, D. and Mackay-Sim, A., 'Recruiting swarm robots using coded

odour trails', Proceeding of the International Conference on Field & service Robotics,

Canberra, 8-10 December 1997, pp. 472-476.

Stella, E., Musio, F., Vasanelli, L. and Distante, A., 'Goal-oriented mobile robotnavigation using an odour sensor', Proc. 1995 Intelligent Vehicles Symposium, pp. 147-

151.

Page 62: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Webb, B., ‘Robots, crickets and ants: models of neural control of chemotaxis andphonotaxis’, Neural Networks, Vol. 11, No. 7-8, October/November 1998, pp.1479-

1496.

Page 63: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

3 Actual implementations

3.1 Implementing the Lasius fuliginousus algorithm (Russell, 1999a)

To provide an approximation to the form of an ant a six-legged robot vehicle has beenconstructed. This robot is based on Genghis, a walking robot developed at MIT (Brooks,

1989). Each of its six legs has two degrees of freedom and is actuated by radio control

servo's. Total length of the robot is 22 cm. For the implementation of the Lasiusfuliginousus algorithm two chemical sensors positioned 10 cm ahead of the robot and 13

cm apart simulate the pheromone sensing capabilities of the ant's antennae. A 68HC11microcontroller generates the walking action of the robot, monitors the two chemical

sensors and implements the Lasius fuliginousus algorithm. Figure 3.1 shows a

photograph of the robot.

Figure 3.1 The ant robot showing its two chemical sensing antennae.

One of the important advantages of the Lasius fuliginousus algorithm is the ability to

accommodate large gaps in the chemical trail. This is not surprising because thepheromone trails produced by biological ants are made up of many discrete odor patches

and probably have regular gaps. To test the capabilities of this algorithm a camphor trailwas laid on the floor consisting of a 55cm straight section, a gap of 40 cm and then a

further straight section finishing with a curve. The ant robot successfully followed thecamphor trail in both right to left and left to right directions. Figure 3.2 shows the

trajectory of the robot.

Page 64: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Figure 3.2 The ant robot track as it follows a chemical trail from right to left and left toright.

3.2 Following chemical trails with a single sensor (Russell, et al., 1997)

For trail following experiments using a single chemical sensor it is possible to use a robotthat is much smaller than the 6-legged ant robot. A chemical sensing robot was designed

around the 10cm diameter RAT robot. The Reactive Autonomous Testbed (RAT) robotwas designed to be sufficiently inexpensive that a new robot could be built for each

experiment. The entire robot costs less than the price of one small precision electric

motor. An air-curtain chemical sensor incorporating a circular printed circuit board fanis mounted on the front of this robot (Figure 3.3). A single 68HC11 microcontroller

controls the movement of the robot, monitors the chemical sensor and implements the'single antennae' algorithm described in Section 2.4.

Figure 3.3 The RAT robot carrying a single chemical marking sensor.

Page 65: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Figure 3.4 The path of RAT robot acquiring and then following a chemical trail.

The diagram shown in Figure 3.4 plots the trajectory of the RAT robot as it searches forthe chemical trail. In this figure the diamonds show successive positions of the center of

the circular robot. Upon detecting the camphor trail the robot turns and follows the left-hand edge of the trail.

References

Page 66: ICRA-03 Tutorial on Ant-Based Mobile Robots: Robust ...

Brooks, R.A. 'A robust layered control system for a mobile robot', IEEE Journal ofRobotics and Automation, Vol. RA-2, No.1, March 1986, pp.14-23.

Russell, R.A., 'Ant trails - an example for robots to follow?' Proceedings of the IEEE

International Conference on Robotics and Automation, Detroit, Michigan, May 1999a,pp. 2698-2703.

Russell, R.A. Odour Sensing for Mobile Robots, World Scientific, ISBN 981023791X,217pp., 1999b.

Russell, R.A., Thiel, D. and Mackay-Sim, A., 'Recruiting swarm robots using coded

odour trails', Proceeding of the International Conference on Field & service Robotics,

Canberra, 8-10 December 1997, pp. 472-476.