IB Chemistry on Born Haber Cycle and Lattice Enthalpy

19
http://lawrencekok.blogspo t.com Prepared by Lawrence Kok Video Tutorial on Born Haber Cycle and Lattice Enthalpy.

Transcript of IB Chemistry on Born Haber Cycle and Lattice Enthalpy

Page 1: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

http://lawrencekok.blogspot.com

Prepared by Lawrence Kok

Video Tutorial on Born Haber Cycle and Lattice Enthalpy.

Page 2: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

Na (s) Na (g)

Born Haber Cycle/BHC

Li+(g) + CI–

(g) → LiCI

(s)

Multi stage Hess’s Cycle Find Lattice enthalpy for IONIC COMPOUND

A → D / A → B → C → D/ ∆H1 = H2 + H3 + H4

∆H1

∆H2 ∆H4

∆H3 Lattice Enthalpy +∆H (Heat absorb) to convert 1 MOL IONIC

compound to GASEOUS ions

Lattice Enthalpy -∆H (Heat release) when 1 MOL IONIC

compound form from GASEOUS ions

LiCI (s) → Li+(g) +

CI–(g)

Li (g) → Li+(g) +

e

2nd Ionization enthalpy+ ∆H when 1 MOL e removed from

1 MOL unipositive ion in gaseous state

Li+(g) → Li2+

(g) + e

Formation Enthalpy -∆H (Heat release) when 1 MOL compound form from its element under std condition

Na(s) + ½CI2(g) → NaCI(s)

Std Enthalpy Changes ∆Hθ needed for BHC

Ionization Enthalpy

1st Ionization enthalpy+ ∆H when 1 MOL e removed

from 1 MOL atom in gaseous state

Li Li+ + e- + e-

Li+ Li2+

++ 2+

Electron affinity Enthalpy

+ e--

CI- CI

Electron Affinity enthalpy -∆H when 1 MOL GASEOUS

atom gain 1 mol electron

CI (g) + e → CI -

(g)

Gaseous state

Atomization Enthalpy

Atomization enthalpy+ ∆H when 1 MOL GASEOUS atom form from its element under STD condition

Formation Enthalpy

Na CI2 NaCI

solid gas

Na(s) → Na(g) ½H2 (g) → H (g) ½O2 (g)

→ O (g)

½H2 (g) H (g)

1 mol gas

H2 (g) → 2H

(g)

O2 (g) → 2O (g)

½O2 (g) O (g)

+∆H -∆H

NOT atomization

enthalpy2 mol gas

gas

Page 3: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

LiCI (s)

Li+(g) + CI (g) Li+

(g) + CI (g)

Li+(g) + ½CI2

(g)

Li(g) + ½CI2 (g)

LiCI (s)

∆H atom + ∆H ion + ∆H EA

( Determined experimentally)

LiCI (s)

∆H lattice = ????? ( Can’t be determined experimentally)

∆H form = - 409 ( Determined experimentally)

Li(s) + ½CI2 (g)

Born Haber Cycle/BHC

Li+(g) + CI–

(g) → LiCI

(s)

Find Lattice enthalpy for IONIC COMPOUND

Lattice Enthalpy +∆H (Heat absorb) to convert 1 MOL IONIC

compound to GASEOUS ions

Lattice Enthalpy -∆H (Heat release) when 1 MOL IONIC

compound form from GASEOUS ions

LiCI (s) → Li+(g) + CI–

(g)

Li (g) → Li +(g) +

e

Formation Enthalpy -∆H (Heat release) when 1 MOL compound form from its element under std condition

Li(s) + ½CI2(g) → LiCI(s)

Std Enthalpy Changes ∆Hθ needed for BHC

Ionization Enthalpy

1st Ionization enthalpy+ ∆H when 1 MOL e removed

from 1 MOL atom in gaseous state

Li Li+ + e-

+

Electron affinity Enthalpy

+ e--

CI- CI

Electron Affinity enthalpy -∆H when 1 MOL GASEOUS

atom gain 1 mol electron

CI (g) + e → CI -

(g)

Gaseous state

Atomization Enthalpy

Atomization enthalpy+ ∆H when 1 MOL GASEOUS atom form from its element under STD condition

Formation Enthalpy

Li CI2 LiCI

½CI2 (g) → CI

(g)

+∆H -∆H

½CI2 (g) CI (g)

Find Lattice enthalpy for IONIC COMPOUND using

BHC

LiCI (s)

Li+ (g) + CI–

(g) Li+ (g) + CI–

(g)

∆Hlatt

∆H form = - 409

Li(s) + ½CI2 (g)

∆Hatom = + 159 Li(s) → Li(g)

Li+(g) + CI-

(g) ∆Hie = + 520 Li(g) → Li+ (g)

∆Hatom = + 121 ½CI2(g) → CI(g)

∆He = - 364 CI(g) → CI -

(g)

∆Hlatt = -845

Page 4: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

NaCI

(s)

Na+(g) + CI (g) Na+

(g) + CI (g)

Na+(g) + ½CI2

(g)

Na(g) + ½CI2

(g)

NaCI

(s)

∆H atom + ∆H ion + ∆H EA

( Determined experimentally)

NaCI

(s)

∆H lattice = ????? ( Can’t be determined experimentally)

∆H form = - 414 ( Determined experimentally)

Na(s) + ½CI2

(g)

Born Haber Cycle/BHC

Na+(g) + CI–

(g) → NaCI (s)

Find Lattice enthalpy for IONIC COMPOUND

Lattice Enthalpy +∆H (Heat absorb) to convert 1 MOL IONIC

compound to GASEOUS ions

Lattice Enthalpy -∆H (Heat release) when 1 MOL IONIC

compound form from GASEOUS ions

NaCI (s) → Na+(g) +

CI–(g)

Na (g) → Na +(g)

+ e

Formation Enthalpy -∆H (Heat release) when 1 MOL compound form from its element under std condition

Na(s) + ½CI2(g) → NaCI(s)

Std Enthalpy Changes ∆Hθ needed for BHC

Ionization Enthalpy

1st Ionization enthalpy+ ∆H when 1 MOL e removed

from 1 MOL atom in gaseous state

Na Na+ + e-

+

Electron affinity Enthalpy

+ e--

CI- CI

Electron Affinity enthalpy -∆H when 1 MOL GASEOUS

atom gain 1 mol electron

CI (g) + e → CI -

(g)

Gaseous state

Atomization Enthalpy

Atomization enthalpy+ ∆H when 1 MOL GASEOUS atom form from its element under STD condition

Formation Enthalpy

Na CI2 NaCI

½CI2 (g) → CI

(g)

+∆H -∆H

½CI2 (g) CI (g)

Find Lattice enthalpy for IONIC COMPOUND using

BHC

NaCI

(s)

Na+ (g) + CI–

(g) Na+ (g) + CI–

(g)

∆Hlatt

∆H form = - 414

Na(s) + ½CI2

(g)

∆Hatom = + 108 Na(s) → Na(g)

Na+(g) + CI-

(g) ∆Hie = + 500 Na(g) → Na+ (g)

∆Hatom = + 121 ½CI2(g) → CI(g)

∆He = - 364 CI(g) → CI -

(g)

∆Hlatt = -790

Page 5: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

KCI (s)

K+(g) + CI (g) K+

(g) + CI (g)

K+(g) + ½CI2

(g)

K(g) + ½CI2 (g)

KCI (s)

∆H atom + ∆H ion + ∆H EA

( Determined experimentally)

KCI (s)

∆H lattice = ????? ( Can’t be determined experimentally)

∆H form = - 436( Determined experimentally)

K(s) + ½CI2 (g)

Born Haber Cycle/BHC

K+(g) + CI–

(g) → KCI

(s)

Find Lattice enthalpy for IONIC COMPOUND

Lattice Enthalpy +∆H (Heat absorb) to convert 1 MOL IONIC

compound to GASEOUS ions

Lattice Enthalpy -∆H (Heat release) when 1 MOL IONIC

compound form from GASEOUS ions

KCI (s) → K+(g) + CI–

(g)

K (g) → K +(g) +

e

Formation Enthalpy -∆H (Heat release) when 1 MOL compound form from its element under std condition

K(s) + ½CI2(g) → KCI(s)

Std Enthalpy Changes ∆Hθ needed for BHC

Ionization Enthalpy

1st Ionization enthalpy+ ∆H when 1 MOL e removed

from 1 MOL atom in gaseous state

K K+ + e-

+

Electron affinity Enthalpy

+ e--

CI- CI

Electron Affinity enthalpy -∆H when 1 MOL GASEOUS

atom gain 1 mol electron

CI (g) + e → CI -

(g)

Gaseous state

Atomization Enthalpy

Atomization enthalpy+ ∆H when 1 MOL GASEOUS atom form from its element under STD condition

Formation Enthalpy

K CI2 KCI

½CI2 (g) → CI

(g)

+∆H -∆H

½CI2 (g) CI (g)

Find Lattice enthalpy for IONIC COMPOUND using

BHC

KCI (s)

K+ (g) + CI–

(g) K+ (g) + CI–

(g)

∆Hlatt

∆H form = - 436

K(s) + ½CI2 (g)

∆Hatom = + 89 K(s) → K(g)

K+(g) + CI-

(g) ∆Hie = + 425 K(g) → K+ (g)

∆Hatom = + 121 ½CI2(g) → CI(g)

∆He = - 364 CI(g) → CI -

(g)

∆Hlatt = -720

Page 6: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

NaBr

(s)

Na+(g) + Br (g) Na+

(g) + Br (g)

Na+(g) + ½Br2

(g)

Na(g) + ½Br2

(g)

NaBr

(s)

∆H atom + ∆H ion + ∆H EA

( Determined experimentally)

NaBr

(s)

∆H lattice = ????? ( Can’t be determined experimentally)

∆H form = - 361( Determined experimentally)

Na(s) + ½Br2

(g)

Born Haber Cycle/BHC

Na+(g) + Br–

(g) → NaBr (s)

Find Lattice enthalpy for IONIC COMPOUND

Lattice Enthalpy +∆H (Heat absorb) to convert 1 MOL IONIC

compound to GASEOUS ions

Lattice Enthalpy -∆H (Heat release) when 1 MOL IONIC

compound form from GASEOUS ions

NaBr (s) → Na+(g) +

Br–(g)

Na (g) → Na +(g) +

e

Formation Enthalpy -∆H (Heat release) when 1 MOL compound form from its element under std condition

Na(s) + ½Br2(g) → NaBr(s)

Std Enthalpy Changes ∆Hθ needed for BHC

Ionization Enthalpy

1st Ionization enthalpy+ ∆H when 1 MOL e removed

from 1 MOL atom in gaseous state

Na Na+ + e-

+

Electron affinity Enthalpy

+ e--

Br- Br

Electron Affinity enthalpy -∆H when 1 MOL GASEOUS

atom gain 1 mol electron

Br (g) + e → Br -

(g)

Gaseous state

Atomization Enthalpy

Atomization enthalpy+ ∆H when 1 MOL GASEOUS atom form from its element under STD condition

Formation Enthalpy

Na Br2 NaBr

½Br2 (g) → Br

(g)

+∆H -∆H

½Br2 (g) Br (g)

Find Lattice enthalpy for IONIC COMPOUND using

BHC

NaBr

(s)

Na+ (g) + Br–

(g) Na+ (g) + Br–

(g)

∆Hlatt

∆H form = - 361

Na(s) + ½Br2

(g)

∆Hatom = + 108 Na(s) → Na(g)

Na+(g) + Br-

(g) ∆Hie = + 500 Na(g) → Na+ (g)

∆Hatom = + 112 ½Br2(g) → Br(g)

∆He = - 325 Br(g) → Br -

(g)

∆Hlatt = -750

Page 7: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

NaF (s)

Na+(g) + F (g) Na+

(g) + F (g)

Na+(g) + ½F2

(g)

Na(g) + ½F2 (g)

NaF (s)

∆H atom + ∆H ion + ∆H EA

( Determined experimentally)

NaF (s)

∆H lattice = ????? ( Can’t be determined experimentally)

∆H form = - 574( Determined experimentally)

Na(s) + ½F2 (g)

Born Haber Cycle/BHC

Na+(g) + F–

(g) → NaF

(s)

Find Lattice enthalpy for IONIC COMPOUND

Lattice Enthalpy +∆H (Heat absorb) to convert 1 MOL IONIC

compound to GASEOUS ions

Lattice Enthalpy -∆H (Heat release) when 1 MOL IONIC

compound form from GASEOUS ions

NaF (s) → Na+(g) + F–

(g)

Na (g) → Na +(g) +

e

Formation Enthalpy -∆H (Heat release) when 1 MOL compound form from its element under std condition

Na(s) + ½F2(g) → NaF(s)

Std Enthalpy Changes ∆Hθ needed for BHC

Ionization Enthalpy

1st Ionization enthalpy+ ∆H when 1 MOL e removed

from 1 MOL atom in gaseous state

Na Na+ + e-

+

Electron affinity Enthalpy

+ e--

F- F

Electron Affinity enthalpy -∆H when 1 MOL GASEOUS

atom gain 1 mol electron

F (g) + e → F -(g)

Gaseous state

Atomization Enthalpy

Atomization enthalpy+ ∆H when 1 MOL GASEOUS atom form from its element under STD condition

Formation Enthalpy

Na F2 NaF

½F2 (g) → F (g)

+∆H -∆H

½F2 (g) F (g)

Find Lattice enthalpy for IONIC COMPOUND using

BHC

NaF (s)

Na+ (g) + F–

(g) Na+ (g) + F–

(g)

∆Hlatt

∆H form = - 574

Na(s) + ½F2 (g)

∆Hatom = + 108 Na(s) → Na(g)

Na+(g) + F -

(g) ∆Hie = + 500 Na(g) → Na+ (g)

∆Hatom = + 79 ½F2(g) → F(g)

∆He = - 328 F(g) → F -

(g)

∆Hlatt = -930

Page 8: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

NaH

(s)

Na+(g) + H (g) Na+

(g) + H (g)

Na+(g) + ½H2

(g)

Na(g) + ½H2

(g)

NaH

(s)

∆H atom + ∆H ion + ∆H EA

( Determined experimentally)

NaH

(s)

∆H lattice = ????? ( Can’t be determined experimentally)

∆H form = - 57 ( Determined experimentally)

Na(s) + ½H2

(g)

Born Haber Cycle/BHC

Na+(g) + H–

(g) → NaH

(s)

Find Lattice enthalpy for IONIC COMPOUND

Lattice Enthalpy +∆H (Heat absorb) to convert 1 MOL IONIC

compound to GASEOUS ions

Lattice Enthalpy -∆H (Heat release) when 1 MOL IONIC

compound form from GASEOUS ions

NaH (s) → Na+(g) + H–

(g)

Na (g) → Na +(g)

+ e

Formation Enthalpy -∆H (Heat release) when 1 MOL compound form from its element under std condition

Na(s) + ½H2(g) → NaH(s)

Std Enthalpy Changes ∆Hθ needed for BHC

Ionization Enthalpy

1st Ionization enthalpy+ ∆H when 1 MOL e removed

from 1 MOL atom in gaseous state

Na Na+ + e-

+

Electron affinity Enthalpy

+ e--

H- H

Electron Affinity enthalpy -∆H when 1 MOL GASEOUS

atom gain 1 mol electron

H (g) + e → H -(g)

Gaseous state

Atomization Enthalpy

Atomization enthalpy+ ∆H when 1 MOL GASEOUS atom form from its element under STD condition

Formation Enthalpy

Na H2 NaH

½H2 (g) → H (g)

+∆H -∆H

½H2 (g) H (g)

Find Lattice enthalpy for IONIC COMPOUND using

BHC

NaH

(s)

Na+ (g) + H–

(g) Na+ (g) + H–

(g)

∆Hlatt

∆H form = - 57

Na(s) + ½H2

(g)

∆Hatom = + 108 Na(s) → Na(g)

Na+(g) + H -

(g) ∆Hie = + 500 Na(g) → Na+ (g)

∆Hatom = + 218 ½H2(g) → H(g)

∆He = - 72 H(g) → H -

(g)

∆Hlatt = -811

Page 9: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

Mg2+(g) + O

(g)

MgO

(s) MgO

(s)

Mg2+(g) + O

(g)

Mg2+(g) + ½O2

(g)

Mg(g) + ½O2

(g)

∆H atom + ∆H ion + ∆H EA

( Determined experimentally)

MgO

(s)

∆H lattice = ????? ( Can’t be determined experimentally)

∆H form = - 602 ( Determined experimentally)

Mg(s) + ½O2

(g)

Born Haber Cycle/BHC

Mg2+(g) + O2-

(g) → MgO(s)

Find Lattice enthalpy for IONIC COMPOUND

Lattice Enthalpy +∆H (Heat absorb) to convert 1 MOL IONIC

compound to GASEOUS ions

Lattice Enthalpy -∆H (Heat release) when 1 MOL IONIC

compound form from GASEOUS ions

MgO(s) → Mg2+(g) + O2-

(g)

Mg(g) → Mg2+(g) +

2e

Formation Enthalpy -∆H (Heat release) when 1 MOL compound form from its element under std condition

Mg(s) + ½O2(g) → MgO(s)

Std Enthalpy Changes ∆Hθ needed for BHC

Ionization Enthalpy

1st Ionization enthalpy+ ∆H when 1 MOL e removed

from 1 MOL atom in gaseous state

Mg Mg2+ + 2e-

2+

Electron affinity Enthalpy

+ 2e-2-

O2- O

Electron Affinity enthalpy -∆H when 1 MOL GASEOUS

atom gain 1 mol electron

O (g) + e → O2-(g)

Gaseous state

Atomization Enthalpy

Atomization enthalpy+ ∆H when 1 MOL GASEOUS atom form from its element under STD condition

Formation Enthalpy

Mg O2 MgO

½O2 (g) → O (g)

+∆H -∆H

½O2 (g) O(g)

Find Lattice enthalpy for IONIC COMPOUND using

BHC

MgO

(s)

Mg2+ (g) + O2-

(g)

∆Hlatt

∆H form = - 602

Mg(s) + ½O2

(g)

∆Hatom = + 146 Mg(s) → Mg(g)

Mg2+(g) + O2-

(g)

∆H i 1st/2nd = + 2186

Mg(g) → Mg2+(g)

∆Hatom = + 249 ½O2(g) → O(g)

∆He 1st = - 141 O(g) → O-

(g)

∆Hlatt = -3833

Mg2+ (g) + O2-

(g)

∆He 2nd = + 791 O-

(g) → O2-(g)

Page 10: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

Ca2+(g) + 2CI

(g)

CaCI2 (s)

CaCI2 (s)

CaCI2 (s)

Ca2+(g) + 2CI

(g)

Ca2+(g) + CI2

(g)

Ca(g) + CI2 (g)

∆H atom + ∆H ion + ∆H EA

( Determined experimentally) ∆H lattice = ?????

( Can’t be determined experimentally)

∆H form = - 795( Determined experimentally)

Ca(s) + CI2 (g)

Born Haber Cycle/BHC

Ca2+(g) + 2CI-

(g) → CaCI2(s)

Find Lattice enthalpy for IONIC COMPOUND

Lattice Enthalpy +∆H (Heat absorb) to convert 1 MOL IONIC

compound to GASEOUS ions

Lattice Enthalpy -∆H (Heat release) when 1 MOL IONIC

compound form from GASEOUS ions

CaCI2(s) → Ca2+(g) + 2CI-

(g)

Ca(g) → Ca2+(g) +

2e

Formation Enthalpy -∆H (Heat release) when 1 MOL compound form from its element under std condition

Ca(s) + CI2(g) → CaCI2(s)

Std Enthalpy Changes ∆Hθ needed for BHC

Ionization Enthalpy

1st Ionization enthalpy+ ∆H when 1 MOL e removed

from 1 MOL atom in gaseous state

Ca Ca2+ + 2e-

2+

Electron affinity Enthalpy

+ e--

CI- CI

Electron Affinity enthalpy -∆H when 1 MOL GASEOUS

atom gain 1 mol electron

CI (g) + e → CI-(g)

Gaseous state

Atomization Enthalpy

Atomization enthalpy+ ∆H when 1 MOL GASEOUS atom form from its element under STD condition

Formation Enthalpy

Ca CI2 CaCI2

½CI2 (g) → CI

(g)

+∆H -∆H

½CI2 (g) CI(g)

Find Lattice enthalpy for IONIC COMPOUND using

BHC

CaCI2 (s)

Ca2+ (g) + 2CI-

(g)

∆Hlatt

∆H form = - 795

Ca(s) + CI2 (g)

∆Hatom = + 190 Ca(s) → Ca(g)

Ca2+(g) + 2CI-

(g)

∆H i 1st/2nd = + 1730

Ca(g) → Ca2+(g)

∆Hatom = + 121 x 2 ½CI2(g) → CI(g)

∆He 1st = - 354 x 2 CI(g) → CI -

(g)

∆Hlatt = -2249

Ca2+ (g) + 2CI-

(g)

Page 11: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

Ba2+(g) + 2CI

(g)

BaCI2 (s)

BaCI2 (s)

BaCI2 (s)

Ba2+(g) + 2CI

(g)

Ba2+(g) + CI2

(g)

Ba(g) + CI2 (g)

∆H atom + ∆H ion + ∆H EA

( Determined experimentally) ∆H lattice = ?????

( Can’t be determined experimentally)

∆H form = - 860( Determined experimentally)

Ba(s) + CI2 (g)

Born Haber Cycle/BHC

Ba2+(g) + 2CI-

(g) → BaCI2(s)

Find Lattice enthalpy for IONIC COMPOUND

Lattice Enthalpy +∆H (Heat absorb) to convert 1 MOL IONIC

compound to GASEOUS ions

Lattice Enthalpy -∆H (Heat release) when 1 MOL IONIC

compound form from GASEOUS ions

BaCI2(s) → Ba2+(g) + 2CI-

(g)

Ba(g) → Ba2+(g) +

2e

Formation Enthalpy -∆H (Heat release) when 1 MOL compound form from its element under std condition

Ba(s) + CI2(g) → BaCI2(s)

Std Enthalpy Changes ∆Hθ needed for BHC

Ionization Enthalpy

1st Ionization enthalpy+ ∆H when 1 MOL e removed

from 1 MOL atom in gaseous state

Ba Ba2+ + 2e-

2+

Electron affinity Enthalpy

+ e--

CI- CI

Electron Affinity enthalpy -∆H when 1 MOL GASEOUS

atom gain 1 mol electron

CI (g) + e → CI-(g)

Gaseous state

Atomization Enthalpy

Atomization enthalpy+ ∆H when 1 MOL GASEOUS atom form from its element under STD condition

Formation Enthalpy

Ba CI2 BaCI2

½CI2 (g) → CI

(g)

+∆H -∆H

½CI2 (g) CI(g)

Find Lattice enthalpy for IONIC COMPOUND using

BHC

BaCI2 (s)

Ba2+ (g) + 2CI-

(g)

∆Hlatt

∆H form = - 860

Ba(s) + CI2 (g)

∆Hatom = + 175 Ba(s) → Ba(g)

Ba2+(g) + 2CI-

(g)

∆H i 1st/2nd = + 1500

Ba(g) → Ba2+(g)

∆Hatom = + 121 x 2 ½CI2(g) → CI(g)

∆He 1st = - 354 x 2 CI(g) → CI -

(g)

∆Hlatt = -2049

Ba2+ (g) + 2CI-

(g)

Page 12: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

K+(g) + Br (g)

KBr (s)

K+(g) + Br (g)

K+(g) + ½Br2

(g)

K(g) + ½Br2 (g)

KBr (s)

∆H atom + ∆H ion + ∆H EA

( Determined experimentally)

KBr (s)

∆H lattice = ????? ( Can’t be determined experimentally)

∆H form = - 392( Determined experimentally)

Ks) + ½Br2 (g)

Born Haber Cycle/BHC

K+(g) + Br–

(g) → KBr

(s)

Find Lattice enthalpy for IONIC COMPOUND

Lattice Enthalpy +∆H (Heat absorb) to convert 1 MOL IONIC

compound to GASEOUS ions

Lattice Enthalpy -∆H (Heat release) when 1 MOL IONIC

compound form from GASEOUS ions

KBr (s) → K+(g) + Br–

(g)

K (g) → K +(g) +

e

Formation Enthalpy -∆H (Heat release) when 1 MOL compound form from its element under std condition

K(s) + ½Br2(g) → KBr(s)

Std Enthalpy Changes ∆Hθ needed for BHC

Ionization Enthalpy

1st Ionization enthalpy+ ∆H when 1 MOL e removed

from 1 MOL atom in gaseous state

K K+ + e-

+

Electron affinity Enthalpy

+ e--

Br- Br

Electron Affinity enthalpy -∆H when 1 MOL GASEOUS

atom gain 1 mol electron

CI (g) + e → CI -

(g)

Gaseous state

Atomization Enthalpy

Atomization enthalpy+ ∆H when 1 MOL GASEOUS atom form from its element under STD condition

Formation Enthalpy

K Br2 KBr

½Br2 (g) → Br

(g)

+∆H -∆H

½Br2 (g) Br (g)

Find Lattice enthalpy for IONIC COMPOUND using

BHC

KBr (s)

K+ (g) + Br–

(g) K+ (g) + Br–

(g)

∆Hlatt

∆H form = - 392

K(s) + ½Br2 (g)

∆Hatom = + 89 K(s) → K(g)

K+(g) + Br-

(g) ∆Hie = + 420 K(g) → K+ (g)

∆Hatom = + 112 ½Br2(g) → Br(g)

∆He = - 342 CI(g) → CI -

(g)

∆Hlatt = -671

Page 13: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

∆H lattice

NaCI

(s) NaCI

(s)

Lattice Enthalpy

-∆H

Find Lattice enthalpy using BHC

221

r

qqkF

Theoretical Lattice Enthalpy

(Calculated using formula)

Lattice enthalpy depend

Find Lattice enthalpy using Coulomb’s Law

Experimental/Actual Lattice Enthalpy

(Calculated using BHC)

Assumption Ionic compound

Coulomb’s Law

CHARGE on ions

Electrostatic force

Electric charge (+) or (-)

DistanceCoulomb constant

+ -

SIZE of ions

Size increase ↑ ↓

Separation bet ions increase ↑

Electrostatic force bet ion decrease ↓↓

Lattice enthalpy decrease ↓

Charge ↑ ↓

Electrostatic forces bet ion increases ↑

↓Lattice enthalpy increase ↑

Gp1 salt

LatticeEnthalp

ykJ mol-1

LiCI + 846

NaCI

+ 771

KCI + 720Size cation ↑

221

r

qqkF

Li

Na

K

Gp1 salt

LatticeEnthalp

ykJ mol-1

NaO + 2702

MgO + 3889

AI2O3 + 4020

CI

CI

CI

Charge cation ↑

Na+

Mg2+

AI3+

O

O

O

221

r

qqkF

Vs

Na+ (g) + CI–

(g)

∆H atom + ∆H ion + ∆H EA

( Determined experimentally)

∆H form = - 414 ( Determined experimentally)

Na+ (g) + CI–

(g) Electrostatic forces of attraction bet opposite charges

Vs Na(s) + ½CI2

(g)

Page 14: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

Lattice Enthalpy

221

r

qqkF

Theoretical Lattice Enthalpy

(Calculated using formula)

Lattice enthalpy depend

Find Lattice enthalpy using Coulomb’s Law

Assumption Ionic compound

Coulomb’s Law

CHARGE on ions

Electrostatic force

Electric charge (+) or (-)

DistanceCoulomb constant

+ -

SIZE of ions

Size increase ↑ ↓

Separation bet ions increase ↑

Electrostatic force bet ion decrease ↓↓

Lattice enthalpy decrease ↓

Charge ↑ ↓

Electrostatic forces bet ion increases ↑

↓Lattice enthalpy increase ↑

Gp1 salt

LatticeEnthalp

ykJ mol-1

LiCI + 846

NaCI

+ 771

KCI + 720Size cation ↑

221

r

qqkF

Li

Na

K

Gp1 salt

LatticeEnthalp

ykJ mol-1

NaO + 2702

MgO + 3889

AI2O3 + 4020

CI

CI

CI

Charge cation ↑

Na+

Mg2+

AI3+

O

O

O

221

r

qqkF

Metal Halide

Lattice Enthalpy

F CI Br I

Li 1049 864 820 764

Na 930 790 754 705

K 830 720 691 650

Rb 795 695 668 632

Experimental/Actual Lattice Enthalpy

(Calculated using BHC)

Size increase ↑ ↓

LE decrease ↓

Li

Na

K

Rb

F CI Br ISize increase ↑

↓ LE decrease ↓

Page 15: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

Lattice Enthalpy

221

r

qqkF

Theoretical Lattice Enthalpy

(Calculated using formula)

Find Lattice enthalpy using Coulomb’s Law

Assumption Ionic compound

Coulomb’s Law

Electrostatic force

Electric charge (+) or (-)

DistanceCoulomb constant

Metal Halide

Lattice Enthalpy

F CI Br I

Li 1049 864 820 764

Na 930 790 754 705

K 830 720 691 650

Rb 795 695 668 632

Experimental/Actual Lattice Enthalpy

(Calculated using BHC)

Li

Na

K

Rb

F CI Br ISize increase ↑

↓ LE decrease ↓

NaF NaCI NaBr NaI

ExperimentalLattice Enthalpy/(BHC)

930 776 740 700

Theoretical Lattice Enthalpy

910 769 732 682

AgF AgCI AgBr AgI

ExperimentalLattice Enthalpy/(BHC)

974 910 900 865

Theoretical Lattice Enthalpy

953 770 755 734

Uses of Born Haber Cycle – Determine degree of ionic /covalent character

High Difference in EN value

↓High degree ionic character (100% ionic bond)

↓Actual Expt LE (BHC) = Theoretical LE (Assume 100% ionic bond)

↓Good agreement/Low % diff

Small Difference in EN value

↓Ionic + Covalent character (NOT 100% ionic bond)

↓Actual Expt LE (BHC) > Theoretical LE (Assume 100% ionic bond)

↓Poor agreement/High % diff

Na – F Na - CI

Na – Br

Na - I

Diff in EN 3.1 2.1 1.9 1.6

Ag – F Ag - CI

Ag – Br

Ag - I

Diff in EN 2.1 1.1 0.9 0.6

Page 16: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

NaF NaCI NaBr NaI

ExperimentalLattice Enthalpy/(BHC)

930 776 740 700

Theoretical Lattice Enthalpy

910 769 732 682

AgF AgCI AgBr AgI

ExperimentalLattice Enthalpy/(BHC)

974 910 900 865

Theoretical Lattice Enthalpy

953 770 755 734

Uses of Born Haber Cycle – Determine degree of ionic /covalent character

High Difference in EN value

↓High degree ionic character (100% ionic bond)

↓Actual Expt LE (BHC) = Theoretical LE (Assume 100% ionic bond)

↓Good agreement/Low % diff

Small Difference in EN value

↓Ionic + Covalent character (NOT 100% ionic bond)

↓Actual Expt LE (BHC) > Theoretical LE (Assume 100% ionic bond)

↓Poor agreement/High % diff

Na – F Na - CI

Na – Br

Na - I

Diff in EN 3.1 2.1 1.9 1.6

Ag – F Ag - CI

Ag – Br

Ag - I

Diff in EN 2.1 1.1 0.9 0.6

Difference in electronegativity 0 0.4 2 4

difference < 0.4covalent compound

difference > 2ionic compound

Diff = 2.5 – 2.1 = 0.4

Diff = 3 – 0.9 = 2.1

EN – 2.1EN – 2.5

H C CI-Na+

EN - 3.0EN - 0.9

Click here notes bonding triangle

Polarcovalent

Click here video bonding triangle

Polar covalent

IonicBond

Ionic Bond

Due to high charge density cation (+) (charge/ionic radius) ↓Donated electron cloud pull back to cation to form partial covalent bond

↓Ionic + covalent character (Polar covalent)

Ag+ CI -

Electron cloud pull (covalent bond)

Polarization – cause polar covalent

No polarization (100% ionic)

Page 17: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

NaF NaCI NaBr NaI

ExperimentalLattice Enthalpy/(BHC)

930 776 740 700

Theoretical Lattice Enthalpy

910 769 732 682

AgF AgCI AgBr AgI

ExperimentalLattice Enthalpy/(BHC)

974 910 900 865

Theoretical Lattice Enthalpy

953 770 755 734

Uses of Born Haber Cycle – Determine degree of ionic /covalent character

High Difference in EN value

↓High degree ionic character (100% ionic bond)

↓Actual Expt LE (BHC) = Theoretical LE (Assume 100% ionic bond)

↓Good agreement/Low % diff

Small Difference in EN value

↓Ionic + Covalent character (NOT 100% ionic bond)

↓Actual Expt LE (BHC) > Theoretical LE (Assume 100% ionic bond)

↓Poor agreement/High % diff

Na – F Na - CI

Na – Br

Na - I

Diff in EN 3.1 2.1 1.9 1.6

Ag – F Ag - CI

Ag – Br

Ag - I

Diff in EN 2.1 1.1 0.9 0.6 Polarcovalent

Polar covalent

IonicBond

Ionic Bond

Due to high charge density cation (+) (charge/ionic radius) ↓Donated electron cloud pull back to cation to form partial covalent bond

↓Ionic + covalent character (Polar covalent)

Ag+ CI -

Electron cloud pull (covalent bond)

Polarization – cause polar covalent

No polarization (100% ionic)

vs

Lattice enthalpy AgF – AgI > Lattice Enthalpy NaF – NaI ↓ ↓ Size Ag bigger > Size Na smaller ↓ ↓ LE Ag should be lower < LE Na should be higher ↓ ↓ Higher LE Ag due to > Lower LE Na due to ionic/covalent character only ionic character

Size increase ↑ ↓

LE decrease ↓

Ag+ CI - CI -

Electron cloud pull (covalent bond)

only ionic

BUT BUT

Page 18: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

Born Haber Cycle/BHC

NaCI (s) → Na+(g) +

CI–(g)

-∆H

Lattice Enthalpy -∆H (Heat release) when 1 MOL IONIC

compound form from GASEOUS ions

Find Lattice enthalpy using BHC

221

r

qqkF

Electrostatic forces of attraction bet opposite charges

Theoretical Lattice Enthalpy

(Calculated using formula)

Find Lattice enthalpy using Coulomb’s Law

Experimental/Actual Lattice Enthalpy

(Calculated using BHC)

Assume – 100% Ionic Coulomb’s Law

Lattice Enthalpy

Electrostatic force

Electric charge (+) or (-)

DistanceCoulomb constant

+ -Na CI

Using Born Meyer eqn:

nner

qqAH

11

421

A = 1.747q1 = +1q2 = -1n = 8R = 283 x 10-12

4ƞe = 1.13 x 10 -10r = Distance n = quantum #

Electric charge (+) or (-)

A = Madelung constant

Values for NaCI

∆Hlatt = 769

NaCI NaBr NaI

ExperimentalLattice Enthalpy/(BHC)

776 740 700

Theoretical Lattice Enthalpy

(Calculated)

769 732 682

∆Hlatt = 776

Theoretical LE (Assume 100% ionic bond) = Expt LE (BHC)

Page 19: IB Chemistry on Born Haber Cycle and Lattice Enthalpy

Acknowledgements

Thanks to source of pictures and video used in this presentation

Thanks to Creative Commons for excellent contribution on licenseshttp://creativecommons.org/licenses/

Prepared by Lawrence Kok

Check out more video tutorials from my site and hope you enjoy this tutorialhttp://lawrencekok.blogspot.com