IB Biology Genetics

96
Genetics

description

A Piper Presentation! :)

Transcript of IB Biology Genetics

Page 1: IB Biology Genetics

Genetics

Page 2: IB Biology Genetics

What are the key components of chromosomes?

A. DNA-heterochromatin-euchromatin

B. ProteinsC. Found in nucleusD. You should

understand the relationship between DNA and proteins (chromatin packing and histones)

Page 3: IB Biology Genetics

Key terms

A. Eukaryotic chromosomes-made of DNA and proteins (histones)

B. Gene-heritable factor that controls specific characteristics

-made up of a length of DNA, found on a specific chromosome location (a locus)

C. Allele-one specific form of a gene (all found at the same locus)-Example: Everyone has the gene for eye color. The possible alleles are blue, brown, green, etc.

Page 4: IB Biology Genetics

More Key Terms

D. Genome-total genetic material of an organism or species (Example: The Human Genome)

E. Gene pool-total of all genes carried by individuals in a population

Page 5: IB Biology Genetics

Mutations

A. Chromosome mutations-involve large sections of chromosomes (or the whole thing)

-Ex: Down’s syndrome, Turner’s syndrome

Page 6: IB Biology Genetics

B. Gene mutation-involves changes in single base pairs

-Some mutations may not have any effect on the cell and may involve:

1. part of the sense strand of DNA which is not transcribed

2. part of the DNA that a cell does not use

3. changes in second or third bases of a codon (since the genetic code is

degenerate the same base may still be coded for)

Mutations

Page 7: IB Biology Genetics

MutationsB. Gene mutation-involves changes in single base pairs

Example: Insertion or deletion of single organic bases

-changes the DNA sequence that will be transcribed and translated

original DNA sequence: ATG-TCG-AAG-CCC

transcribed: UAC-AGC-UUC-GGG

translated: tyr-ser-phe-gly

addition of base A: ATA-GTC-GAA-GCC-C

transcribed: UAU-CAG-CUU-CGG

translated: thy-glu-leu-arg

Page 8: IB Biology Genetics

A. Hemoglobin-protein that helps RBC carry oxygen

B. Hb is a gene that codes for hemoglobin-made of 146 amino acids

C. In some cases one base is substituted for anothernormal: (HbA) base substitution: (HbS)

CTC CACGAG GUG

-after transcription and translation HbA produces glutamic acid and HbS produces valine

Mutations: Base substitutions and sickle-cell anemia

Page 9: IB Biology Genetics

D. The altered hemoglobin HbS is crystalline at low oxygen levels causing the RBC to become sickled and less efficient at oxygen transport

E. Symptoms of sickle cell anemia

-physical weakness

-heart or/and kidney damage

-death

Mutations: base substitutions and sickle-cell anemia

Page 10: IB Biology Genetics

F. In heterozygous people (one normal allele and one sickle cell allele)

-the alleles are codominant, but the normal allele is expressed more strongly

-in codominance both alleles are expressed (one is not dominant to the other)

-some sickled cells present, but most are normal

-some people show mild anemia (deficiency of the hemoglobin, often accompanied by a reduced number of red blood cells and causing paleness, weakness, and breathlessness)

Mutations: base substitutions and sickle-cell anemia

Page 11: IB Biology Genetics

G. Advantages of being heterozygous

-In areas where malaria is infested:

-Plasmodium cannot live in erythrocytes with HbS

-Heterozygous individuals have a reduced chance of contracting the protist that is carried by mosquitoes

Mutations: base substitutions and sickle-cell anemia

Page 12: IB Biology Genetics
Page 13: IB Biology Genetics

KaryotypingA. Karyotyping-process of finding the

chromosomal characteristics of a cell-chromosomes are stained to show banding

and arranged in pairs according to size and structure

-You should be able to look at a karyotype and determine the sex of the individual and if non-disjunction has occurred

Page 14: IB Biology Genetics

Amniocentesis and karyotyping

A. Amniocentesis-performed at around 16 wks-sample of amniotic fluid is taken and cultured-when there are enough cells, a karyotype can be

performed-chromosomes are arranged into pairs to detect

any abnormalities-can be used to detect Down’s syndrome (a.k.a.

trisomy 21) -can be used to recognize sex or non-disjunction

Page 15: IB Biology Genetics

Amniocentesis

Page 16: IB Biology Genetics

Karyotyping and Chorionic villus sampling

Sampling is performed around 11 weeks of pregnancy

Cells are gathered from chorionic villi (cells from the zygote)

Cells are cultured, DNA is extracted and a karyotype is made

Page 17: IB Biology Genetics

A Side by Side Comparison

Page 18: IB Biology Genetics

Meiosis Key TermsA. Diploid-having two sets of chromosomes

B. Homologous chromosomes-matching pairs of chromosomes

-have the same genes

-are not identical (one chromosome comes from each parent, thus alleles may be different)

-found in diploid cells

C. Haploid-having only one set of chromosomes

Page 19: IB Biology Genetics

More Meiosis Terms

D. Chromatids -two parts of a chromosome

E. Centromere -part of a chromosome that connects the chromatids

F. Reduction division-in organisms that reproduce sexually

-reduction of the number of chromosomes by half (from a diploid nucleus to a haploid nucleus)

-think of eggs and sperm; both are haploid (when they unite the diploid number is restored)

Page 20: IB Biology Genetics

Meiosis

B. Produces gametes (sperm and egg)

C. Overview

1. homologous chromosomes pair (diploid)

2. two divisions (meiosis I and meiosis II)

3. result=4 haploid cells

D. When gametes unite (to produce a diploid cell) a cell with homologous pairs is created

-one set of chromosomes is from the mom and one set of chromosome is from the dad

Page 21: IB Biology Genetics

Meiosis (details)A. Interphase -DNA replication

B. Prophase I-chromosomes condense-nucleolus becomes visible-spindle formation-synapsis-homologous chromosomes are side by

side (they become a tetrad and are intersected at the chiasmata)

-nuclear membrane begins to disappear

chiasmata

Tetrad

Page 22: IB Biology Genetics

C. Metaphase I: Bivalents move to equator

D. Anaphase I: -Homologous pairs split-One chromosome from each pair moves to opposite pole

E. Telophase I:-Chromosomes arrive at poles-Spindle disappears

Meiosis (details)

Page 23: IB Biology Genetics

F. Prophase II – new spindle is formed at right angles to the previous spindle

G. Metaphase II – Chromosomes move to equator

H. Anaphase II –

-Chromosomes separate

-Chromatids move to opposite poles

Meiosis (details)

Page 24: IB Biology Genetics

I. Telophase II-Chromosomes arrive at poles

-Spindle disappears

-Nuclear membrane reappears

-Nucleolus becomes visible

-Chromosomes become chromatin

-Cytokinesis

Meiosis (details)

Page 25: IB Biology Genetics

A. An important source of variation

-creates new combinations

B. Happens during prophase I

C. Called a synapsis

D. Recombination-reassortment of genes into different combinations from those of the parents

Crossing over of homologous chromosomes

Chiasmata formed during a synapsis

Page 26: IB Biology Genetics

CrossoverABCD

H E

h e

ABCD

H E

h e

ABCD

H E

h e

ResultsA genotype HEB genotype HeC genotype hED genotype he

StartA genotype HEB genotype HEC genotype heD genotype he

CrossoverB and C become

recombinants

Page 27: IB Biology Genetics

Meiosis and genetic variationA. The number of possible gametes

produced by random orientation of chromosomes is 2n (where n is = to the haploid number of chromosomes)

B. In humans the production of 1 gamete has over 8 million possible combinations (223)

C. Recombination (in prophase I) + Random orientation of chromosomes (in metaphase I) = an infinite number of variations

Page 28: IB Biology Genetics

Meiosis and Non-disjunctionA. Disjunction - when the homologous

chromosomes separate in anaphase I

B. Aneuploidy -happens when chromosomes do not separate (in anaphase I or II)

-caused by non-disjunction

-result: one cell missing a chromosome and one cell having an extra chromosome

-Total number of chromosomes = 2n ±1

C. Polyploidy- having more than two complete sets of chromosomes (common in plants)

Page 29: IB Biology Genetics

Karyotype of non-disjunction

Normal karyotype (2n=46)Abnormal karyotype (aneuploidy)

2n + 1 = 47

Page 30: IB Biology Genetics

Non-disjunction and Down’s syndrome

A. One of the parent gametes contains two copies of chromosome 21

B. The zygote then ends up with 3 copies-2 from one parent-1 from the other

C. Down’s syndrome = trisomy 21D. Chances of non-disjunction of

chromosomes increases with age in females (in males too, but less of an effect)

Page 31: IB Biology Genetics

Non-disjunction and Down’s syndrome

E. Female age has a greater effect because:

-gametes are produced before birth

-more exposure to chemicals, radiation, etc.

F. Male age has less effect because they do not produce gametes until puberty

G. Genetics may also increase the likelihood of having a child with Down’s syndrome

Page 32: IB Biology Genetics

Theoretical Genetics Key TermsA. Dominant allele-the allele that always shows in

the heterozygous state (Example: Bb=brown)

B. Recessive allele-the allele that only shows in the homozygous recessive state (Example: bb=blue)

C. Codominant alleles-pairs of alleles where two differing alleles are shown in the phenotype in a heterozygote

D. Homozygous -having two identical alleles of a gene (Example: BB or bb)

E. Heterozygous -having two different alleles of a gene (Example: Bb)

Page 33: IB Biology Genetics

More VocabularyF. Carrier- a person who has a recessive

allele, but does not express it (they are generally heterozygous, Bb)

G. Genotype-alleles that a person has

(the letters) Ex: Bb

H. Phenotype- the physical characteristics the a person shows (caused by the genotype) Ex: brown hair or blue eyes

I. Test cross- crossing two or more genotypes to find the possible genetic outcomes

Page 34: IB Biology Genetics

Mendel’s Monohybrid Crosses

A. Punnett square-shows possible outcomes from a test cross

B. Mendel studied characteristics of pea plants

Wrinkled and round peas(round peas are dominant)

Page 35: IB Biology Genetics

TraitDominant

ExpressionRecessiveExpression

1. Form of ripe seed Smooth Wrinkled

2. Color of seed albumen Yellow Green

3. Color of seed coat Grey White

4. Form of ripe pods Inflated Constricted

5. Color of unripe pods Green Yellow

6. Position of flowers Axial Terminal

7. Length of stem Tall Dwarf

Gregor Mendel’s Findings

Page 36: IB Biology Genetics

Mendel’s Monohybrid Crosses

C. Mendel found tall is dominant over short

D. His procedures were:

1. Start with 2 pure breeding homozygous plants (This is the P generation.)

-Plant 1=tall (TT)

-Plant 2= short (tt)

2. Cross-breed the plants

-Place pollen from the tall plant in the short plant and vice versa.

Page 37: IB Biology Genetics

Mendel’s Monohybrid Crosses

D. His procedures were:

3. The F1 generation is the 1st group of offspring.

-All were tall, and had a heterozygous genotype. (Tt)

-This is an application of the law of segregation.

-All offspring had a ‘T’ from one parent and a ‘t’ from the other parent

Page 38: IB Biology Genetics

Mendel’s Monohybrid CrossesD. His procedures were:

4. The F1 offspring were then crossed. (Tt x Tt)

-Possible outcomes can be found using a Punnett square

GENOTYPES

-25% TT

-50% Tt

-25% tt

PHENOTYPES

-75% Tall -25% Short

T t

T TT Tt

t Tt tt

Page 39: IB Biology Genetics

Multiple allelesA. When genes have more than two alleles

B. Example: Blood type has 4 phenotypes based on three alleles (IA, IB and i)

C. IA and IB are codominant and i is recessive

D. This is why parents can have kids with different blood types

Phenotypes Genotypes

A IAIA or IAi

B IBIB or IBi

AB IAIB

O ii

Page 40: IB Biology Genetics

Multiple allelesD. Perform a test cross for P: mother with O blood

type and father with AB blood type. What are the possible phenotypes?

Phenotypes Genotypes

A IAIA or IAi

B IBIB or IBi

AB IAIB

O ii

Page 41: IB Biology Genetics

Perform a test cross for P: mother with O blood type and father with AB blood type. What are the possible phenotypes for F1?

P = ii x IAIB

i i

IA IA i IA i

IB IB i IB i

None of the children can have the same blood type as either of the parents.

Multiple alleles

Page 42: IB Biology Genetics

CodominanceA. When neither allele for a gene is recessive

B. Example: Blood type

C. Alleles A and B are both dominant (both are expressed)

D. i is recessive to alleles A and B

E. One letter is chosen and the possible alleles are written in upper case letters to illustrate codominance Phenotypes Genotypes

A IAIA or IAi

B IBIB or IBi

AB IAIB

O ii

Page 43: IB Biology Genetics

Sex chromosomes and gender

Only possibility for P generation = XX and XY

-The X chromosome is larger and carries more genes than the Y chromosome -Examples of genes on X, but not Y = color

blindness and hemophilia-Many sex-linked traits are related to the X

chromosome.

X X

X XX XX

Y XY XY

The sex of all babies is determined by the chromosomes in the sperm from the man.

Page 44: IB Biology Genetics

Sex linkage

A. Genes carried on sex chromosomes (usually X)

B. Example: Hemophilia-a blood disorder that prevents clotting

-patients do not produce clotting factors that allow coagulation of blood, and thus torn blood vessels are prevented from closing

-most common in boys (they get it from their mother’s X chromosome, as they only get one X, which means only one chance to get the dominant allele)

Page 45: IB Biology Genetics

Sex linkage

C. Two parents without hemophilia: XHXh and XHY

*The XhXh does is very rare*Males cannot be heterozygous carriers because they

only have one X.*Females can be carriers and pass on the trait to the next

generation. They can be heterozyg. or homozyg.* XH -Normal and Xh –Hemophilia

XH Xh

XH XHXH XHXh

Y XHY XhY

Page 46: IB Biology Genetics

Predict the genotypic and phenotypic ratios of monohybrid crosses for each of the following.

1. Sickle cell anemia: HbA=normal and HbS=sickle cell

HbAHbS x HbAHbS

2. Colorblindness: XB=normal and Xb=colorblind

XBXb x XbY

3. Hemophilia: XH=normal and Xh=hemophilia

XhXh x XHY

4. Blood type: IAi x IBi**You should be able to determine if alleles are codominant

because both alleles will be represented by capital letters. You should also know if the inherited traits are sex-linked.

Page 47: IB Biology Genetics

Mendel’s Law of Segregation

A. States: The separation of the pair of parental factors, so that one factor is present in each gamete. (This is how it is written in the IB book.)

B. The two alleles for each characteristic segregate during gamete production. This means that each gamete will contain only one allele for each gene. This allows the maternal and paternal alleles to be combined in the offspring, ensuring variation. (This is from wikipedia.)

Page 48: IB Biology Genetics

Mendel’s Law of Segregation and Meiosis

A. Mendel looked at genes (on chromosomes)

B. Found that each gene appeared twice (in homologous pairs)

C. Figured out that when a synapsis occurs in prophase I followed by a separation in anaphase I, homologous chromosomes move to opposite poles

D. One chromosome from each pair ends up in a gamete

Page 49: IB Biology Genetics

Mendel’s Law of Independent Assortment

A. States that allele pairs separate independently during the formation of gametes

B. Any one pair of characteristics may combine with any one of another pair of characteristics

C. See p. 163 in Green Book

Page 50: IB Biology Genetics

Independent assortment and meiosis

A. Any combination of chromosomes is possible in metaphase I (there is no ‘master plan’ for the order that they line up on the metaphase plate before separation)

B. Mendel thought all genes were inherited separately and had no relationship

-Ex: Pea plants could be green or yellow and wrinkled or round. Shape and color had nothing to do with each other, because the genes are on separate chromosomes. Any combination could have been produced (wrinkled/green, wrinkled/yellow, round/green, round yellow)

C. This is demonstrated in Dihybrid crosses.D. Today we realize that there are many exceptions

to this law.

Page 51: IB Biology Genetics

Possible chromosome alignments

A Possible random outcomes B

Page 52: IB Biology Genetics

Mendel’s Law of Independent AssortmentA. Any one of a pair of characteristics may combine

with either one of another pair

B. Example:

gene=shape of pea

alleles=round (R) or wrinkled (r)

gene=color of pea

alleles = yellow (Y) or green (y)

*When crossing two plants that are heterozygous for both traits the offspring will show all combinations. This shows that genes for shape and color are independent (unlinked).

Page 53: IB Biology Genetics

Dihybrid crosses

SY Sy sY sy

SY SSYY SSYy SsYY SsYy

Sy SSYy SSyy SsYy Ssyy

sY SsYY SsYy ssYY ssYy

sy SsYy Ssyy ssYy ssyy

Parent genotypes: SsYy x SsYy-S=smooth s=wrinkled

-Y=Yellow y=green

Possibleallelecombosfrom oneparent

Page 54: IB Biology Genetics

Possible ratios forSsYy x SsYy

SY Sy sY sy

SY SSYY SSYy SsYY SsYy

Sy SSYy SSyy SsYy Ssyy

sY SsYY SsYy ssYY ssYy

sy SsYy Ssyy ssYy ssyy

F1 Genotypic ratios

1:SSYY

2:SSYy

1:SSyy

2:SsYY

4:SsYy

2:Ssyy

1:ssYY

2:ssYy

1:ssyy

F1 Phenotypic ratios

9: smooth-yellow

3:smooth-green

3: wrinkled-yellow

1: wrinkled-green

Page 55: IB Biology Genetics

Perform a test cross for P: SSYY x ssyy

1.What will the genotype and phenotype ratios be for the F1 generation?2. What will the phenotype and genotype ratios be for the F2 generation?3. Determine the recombinants in each generation.

Page 56: IB Biology Genetics

Perform a test cross for P generation: SSYY x ssyy

SY SY SY SY

sy SsYy SsYy SsYy SsYy

sy SsYy SsYy SsYy SsYy

Sy SsYy SsYy SsYy SsYy

Sy SsYy SsYy SsYy SsYy

All F1 generation offspring are heterozygous (SsYy). What will the outcome be if you cross two individuals from F2?

Page 57: IB Biology Genetics

Autosomal Gene Linkage

A. Autosome -all chromosomes that are not sex chromosomes

B. Sex chromosomes -determine if an individual is male or female

C. Linkage group -a group of genes whose loci are on the same chromosome

D. Gene linkage is caused by pairs of genes being inherited together. The presence or absence of one can affect the other.

Page 58: IB Biology Genetics

Autosomal Gene Linkage

A. In gene linkage, all of the genes on a chromosome are inherited together

B. Does not apply to Mendel’s law of independent assortment

C. The closer the loci of the two genes on the chromosome, the smaller the chance that crossing over will occur in a chiasmata

D. If no info. is given, assume the genes are not linked

Page 59: IB Biology Genetics

Autosomal Gene Linkage

E. These genes do not follow the law of independent assortment.

F. Example:

P=purple, p=red,

L=long, l-round

P gen.=PPLL x ppll

PL PL PL PL

pl

pl

pl

pl

F1 generation

*all PpLl

Page 60: IB Biology Genetics

Autosomal Gene LinkageF. Example continued:

P=purple, p=red,

L=long, l-round

F1 gen.=PpLl x PpLl

-predicted results would be a ratio of 9:3:3:1

-observed results were very different than predicted because the genes are for color and pollen shape are linked on the same chromosome.

PL Pl pL pL

PL

Pl

pL

pL

F2 generation

See p. 87 in your review guide.

Page 61: IB Biology Genetics

Gene linkage and DrosophilaA. When genes are linked actual outcomes do

not match expected outcome B. This would be evident in a dihybrid cross (a

cross between two genes)C. Linked genes are represented in vertical

pairs with horizontal lines between themExample: b+=tan body b=black body

w+=long wings w=short wingsb+ w+ *The fly is tan and has long

wings.

b+ w+ (genotype b+b+w+w+)

Page 62: IB Biology Genetics

Gene linkage in Drosophila

Page 63: IB Biology Genetics

Recombinants and gene linkageA. Recombinants are formed as a result of

crossing over (during prophase I)

B. They are found in combinations that did not exist in the parents

Page 64: IB Biology Genetics

Polygenic Inheritance

A. When the inheritance/expression of a characteristic is controlled by more than one gene

B. Example: Human skin color-involves at least 3 independent genes-A, B and C represent alleles for dark-a, b and c represent alleles for light skin-P: AABBCC x aabbcc-F1: AaBbCc (all are heterozygous for all alleles)-F2:???

Page 65: IB Biology Genetics

Polygenic Inheritance

B. Example: Human skin color

-F2:???

-to find out you can make a Punnett square

-The more dominant alleles there are, the darker the skin

-Dominant alleles are codominant (they are all expressed)

Page 66: IB Biology Genetics

Polygenic inheritance (Other traits)

A. Height

B. Eye color

C. Finger prints

Page 67: IB Biology Genetics

Polygenic Inheritance

Example: Flower color of beans

-Genes A and B control color expression

-AP and BP = purple

-AW and BW = white

-Each color has two alleles

-Purple and white are codominant

-Because of the codominance the flowers will be shaded depending on their genotypes

Page 68: IB Biology Genetics

P: APAPBP BP x AWAWBWBW F1: APAWBPBW

AP BP AP BP AP BP AP BP

AWBW

AWBW

AWBW

AWBW

Page 69: IB Biology Genetics

F1: APAWBPBW x APAWBPBW

F2: See Punnett square (fill it in)Determine which ones are white, purple and intermediates.)

AP BP AP BW AWBP AWBW

AP BP

AP BW

AWBP

AWBW

Page 70: IB Biology Genetics

Polygenic inheritance and variation patterns

Two patterns are commonly expressed A. Continuous variation – shows a continuum of

variation among a population in a bell curve format- Example: In height expression people can be short, medium or tall (and everything in between)

B. Discontinuous variation – does not show a continuum (it is one or the other, there is no in-between expression of phenotype)- Example: Blood type can be A, B, AB or O (nothing in between)

Page 71: IB Biology Genetics

Pedigree Charts

A. Used to show inheritance of traits over several generations

B. Affected individuals-shaded black

C. Unaffected individuals- left blank

D. Heterozygous individuals (carriers)-shaded grey or filled in half way

E. Example: Queen Victoria and hemophilia (recessive/sex-linked)

Page 72: IB Biology Genetics
Page 73: IB Biology Genetics

PCR

A. PCR=polymerase chain reaction

B. PCR=DNA photocopier

C. Used to make copies of specific DNA sequences (for study)

Page 74: IB Biology Genetics

How a PCR works

1. DNA is heated (H bonds are broken)

2. RNA primers are added to start replication

3. As the DNA cools primers bind to the single strands (H bonds and complementary base pairing)

4. Nucleotides and DNA polymerase are added

Page 75: IB Biology Genetics

How PCR works

5. Nucleotides bond with ‘exposed’ bases on the DNA strand

6. DNA polymerase joins them

7. Complimentary strands are formed

8. New strands can be heated, separated and copied

9. Animation

Page 76: IB Biology Genetics

Gel electrophoresis

A. Technique used to separate molecules base on their rates of movement in an electric field

-caused by charge and size of molecules

B. Commonly used in DNA profiling

Page 77: IB Biology Genetics

Gel electrophoresis and DNA profiling

A. Scientists cut a mixture of DNA into segments by restriction enzymes

B. Place into a special gel with a current running through it

C. DNA separates into bands according to size

D. Mixture is compared to a control group

E. The more similar the DNA strands are the more closely they are related

F. See p. 30 in review guide or p. 66 in IB textbook for examples

Page 78: IB Biology Genetics

Figure 3.Comparison of known gel results for normal

hemoglobin (AA), sickle cell disease (SS) and sickle cell trait (AS). S represents the

molecular size marker. What results are present in the lanes marked with a question

mark?

Page 79: IB Biology Genetics

Application of DNA profiling

A. Criminal investigations-collect blood or semen from suspect-if enough is not present use PCR-compare gel electrophoresis of suspect and victim

B. Indentify remains of deceased-take blood samples of living-compare with samples from dead

C. Paternal tests

Page 80: IB Biology Genetics

Genetic screening

A. Test individuals in a population for presence of absence of a gene or allele

Page 81: IB Biology Genetics

Genetic Screening

B. Advantages:1. pre-natal diagnostics (seek treatment or

abortion) Ex: PKU or down’s syndrome2. Reduce frequency of alleles that cause

genetic illnesses (opt to not reproduce or use IVF and select embyros without genetic defect)

3. Genetic diseases that show symptoms in later life can be detected earlier (Ex: Huntington’s disease)

Page 82: IB Biology Genetics

Genetic Screening

C. Disadvantages:

1. Increased abortion rate

2. Harmful psychological effects

-could lead to discrimination (when seeking insurance or medical assistance)

-fear of getting older (depression)

-creates a genetic ‘underclass’

Page 83: IB Biology Genetics

Human Genome Project

A. An international cooperative venture established to sequence the complete human genome

B. Hope to determine the location and structure of all genes in the human chromosomes

C. Genome-total genetic material of a cellD. Completed in 2000 (about 10 years

early)

Page 84: IB Biology Genetics

Advantages of the Human Genome Project

A. Understand genetic diseases

B. Figure out if any of them can be prevented though screening

-could also be negative (in terms of insurance or employers)

C. May lead to development of pharmaceuticals

D. Insight into evolution and migration patterns

Page 85: IB Biology Genetics

Genetic Modification

A. Deliberate manipulation of genetic material

B. Genetic code is universal -it can be transferred between organisms

because the bases are the same

C. Used to create new combinations of DNAD. Mutation and recombination occur

naturally (often are disadvantageous and do not remain in the population)

Page 86: IB Biology Genetics

Genetic Modification

E. Genetic engineers direct the process of recombination

-increase chances of favorable combinations

Page 87: IB Biology Genetics

Technique for gene transferExample-insulin production

A. Must have a vector (bacteriophage), a host (bacteria), restriction enzymes and DNA ligase

B. Plasmids (small circular DNA from bacteria) are cut using restriction enzymes

C. Sticky ends are created by adding C nucleotides

Page 88: IB Biology Genetics

Technique for gene transferExample-insulin production

D. mRNA that codes for insulin is extracted from the pancreas

E. Reverse transcriptase makes DNA from the mRNA

F. Sticky ends are creating by adding G nucleotides

G. Insulin gene and plamsid are mixed

H. They join together at the sticky ends (C pairs with G)

Page 89: IB Biology Genetics

Technique for gene transferExample-insulin production

I. Plasmid with the human insulin gene is called a recombinant

J. Host cell (usually E. coli) receives the gene

K. E. coli are cultured w/ new gene

L. Insulin produced by modified E. coli is extracted and eventually given to diabetics

Page 90: IB Biology Genetics

Other examples of genetic modification

A. Insulin production in E. coli (discussed above)

B. Bacteria can be modified to produce growth hormone for cows-cows injected with hormone increase milk production by 10-20%

C. Breeding of plants to increase disease resistance

D. Dog breeding

Page 91: IB Biology Genetics

Benefits of genetic modification

A. Less disease (possibly)-long term effects are unknown

B. More product

-Ex: milk

C. Some are beneficial with no know side effects

-Ex: Insulin production

Page 92: IB Biology Genetics

Negative aspects of genetic modification

A. Introducing plasmids-hospitals fear them-can carry genes for antibiotic resistance-can be passed from one species to another

B. Don’t know long term effects (Example)-effects of using growth hormone in cows is unknown (some could be in our food)-cows needs extra antibiotics to stay healthy (we get these too)

C. Could create super bacteriaD. Less than perfect becomes unacceptable (if anyone can

be genetically modified before birth)

Page 93: IB Biology Genetics

Gene therapy

A. Treatment of genetic illness by modification of genotype, or base sequence, or allele (dominant for recessive)

B. Best if done with stem cells

C. Many attempts have not been successful

D. Read SCID example on p. 28

Page 94: IB Biology Genetics

Cloning

A. Clone-group of individuals identical in genotype or a group of cells descended from a single parent cell

Page 95: IB Biology Genetics

How Dolly was made1. Udder cells removed from sheep 1

a. cells grown in a culture to turn off their genes

2. Embryos removed from sheep 2

a. Nuclei removed from embryos

3. Embryos and udder cells fused by electricity to form zygotes

4. Zygotes developed to embryos

5. Embryos implanted into Sheep 3 (the surrogate mother)

6. Dolly develops and becomes first born clone

a. Identical to sheep 1

Page 96: IB Biology Genetics

Ethical issues of cloning in humans

A. Possible to only clone a specific organ?

B. Does the whole person need to be cloned for organ donation?

-if we take the heart, what do we do with the rest of the body

C. Read p. 32 in the review guide for arguments for and against therapeutic cloning of humans.