Ian WIan Woodwardoodward · 2019. 12. 15. · RPM DPM DOC Wat er level i pH Decomposition Drivers...

28
Ian Woodward Ian Woodward NERC Centre for Terrestrial Carbon Dynamics NERC Centre for Terrestrial Carbon Dynamics Department of Animal & Plant Sciences Department of Animal & Plant Sciences University of Sheffield University of Sheffield

Transcript of Ian WIan Woodwardoodward · 2019. 12. 15. · RPM DPM DOC Wat er level i pH Decomposition Drivers...

  • Ian WoodwardIan Woodward

    NERC Centre for Terrestrial Carbon DynamicsNERC Centre for Terrestrial Carbon Dynamics

    Department of Animal & Plant SciencesDepartment of Animal & Plant Sciences

    University of SheffieldUniversity of Sheffield

  • QUERCCQUERCC: : QUQUantifying antifying EEcosystem cosystem RRoles in the oles in the CCarbon arbon CCycleycle

    Overall objective: – NERC-speak.

    To quantify the contemporary terrestrial carbon cycle using new combinations of data and models.

    This will be achieved through 4 work packages

    Overall objective: – reality?.

    Change/replace TRIFFID components to include a nitrogen cycle, a wider range of functional types and more ecologically realistic sub-grid scale dynamics.

  • TRIFFID

    Schematic showing TRIFFID carbon flows for each vegetation type. Processes above the dotted line are fluxes calculated in the MOSES2 land surface scheme every atmospheric model time step (≈ 30 minutes).

    In dynamic mode, TRIFFID updates the vegetation and soil carbon every 10 days using time-averages of these fluxes.

  • TRIFFID and GCM coupling.

    Changes in the distribution and structure of five functional types feedback to climate via two routes.

    1. Vegetation determines the biophysical parameters which affect fluxes of heat, water and momentum.

    2. Changes in the carbon stored in vegetation and soil ( NEP) also change atmospheric CO2 and climate.

    Nitrogen deposition is also shown as a driver for vegetation change, but this version of TRIFFID does not include an interactive nitrogen cycle.

  • QUERCCQUERCC: : QUQUantifying antifying EEcosystem cosystem RRoles in the oles in the CCarbon arbon CCycleycle

    WP1. Develop new calibrated models of soil chemistry and nutrients that influence the carbon cycle, with particular emphasis on the N cycle.

    WP2. Develop, expand and validate descriptions of plant function.

    WP3. Create model(s) to capture sub-grid scale dynamics of vegetation behaviour.

    WP4. Combine the above models into the JULES structure and apply globally.

    Work package objectives

  • QUERCCQUERCC: : QUQUantifying antifying EEcosystem cosystem RRoles in the oles in the CCarbon arbon CCycleycle

    Observational data base

    Simulations data base

    WP2Functional types (FTs)

    Leeds

    WP1Soil N,P

    Aberdeen

    WP3Sub-grid cell dynamics

    Sheffield

    WP4Input to JULES

    CEH/Exeter

  • Work Package 1Work Package 1

    How to represent nutrient availability in How to represent nutrient availability in modelsmodels

    1. Temporal compartmentalisation of soil C cycling.

    2. Identify the role of soil nutrient availability (N and P) on rapid and slow cycling.

  • Work Package 1Work Package 1

    HypothesisHypothesis ––Organic matter pool turnover regulated by nutrient driven feedbacks in the short and long term

    Connect the soil and Connect the soil and vegetation modelsvegetation models

    Wardle et al. (2004) Science

  • Atmosphere

    Aerobic conditions

    Anaerobic conditions

    Organic matter

    Detritalorganic matter

    NH4+

    NH4+

    NO2NO3

    N2

    N2O

    N2O

    N2N2O

    N2

    Photosynthesis

    NitrificationBacterialdegradation

    Bacterialdegradation

    Denitrification

    N2 fixation

    After Wollast (1981)

    The Nitrogen cycleWP1

  • Work Package 2Work Package 2GLC 2000 vegetation map

    Key regions

  • Wright et al.: Major axis of leaf variation

    1001,000

    10,000

    10

    • Major axis of variation from fastto slow living plants.

    • Also correlated: – N content, – P content– Assimilation

    capacity, – Dark respiration

  • Change in leaf longevity of dominant vegetation (months)

    • Black = Outside Climatic range

  • Sub-grid scale activityWork Package 3Work Package 3

  • Work Package 3Work Package 3TRIFFID/MOSES land surface scheme

    Bare Gd Shrub

    C4 grass

    C3 grassNLeaftree

    BLeaftree

    • Grid cell divided into tiles.• Each tile is one PFT• Size of tile determined by

    empirical dominance hierarchy• Tendency for a single

    vegetation type to dominate

    • E.g. LPJ (Smith et al 2001)N

    PP

    Existing JULES model

    NL

    BL

    BL

    NL

  • Work Package 3Work Package 3Ecosystem Demography Model (ED)

    Moorcroft et al. (2001)“Size and age structured

    approximation of an individual based model”

    0 y.o. 5 y.o.

    94 y.o.

    28 y.o.61 y.o.

    14 y.o.

    Bare Gd Shrub

    C4 grass

    C3 grassNLeaftree

    BLeaftree

  • TRIFFID ED= PFT1= PFT2= PFT3= PFT42 years

    5 years

    30 years

    150 years

    Area Area

  • Simulating succession in EDLeaf cost vs. mortality trade off

    Cheap leavesHigh mortality

    Expensive leavesLow mortality

  • Work Package 4Work Package 4

    soil

    Canopy conductancephenology

    Dynamic vegetation

    radiation

    snow

    hydrology

    Surface exchange

    WP1: N cycle and P response

    WP2: Improved characterisation of PFTs

    WP3: Sub-grid cell dynamics

    WP4: Combine new knowledge into JULES structure

    “Newer” processes for land surface modelling

  • Soil Nutrient regulated Ecosystem Carbon Cycle

    Nutrient availability (N:P content) Fast C Slow C

    VegetationC

    CO2

    Can N and P availability be used as a predictor of Carbon cycling?

    Slide from Nick Ostle, CEH Lancaster

  • Waterlevel

    Moist

    ure Texture

    Oxy

    gen

    Temperature

    pH

    DecompositionDrivers

    WaterModule

    Temperature

    Module

    pH Module

    TextureModule

    Oxy

    gen

    Mod

    ule

    Soillevel

    INPUTSMax.Water

    levelRain,PET

    INPUTSAir Temp

    INPUTSSoil

    Parameters

    BIO HUM IOM

    CH4 CH4

    MethaneOxidation

    Meth.Oxid.

    Decomposition

    CO2 CO2INPUTS

    NPPLU Type

    DPMRPM

    DOC

    Waterlevel

    Moist

    ure Texture

    Oxy

    gen

    Temperature

    pH

    DecompositionDrivers

    WaterModule

    Temperature

    Module

    pH Module

    TextureModule

    Oxy

    gen

    Mod

    ule

    Moist

    ure Texture

    Oxy

    gen

    Temperature

    pH

    DecompositionDrivers

    WaterModule

    Temperature

    Module

    pH Module

    TextureModule

    Oxy

    gen

    Mod

    ule

    Moist

    ure Texture

    Oxy

    gen

    Temperature

    pH

    DecompositionDrivers

    WaterModule

    Temperature

    Module

    pH Module

    TextureModule

    Oxy

    gen

    Mod

    ule

    Soillevel

    INPUTSMax.Water

    levelRain,PET

    INPUTSAir Temp

    INPUTSSoil

    Parameters

    INPUTSMax.Water

    levelRain,PET

    INPUTSAir Temp

    INPUTSSoil

    Parameters

    BIO HUM IOMBIO HUM IOM

    CH4 CH4

    MethaneOxidation

    Meth.Oxid.

    CH4 CH4

    MethaneOxidation

    Meth.Oxid.

    MethaneOxidation

    Meth.Oxid.

    Decomposition

    CO2 CO2

    Decomposition

    CO2 CO2

    DecompositionDecomposition

    CO2 CO2CO2 CO2INPUTS

    NPPLU Type

    DPMRPM

    DOCDOCDOC

    Slide from Peter Smith, Aberdeen

  • Work Package 3Work Package 3

    Leaf life span change from fixed per FT to Wright Leaf life span change from fixed per FT to Wright et alet alvariable relationship with temperature and precipitationvariable relationship with temperature and precipitation

    MonthsMonths

  • WP1 Soil model evaluation and improved process description

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 1 2 3 4 5 6 7 8 9 10Year

    % C

    Rem

    aini

    ng

    a)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 1 2 3 4 5 6 7 8 9 10Year

    % C

    Rem

    aini

    ng

    a)

    RothCCANDY

    DNDCCENTURY

    DAISYSOMM

    ITEVerberne

    NCSOIL0

    5

    10

    15

    20

    25

    RMSE

    aa a a a a

    b bb

    RothCCANDY

    DNDCCENTURY

    DAISYSOMM

    ITEVerberne

    NCSOIL0

    5

    10

    15

    20

    25

    RMSE

    aa a a a a

    b bb

    Testing models

    Waterlevel

    Moistu

    reTexture

    Oxy

    gen

    Temperature

    pH

    DecompositionDrivers

    WaterModule

    Temperature

    Module

    pH Module

    TextureModule

    Oxy

    gen

    Mod

    ule

    Soillevel

    INPUTSMax.Water

    levelRain,PET

    INPUTSAir Temp

    INPUTSSoil

    Parameters

    BIO HUM IOM

    CH4 CH4

    MethaneOxidation

    Meth.Oxid.

    Decomposition

    CO2 CO2INPUTS

    NPPLU Type

    DPMRPM

    DOC

    Waterlevel

    Moistu

    reTexture

    Oxy

    gen

    Temperature

    pH

    DecompositionDrivers

    WaterModule

    Temperature

    Module

    pH Module

    TextureModule

    Oxy

    gen

    Mod

    ule

    Moistu

    reTexture

    Oxy

    gen

    Temperature

    pH

    DecompositionDrivers

    WaterModule

    Temperature

    Module

    pH Module

    TextureModule

    Oxy

    gen

    Mod

    ule

    Moistu

    reTexture

    Oxy

    gen

    Temperature

    pH

    DecompositionDrivers

    WaterModule

    Temperature

    Module

    pH Module

    TextureModule

    Oxy

    gen

    Mod

    ule

    Soillevel

    INPUTSMax.Water

    levelRain,PET

    INPUTSAir Temp

    INPUTSSoil

    Parameters

    INPUTSMax.Water

    levelRain,PET

    INPUTSAir Temp

    INPUTSSoil

    Parameters

    BIO HUM IOMBIO HUM IOM

    CH4 CH4

    MethaneOxidation

    Meth.Oxid.

    CH4 CH4

    MethaneOxidation

    Meth.Oxid.

    MethaneOxidation

    Meth.Oxid.

    Decomposition

    CO2 CO2

    Decomposition

    CO2 CO2

    DecompositionDecomposition

    CO2 CO2CO2 CO2INPUTS

    NPPLU Type

    DPMRPM

    DOCDOCDOC

    Model improvement

  • Predicted changes in LL/SLA ratio

    C4

    Needleleaf

    Evergreen Bleaf

    C3

    Dec B’leaf

    Dec N’leaf

  • Wright et al 2004

  • Work Package 3Work Package 3

    Wright et al 2004

  • Work Package 4Work Package 4

    JULES modular structure

    Ocean andsea ice

    Unified Model IMOGEN Other driving data

    soil

    Canopy conductancephenology

    Dynamic vegetation

    radiation

    snow

    hydrology

    Surface exchange

    Wright et al.: Major axis of leaf variationChange in leaf longevity of dominant vegetation (months)TRIFFID/MOSES land surface schemeEcosystem Demography Model (ED)Moorcroft et al. (2001)TRIFFIDEDSimulating succession in EDLeaf cost vs. mortality trade offModulation of leaf traits by climate: Wright et al. 2005. Predicted changes in LL/SLA ratio