i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU...

77
i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER Hydraulic Model Investigation I.I MISCELLANEOUS PAPER NO. 2.222 May 1957 1 1D U. S. Army Engineer Waterways rxperiment Sta8tion CORPS OF ENWGINEERS V;ck;burg, MNssssipi 95d CEReproduUSE dbv~. the Ic~ for Federal Sientific & Technicalf fInormation Spri cfiold Va. 22151 - - ag

Transcript of i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU...

Page 1: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

i¢• DU PONT PLANTS EFFLUENTDISPERSION IN DELAWARE RIVER

Hydraulic Model Investigation

I.I

MISCELLANEOUS PAPER NO. 2.222

May 19571 1D

U. S. Army Engineer Waterways rxperiment Sta8tion

CORPS OF ENWGINEERSV;ck;burg, MNssssipi 95dCEReproduUSE dbv~. the Ic~

for Federal Sientific & TechnicalffInormation Spri cfiold Va. 22151

--

ag

Page 2: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

• "I / )2

PREFACE

The E. I. du Pont de Nemours and Company, Engineering Department,

Wilmington 98, Delaware, requested the Waterways Experiment Station to

coi.duct the studies reported. herein in a letter dated 22 May 1956. The

studies were conducted on the existing Delaware River model, and author-

ity to perform the tests was granted by the Philadelphia District, CE,

and by the Office, Chief of Engineers. The du Pont Company paid all

costs in connection with the model study and with the preparation and

publication of this report.

The study was conducted in the Estuaries Section of tac Hydraulics

Division of the Waterways Experiment Station during the period 24 September-

I I November 1956. Engineers of the Waterways Experiment Station actively

I connected with the study were Messrs. E. P. Fortson. Jr.., Chief of Tlydrau--,lies Divisi, G. B. Fenwick, Chief of the Rivers and Harbors Branch•

A H. B. Simnnons, Chief of the Estuaries Sectlon, W. H. 1obb, Project Chief

of the model, and C. J. Hural. Mr. L. L. Falk of the du Pont Engineering

Department was present for and actively assisted in the prosecution of

the tests.

:I

ii

297 6i

7 -4 M~' F kIF- .- &

., Ž ... , . . •,.- (

U.

Page 3: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

-XV

CONETNTS

V.MpM• AGE . . . . . . . . .. . . . . . iii

PART I: IMODIMTION . . . . . . . . .. .. . . . . . . . . . . . 1

The Problem. and Purpose of Tests ......Improvements Tested . . . . . . . . . 2

PART II: ME YMDEL AND ITS I.MIICATION FOR =E USTS . . . . .. 3PART III: TESTS . .. .. .. .. .. .. .. .. .. .. .. . .. 4

Test Procedures and Types of Data Obtained . . . . . . . . .. 4Preliminary Tests . . . . . . . . . . ... .. ... 6Base Tests . . . . . . . . . .. .. . . 6Tests of Improve=nt Plans .................... 8

PART IV: TEST RESIS .. . . . . . . . . . . . . . . . . . . . . 9

Individual Tests of Deepeater Point Plant Discharge . . . .. 9Individual Tests of Carneys Point Plant Discharge . . . . . .Combined Tests of Deepvater Point and Carneys Point

Plant Discharges . . . . . . . . ... . . .a a .. 0 0 .. 12

PART V: CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . 18TABLm 1-4PIo0 RAPHS I-6PLATES 1-33

I, m

I .'

,4. 1lAIf

Page 4: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

-'r .*, .,- .* .h# ** '* * , '

II

* dU PONT PIAJLTS EFFLUENT DISPERSION IN DEIAWARE RIVER

Hydraulic Model Investigation

SIPART I: INTCDtUCTION

I ~ The Problen, and Purose of Tests

1.' Deepwater Point and ;sneys Point Plants of the du Pont Company,S located on the New Jersey shore of the Delaware River east of 'Wilmington

S(see plate 1)., are presently discharging high-acidity., high-density by-

products from two retention basins through tide-controlled sluice gates

into the Delaware River. The sluice gates open during times of ebbing

currents and close during times of flooding currents. The gate for the

Deepwater Point Plant is located at the mouth of Whopping John Creek and

Sthe gate for the Carneys Point Plant is located at the mouth of BcLttown

Creek as shown on plate 2. Currents adjacent to the shore line in the

vicinity of the discharge points are low, and the plant ef'luents are

I not being rapidly and efficiently dispersed throughout the river water

passing the plants. Effluent concentrations in all small embnym~nts and

pockets along the ew Jersey chore are at tines higher in the vicinity

of the plants than elsewhere along the shore line.

2. To alleviate this situation it ims proposed that the present

method of releasing efflu-nt intermittently through the two tidal sluice

gates be changed to a continuous release method utilizing pipea exter4-

ing into the river along +te channel bottom.,4'he prirmry p'urp:se of the

model tPn+.R -n. +.M - + ""+ " th way of more rapid d..s-persion of effluents and eli=iwtion of areas of high concentration,

could be e-xpectcd from the proposed changcs. Itvas further desired to

determine the mini== length of discharge line that would be reruired

for each ylant in order to insure rdeqwte miming of plant effluent and

river water. In addition, tests were made to determine the effects of

two proposed plans for altering (straightcning) the shore line between

-*' Deepvater and Carneys Points (as shcrn on plate 2) on effluent diuporuion

"an zq -,

.'@-- -: * * c .. ... . . . . . . . . . . . . ... . . .. . . . .. ... . . . . . .. . . . .

Page 5: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

.2

and distribution. The probable effects on effluent dispersion of dredg-

ing a proposed anchorage adjacent to the plants to -40 ft mlw within the

limits shown on plate 2 were also investigated.

3. The purpose of the shore line alterations being considered by

the du Pont Company is to control ahore erosion. Definite conclusions

^oncerning the effects of these alterations on shore erosion cannot be

derived from tests in a model built to as small a scale as the one used

in this study. However, certain effects of the changes in shore line

features on the hydraulics of the river may have a bearing on shore ero-

sio', and these effects are shown correctly by the model.

Improvements Tested

I. The proposed pipelines to replace the sluice gates are to ex-

tend from the shore perpendicular to channel center-line stations 168+000

"and 178+000 as located on plate 2. At the Deepwater Point Plant. oppo-

site channel station 178+000, four lengths of 5-ft-diam discharge lIne,

i.e., discharge line extending 0 ft, 400 ft, 550 ft, and 650 ft from the

shore, were studied. At Carneys Point Plant., opposite channel station

1684000, three lengths of l-ft-diam discharge line -- 1200 ft, 1500 ft,

and 2000 ft-- were studie-.

a . Three shore-line conditions were investigated during the study

and are designated as the existing shore linae, and plans 1 and 2. all of

Vhich are shown on plate 2. The existing shore line is the unir.-roed

19,54 shore line in the vicinity of the two plants. Plan 1 consists of

the minimum alteration required to straighten the cxisting shore line for

about a mile downstream from the Carnoys Point Plant. and in cddition it

extends into and contalms approimately one-third of iel~ Cove. The

plan 2 shore line is approxilatnly parallel to and 1000 ft froni th• e..ct-

ing shore line in the vicinity of the Carneys Point Plant. A di-hc cnn-

nel for the d!VC uirge from Whopping John Creek is provided, and the plan

2 shore line also extends into Relms Cove as does plan 1.

6. The proposed Deeplater Point anchorage, to be dredgcd by the

Corps of Engineers, has an approved project depth of -40 ft mlw withln

-the limits shown on plate 2.

-_X-

Page 6: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

3 Vi 3 I.

PART I: THE MDEL AND ITS VERIFICATION FCR THESE TESTS

7. The tests were conducted in an existing model of the D6lavare

f•ver, Limdts of which are shown on plate 1. The model and appurtenances,

,d its r4justment and verification are described in Waterways Experiment

Station Technical Memorandum 2-337, Report 1, Delaware River Model Study,

~dralic nd S z=itE Var~Licat .coi, y 1956., and are not repeated in

f iru report. The referenced report aleo discusses the model-to-prototype,

$•ale relationships for time, velocity, discharge, etc., which are de-

iyevd by the Froudian scale relationship. The horizontal scale of the

rfodel is 1:1000 and the vertical scale is 1:100. The scale re"ationship

For simulation of concentrations and density of the plant effluenty ap-

lIicable to the results of testa reported hereiny is 1:1.

8. Although the over-all model Yas in adjustment to the prototype,,

it was necessary to verify its correct simulation of local hydraulic [

4onditions in the problem area. For this purpose, prototype velocity

cata were athc: ed at three stations designated X, Y, and Z on plat 2.

Averages of comparable model snd prototype, current velocities at these

*elocity stations are shown on plate 3. These plots indicate that the

iodel reproduction of current velocities in the problem area vas very

jood. -

9. Additional observations of prototype surface currents were

Gade by means of floats releascd aizd tracked through the prototype prob-

IS area. Duplicate releases with respect to both time of tide and loca-

tion of release points of floats were made in the mollel in order to learn

Whether the model simulated all conditions as observed in the prototype.

Comparisons of model and prototype data showed that both the directions

Ald velocities of surface currents in the problem area were reproduced

With sufficient accuracy; however, these data are omitted from thif re-

Port for reasons of economy.

_1 1-

Page 7: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

L

[

PART III: TESTS

Test Procedures and Types of Data Obtained

10. In order to insure the best reproduc ion of effluent disper-

sion under various conditions, testing techniques were designed to simu-

late all possible -rot'tyrze f~etures as closely as possible. The initial

acidity of the effluent vas simulated by use of methylene blue chloride

dye, and the prototype effluent conditions of discharge, specific gravity,

and initial concentration were scaled to t+ie correct model values. , Pipe-

line dischýrge from the Carneys Point Plant was regulated by a small var-

iable speed pump, while the Deepwuter Plant discharge was released manually

from an 8- by 1-ft graduated cylinder containing the stock solution of

the effluent. The specific Fravity of the effluent was sdjustrd to the

desired value by the addition of sodium chloride. Difficultli- in obtain-

ing the initial effluent cond!tions were experienced during the testing

program., and adjustments of test results, as explained later, were neces-

sary to insure comparability of values.

11. The concentration of dye was determined photometrically using

a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through a 1-cm sample path at the

characteristic wave length of the dye. The spectrophotorater response

is calibrated in terms of dye concentrations in parts per million. Water

samples were obtained from several locations throughout the model prior

to starting release of the plant effluent, and these sar-ples were ana-

lyzed to determine the normal turbidity of the model water. The average

value of these turbidity samplesý taken throughout the testing poG

was 0.06 ), and since this value was so small and little difference in

turbidity was notV betveen tests, no correction for normal turbidity

was made.12. In each test samples were taken at middepth$ m14dchannel ap-

proximately every fifth tidal cycle at times of both high- and lov-waterslack of the current until aox=Imate stability of the dispersed effluent

(dye) upstream from the problem area wan reached. Samples were then taken

-T

Page 8: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

I ''

the problem area at a number of sampling stations during the finml

a or four tidal cycles for the purpose, i? mast cases, of either lo-Sting the places and times of maximum concentrations or verifying the

4fence of high concentratiuns. One set of final mid-channel samplesja tamn at both high- and low-water slack after the local samples had

4,u,, obtained.~i13. As a further aid in determining the local effluent distribu-

photographic color tra• parencies of the problem area were taken

hourly intervala for the first tidal cycle and usually for half of

Liecond tidal cycle for all tests. In addition, color motion pictures

4 initial effluent dispersion in the problem area were made for tests 3,4l14, and 16. The color transparencies provided an excellent record of

1Itial dispersion patterns, and vere used extensively in the prepara-1on of this report; however., the cost of reproducing them made their 5

jaclusion in this report impracticable.i 14. At the beginning of each test, samples were taken from near

4e surfaces and from the bottoms of the tubes containing the suppliese ffluent for the entire test. In addition, similar samples were taken

A interrals throughout the test. When these samples were analyzed, itfound that in most cases the actual concentration of the dye differed

S•ewhat from the desired concentration. In order to directly compare1e results of one test to those of another, it was necessary to adjust

idata by the ratio of the desired dye concentration to the actual dyec!ncentration. This correction factor used for adjvstment of test data(ý arrived at by obtaining the arithmetic me-an of all values of the- ef-S ucnt concentration obtained during the test and dividing this valtue

*0t the desired dye cone"utration. Th results of tests involving a40a~rge from both plants were adjusted y a factor ropresentfmg th•e

ý4 of the desired dye concentrations divided by the sum of actual dyeCilncentrations. The correction frctora comput o rm each test are*ulated on the following page for tho convenience of the reader.

- iH1

4

""" 4i.. a *-

Page 9: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

I.

6

Test Correction Test CoarectionNumber Factor Number Factor

3 1.126 11 1.254[ 1 .418 12 1.509

5 1.465 13 1.2356 1.646 14 1.9377 1.231 15 1.1488 1.058 16 1.214

*9 4.2.11 17 1.00li10 1.208 18 1.156

15. In all Lcsts mean tidal conditionz "re reproduced and ef-

fluent release was not at=-ad until salliity and tidal conditions wcreSknown to be stable. Fresh-,-atar discharge conditions vere simulzt,-d by

i introducing the req~uired 1lows, for the discharge to be reproduced into

?~relim - ryTct

I

16. Tests 1 and 2 were trial tests to determine the best io-Liozi

for sanpling ststions, the vor}-bility of tcsting and tml( k-nich!1 •

etc., and no detailed rectults of these tests are includcd in thi; rx;::po.-t.

Lnoever, their revrlts indicated that the opti=L= Icrth of dlt'i'-

lin. for each plant could best be dcteruincd frc n indivicuhl t.•s -S~~~which only one plant discharge would be ri~ulatcd. o]o:•• hc tl-,:

disncharGe of both plants should be reprouWcctl, usirl tih c .':z..i . .

Line length for each, to -determine the effects of &Lo.-Jln• cl.•n,

fresh-vater discharge, and effluent density orn efflun•n•L r sAIAo.

IBese T, rts

17. In model inveoti-ntions, tests of ctitstimg prototsl., cotid-I -

tions, referred to as base tests, are zade to provide a dii•ct bssis fc-:

evaluating the results of ssequent tests incorporating pzcr•rs. ir,-., .-

mant plans. Since the effluent dis•.criion frou each plant vas fi'.-t to

be studied r' rzrately, it isa necessary to establish erei•pcr~SlnL b,;Ac

conditions. First a test of existing (or base) conditions vith only' tIh.

77 :

-- .

Page 10: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

ILt ,,,

I '

4jscharge of the Deepwater Point Plant sluice gate simulated 'as conducted

pa designated test 3. Then a base test for conditions with only the

darneys Point Plant sluice gate discharging was conducted and dcnignv te:

ieat 4. Finally a base test, test 5, of conditions representing both

.Sluice gates discharging was conducted. Mean fresh-water diucharge con-

itiono (16,vl-75 cfe at and including the Schuylkill River) were simulated

I| all the base tests, and shore-line conditions af observed in 1954 were i

Wed throughout the problem area. Test condition- are sumtnar!zed in

18. In test 3, the Deepwater Point Plant effluent was released at

the rate of 150,000 gal per m.in for the 6-hr interval between the bouras*

of 1.5 und 7.5, which included most of the ebb portion of the tidal cycle.

*e release point was at the mouth of Whopping John Creek, as shown on

plate 2. The model was ope•gte& for 15 stability cycles prior to beginning

release of the effluenty and operation ias continued for 45 tidal cycles

after effluent release was started. Samples for spectrophotometer anal-

ris to determine the initial turbidity were obtained prior to starting

7ke effluent release. Samples were obtained at middepthy aid-cbannel at

Pive-cycle intervals, starting with cycle 5 and ending with cycle 45, at

selects4 channel stations at times of local hIgh- and low-water slack.

?- adjusted res-lts of these samplings are contained in table 2. During

cycles 42-4, samples were obtained at various times throughout the cycle.

ýt eight of the sampling statins shown on plate 2, and the adjusted re-

.01uts of these samplings are sresmted in table 3.

19. In test 4 the simulated Carneys Point r.las, effluent vas in-

f•oduced at the mouth of BDottovn Creek during the 3-hr interval between

homvi 1.5 and i.5,at the rate of 15,700 gal per min for 27 tidal cycles..

Ikis test was conducted in a manner identical to test 3 and the results

Ssamplings made during this test are 'presented in tables 2 and 3.

20. The conditions ior tests 3 and 4 vere combined for test 5.

All time references in this report refer to cycle zero, which is thecycle during which effluent release was started. Hour 0.0 is the timeof the moon's -transit of the75.th meridlu. . .

4

Page 11: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

The results of saqplings made during thirs test are also inc!jUdC in

ta"les2 and 3.

"Tests of Improvemr.t Plns

21. Table I summarizes the test conditions tor al3, tests ccn-ducted. It is apparent from this table that test 3 wUs the b&Cse testSror tests 6, 7, 8, 2-, and -13 in all of which only the Dýepw-atcr PointPlant vas discharging and effluent outfallf, shore-line, and anehorzcgeconmditions were varied. Test 4 was the base test for tests 9. 10, andU1 which involved only the Carneys Point Plant discharge and in whbichthe outf.al locWaion and type of effluent release were varied. Test 5was the base test for test .1 Lwhich combined the plan I ibore line vithLtht opti=mm lengths of discharge line for the tvo plants .s had becn de-termined from the individual tests with only one plarnt diachArig.m.Test 14 wvs in turn the base test for evaluating the effects of .water 41ischarge (tests 15 and 16), the effects of the plapa 2 rhcre Lis,as compared to plan 1 (test 17), end the ef fects of rc-.ucixg t a.l--• Isf

,'Z grz.vity of the plant effluents (test 18).

*'

Page 12: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

PART IV: TEST IMJ1.TS

lnI'Vidyal Tentr. ot Deerwate- Point Plant DiscIPt go

2 2. Comnpariso of results of test 6 with those of test 3 shows

the effects oa effl'.e-; d _-ers4o• of eh~ iug from the intermittent

t.ý.9, reier~ss used dt preseni to a continuous release at the shores

S hile comparison of the results of tests 8: 12, and J.3 with those of

test 6 shnvws thL efferts of extending the discharge 2lne various dis-

tances into the river. The o'utfall points for all, these tests were

located nn a line pei-pendicuJlar to the channel center line at channel

station 178 4 C1O, and the volume of effluent discharged during each

tid&. cycle for all tests zes approximately equal. The dist.ance be-

tween the shore and the outfall point, and the depth of pipe invert

samulated for each test are shown in ta-ble 1, and the effluent dis-

charge points or' outfalls are located on plate 2. The results of aUl

of thcýa tests are presented in tables 2 and 3.

23. The effects of the pipeline lengths used in these tests on

effluent distribution are shownm grardicaly on plate 4., which rrez rits

the final ccncentrations observed at tinzs of higJi- and lv-Itar ]ck

along the center line of the n.vigation channel. The zaxinur e-ffcct

of dischxrge line 1r. •h was noted when tae outfall Vas located 400 ft

from the shore line (test 12). Additional lengths of pipaIMnc bcy rAI

400 ft appzvared to offcr little benefit in decr•.cin- conc.ntratio:-s

in th: =ýediate vicinity of the plant or in th, ch .nic.jKzrr vith

the exception of conecttrztio.,Z at the cable tower (point I.4, p3Ltc 2).

224. Close examirnaton of plate 4 showrl tlht the res~ults of tc-.t

13, outfall 550 ft from share, do not full bCtw,-en tle re.ults of tcts

8 and 12 in which the outfahlls wera loca 2ted 650 =nc3. )1 CC, ft £yc lm

respectively, as would noriaally be exp-cted. As Fn indicc.tion of tb(!

Probable validity of test 13, plots of dYe coniccztratiou vs ti: (.:;

represtnted by 1 id0. cycles aftcr release of cfflucnL) Ior tU.cts in

this series were prcj-ried fro= the nid-cazrnel obsr tIcnis tat sttio,

-4 r''.Zq tb 2.J•. ._

Page 13: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

10

1704000. These plots are shown on plate 5 and indicate that effluentconcentrations were extremely erratic at the time the final observa-

tions for test 13 were made, and this is attributed to the fact that .

the effluent injection aMiratus failed temporarily shortly after

cycle 20. After the apparatus was repairet, the effluent was released • Iat approxintely double the normal rate until the deficiency in total •

dye required was corrected. Operation ti: was not sufficient to pr-

mit proper mixing of th,. effluent introduced at the high rate prior

to obtaining the final sarzples. This should be kept in mind in eval.. A

vating the results of rtest 13.

25. The plots of ýeffluent concentration vs time were found to

be very valuable in -determining whether or not effluent concentro.tions , :4

in the problem area were stable when the final observations were made.

Examination of the plots for tests 6, 8, 12, and 13 show th1A condi-

tions were essentially siable for tests 8 and 12, concentrations vcwre

still increasing for test 6, and coIcentrations were very erratic fortest 13. In the case of test 6, the greater leigth of time required '" .

for stability of effluent concentrations ayper-rs to be attributable to :"-.5location of the outfall at the shore. The much lower velocities near

the shore required an appreciably longer time. to effectisely diCUpx re

the contaminant over the entire width of the riv•or .

26. The results of observations made at the crd of each test t .t

various timeus throughout a tidal cycle are recorded in table 3. All.

samples were taken at middepth unless-otherwiseo noted. The r6inaxie

value observed during a cycle was recorded at the lottion of 2achsamplintg station on a map., and the 5-ppm, i0-pri, and 50-ppm cotcu,ýJr.

were drawn with the assistance of the color traznsp8.rencien. Exch plots

for tests "3, 6, 8, 12, and 13 are shown on plates 6-10, rcr-zp!Ctvel.y.Compa-risons of these plates show that changinr froma the ei13ting Zis-

"posal system to -the continuous discharge at the shore (test 3 and tent "

6) greatly reduced the size of the area of hig-cot Cocentration (50

" ppm) but had. little effect on the size of the areas of lower cunýentra-

tion (1-0 and 5 PPm). The cbrnge from the continuous dico~at theshore to a point 400 ft from shore (tests 6 and 12) greatly reduced the

'4.S1

1EREIx

Page 14: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

7_71

tMy

i IjI;Ize of the areas of all concentrations., Farther extension of the dis-

Sclarge line into the river (tests 8 aid 13) did not fi-xther reduce the , I

fln~e of the arev., of contamination.

2. n order' to determine the effect of pipeline length on con-

t'.entratidns throushout a tidal cycle at critical locations in the p'ob-lem ares (stationsNv .. and Lf plate 2), the values obtained from ob-

iernations mýd4e at these locations tbroughbut a tidal cycle were plottedS}"tipe and are ubown on plate U.. •Thbse data are also include iLu

t te-ble 3. ) Ites:ions of the outfall point 400 ft from the shore towardtb canelcauvOe#-4 reduction -in i,.dy -eoncenta-ation thirbu~iout the tidal

,,cycle a14 :31 three critzcal locations. ML~n concentrations at loca-

Stion Nj, under the Delaware MAmorial--ridge, wee decreased from abuatS6 pp.- &to about 2 pM=, Yaxini"• concentrations at station M4, located ad- A

i_ ,Ifcent t( the -submarine -power aable -tower- -vere -redute&ýfrom aboutV-8.2- 2 •

pjm to about 4.6 Ppm; while Maximum c'mnctntration at station I, located

iic~r thie shore upstream from the outfall point, were reduced from about

0. 4 to about 2.5 ppm. Sbiftinaýthe outfall to a po4tý650 ft from, the

M-ore further reduced the Ii-xivun concentration at location M to 1.4

- with little ef2ect elsevhet.

!rects of prc3ý?se& anh~rga

28. ondtios'fo tets 7 and 8 were identical except that the

•Pmroj~ed Deepwater Point anchorage dredged to -4o0 miw within the I ts itf

,v-nlmow on plate, 2 vas included in -test 7- COrMpmlisons of the results of

IthV'ce tests are showm on +plates 5 and 12. Contours of the izxii-m ob-

",,rved concentrations for tests 7 and 8 are showm on plates 13 and 8.,

SPetively. These data indicate that dredging the anchorage w+uva I

hr.. no siepificat effect on effluent dirtribution in the Irobian arca.

hIndiviedl Tents of Cc.r•ncys Pcit Plant Discharge

29. The conplcte resilts of the tests of. plans 9, 10, and 11 are

. in tables 2 and 3. Plate 14 includes a plot of the effluent con-

S. ''!itratjLons vs ti=e at cbamniel st.•ion 170+000 throughout each of theseli~t. At the end of tests 10 an:J21, conce:-tra.tions wore 1:tica ly

--. . . . _+ o . , . *.. . . . ____. •+.

SS .--• . * - - -

Page 15: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

Z111

p;ize of the areas of all concentrations.. Farther extension of the dia-

clarge line into the river (tests 8 and 13) did not frtbher reduce the

,dle of the arev.., of contamination.F 27. In order to determine the effect of pipeline length on eon-

1 entrations 'thoughout a tidal cycle at critical locations inm the prob-

lem area (GtationsNý 14 and L. plate 2), the values obtained from ob-

ij troatbons made at theree loiations otbroughut a tidat cyclet re plotted

zVo t* andhre upt-ra o m =Plate 1o. uTase data are also included in

4toabout 2.5) ppm.son ohfti the outfault point 650 ft from the soetwr

1 5 oe at afu three crth calxlocations. Maximm cncentrations at loca- i

t 2on N. under thie Defavare 7m~rial-nridge.8 were decreased frome th at

[r o- 6 about 2 vpas ind concentrations at station MO located ad- f

hJcent te tshe submaoine n-platr ble-stoner. -ere redures : from -tacidt-

-eto about 4.6 rat while ma.ximum conctsa trat at staton Lates located 8

iirepr thve Thore upstreat from tho t doIuthe pnreduced from aboutM to -about 2.5 pm. ShWti:*Z the outfall to a polu65 t from", the °

shir-e further reduced the i concentration at location M to 1.b

a wihn itl effect nn dstriutio th

IcWects of frcpC srd atchrage tDch e28. Conditions for tests -7 and 8 vmre identical except that the.

Proposed Deep-,,,tar %oint anc•horage dre~l•:e-l to -40 mlw within the J&zita !!:

Ir,-2h9. on plate 2 ss itcluded in otest 7t etoqpxlasons of the renults afe

V i ine tests are shoam on Plates 5 and 12. Contours of the effximue on-

-,rved concantrati!ons for tests 7 and 8 are siown an pltes 13 and 8, .e'MrI:, eetively. These data indicate that dredging the anchorage w'olJ

"Iv no signif i cat effect on effluent dirtribution in the probien area. .•

" i IndiviCual Te.-ts of Carncys Pin.lt Plant Dischsc•z .e

• • 29. The co-:plete remilts of the tests of, plans 9., I0., and nI are

I Y.Ive in tables 2 and 3. PlatLe 14 includes a plot of the efflue-ntu con- ' •

• i:'1,trations vs ti=e at channel stat-ion 170+000 throughout each of these i\ '$

" A.Ut43. At the end of tests 10 and/ 21, conce:.trations were I :ticallyiI~

Page 16: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

S13 r.

the effluent. The complete results of tests (base test) and 14 are'

included in tables 2 and 3. Comparative cwves of the effluent con-

centrations vs time at channel station 170400 for tests 5 and 14 are

shown on plate 21. It is apparent that stability from the standpoint

of dye concentration was not reached by the end of either test. Test

14 was continued for 47 tidal cycles, and it does not appear that the

ultimate maximum values would greatly exceed the final observed values

for this test. All correaponding values would be consit~rably lower

than values determined for base or test 5 conditions. The high- and

low-water slack dye concentration profiles along the channel center

line for both tests are shown on plate 22 for comprison. DyM con-

centrations upstream from the outfall points are considerably higher

for test 5 than for test 14. Theeffect of changing from sluice

gate to pipeline on local concentrations throughout a tidal cycle at

stations N, K, and D (located as rhown on plate 2) are shown on plate

23. These comparative curves show that local concentrations were re-

duced at all three locations. The mmdvmum concentration contoursy

showm on plate 24 for test 5 and on plate 25 for test 14. clearly

showa the advantages of moviný the outfall points avay from shore and;

changing to a continuous-type discharge. The areas where conc•ntra-

tions exceed 50 ypm are practical3y eliminated, and thev areas whlere

concentraticnsxxc•ed 10 ppm are great~y reduccd end rnved av:y from

shore. Concentrations exceedain 5 ppm were elimin ted alc-rZ thn

shore up=zt-eam from Deep-tcr Point. It is pointed out i-t at ulrzut

all stations whare concantrations exceedaig 5 j were obseIIedI, thcsample vas obtained from the bottom. S•-face cc_-ples at the sarz sts-i

tions showed lezscr cozcentratious.

Effects of frosh-i-tcr dir-chr~ge

31. Results of testr 15 ana 16 •ma:e to dc:~ d the effects of

fresh-wuter dischargcs of 32;950 and 5,000 cfs, at and includi"g the

Schuylkill., should be cor-ared to the results of test 14 which was m.-de

for similar conditions with a. mssm fresh-water d&schcrge of 16,475 cfs.

The corplet' results of there tests are included in tables 2 cena 3-

Effluent conccntrations at chanrnel station 170C+0001 plotted &Z&' A

I

Page 17: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

Iz

time in tidal cycles for tonts !14: 15, and 16,• are shown on plate 21.

The results of test 15 vith the high discharge indicate that dye con-

ditions bad become stable prior to termination of the teat. Dye con-

ditions were practically stable by the end of test 14 as has been pre-

viously stated, and only smal1 increases in =Aimum concentrations

could be expected upstream from station 1704000 hbad model operation

been continued until stability was reached. Dye conditions vere in a

very ta-ansient state and were still rapidly increasing at the end of

test 16, which was rade for the low fresh-water discharge. Subsequent

tests involving dye releases at other locations under low discharges-ndicatt- that--Uod&1 -ope-ation for--some 70 to 80 tidal cycles is neccs-

sary to obtain stable dye conditions for a discharge equivalent to 5000

"efs, at and Including the Schuylkill. It is evident that stable maxi-mm values, for th-, lov discharge'vould greatly exceed corresponding

values for the high discharge at and. upstream from station 1704000. It !

is believed tli-t stable aximim values for a mean discharge (test 14)would have been exceeded bad test 16 been continued until stability

of dye conditions bad been reached.

32. 'Mie mid-channel dye concentration profiles for high- and *io'-

water slack times for the three. tests are shovn on plate 2. The pro- ps

Cressive movement of the effluent upstre-m. a~s the fres1li-vater dicch~xseIs dereased is cUr• illustrated. The difference bet•x•tn the results

of test 16 for the low discharge and the results of the other tiro testn

would have been ruch greater bad teut 16 been continued until stable

dye conditions had been reachei.

33- The contours of =zxim concentrations at thin end of tezt.

1I#, 15j, and 16 are rb.T,-n on p~ates 25,, 27., and 23, rcc t.-c-ly. Com-.

poricon of plates 25 and 27 shows that doubliLS the diCbzjýe (Afrcm l647'

1to ,950 ef rs) creatly reauced values at all lecaticmus. Pla~t e 28.. ahv-

Ing the results of final observations for test 16, is 1wlue&, but it" hould be noted that stability of dye conditions had not bccn reach-ed.

Values were still lov, sinea the dye vas still being tra si~rted in anUpstream direction at the tz1& of the test.

W W

S. . .. . . .----

Page 18: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

Effects of plan 2 shore line

I3. The conditions for test 17 were the ase as described for

test 4j except that for tent 17 the shore line between Beep'ate Iloint

and Carney Point was revised to conform to the plan 2 shore line (see

plate 2). Effluent zono -trations at station 1704000 through ut each

of the tptits are shown on plate 29. Values far test 17 were initiaL17

lower than corresponding values for test lk&, ard this condition still

existed at the end of test 17, at which time dye con.Itions could not

be considered to be stable. The low initial concentraticns observ'ed

during test 17 are attributed in iprt to- the fj=t thtthea 1ald2- A-P

Concentration of the Carneys Point Plant effluent vas only 75 per cent

of the desired cnntration. This was discovered and corrected-by

changing the effluent supply during the ninth tidal cycle. The eact

over-all effect of thi dye defioiency cannot be computed from.avail-

able data. The r-rofils of d;e concentration alonz the cbanxil centr-

line at the etd of both tests are shown on plate 30. Values for test

17 are much lover than carreIponding values for test 14. -It is not

believed that th2 chan•-• in shore line ;oduced Guch a drastic chaxge

in the dye distribution throughout the problem area as is indicated

by the results plotted an plates 29 and 30o. Tz dC!.-ee in 4•ey don-

eantration in the problem area should have been accoip'aUicd' by an in-

crease in dye concentration elewhvre if the t~tal voluna introducX is

the s=a-. Since such an inue--se was not aTreunt, tie remilts are

*cidcntly aeffc-atd to s=,e 6,c-Z by the Cafioienr" in total d•'e in-II

tro•duced cauc-d by the lveinitial cor:xztra•it'z of the Crc-cYr roibnt

effluent, TiuT-c•bir0 TlhotogrmZhs of cznfrtti beintg trrmsprtn&d oan

the ater murface at tire of rximum currcnts wcc v v e for b r

plan I, and plan 2 cozaitiong "-itb the -an frczh-1'atzr dirchbarge.

Similar VhotoLia wcre m=,;e w-ith the ;rop~sed arahbrcge dreZZeS in

the =del. Em-mirn-tion cnd coLrpa-rison of 1=toraphZs 1, 2,9 antI 3S

showing svrfce-currnt directionz at rtrxenS1hz of flood and ebb fur

base, plan 1 anad plan 2 condiitionz. rczCfŽtiT !, aYhor tS:z orc-

sive ellmination of ho--re-line eddies. ffrzt as the plan 1 ubore line

was installed, and thcen as the chue to th. rv.nn2 a-ri klirn -zn .. T: an

77' 4

L*~ '44-

Page 19: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

The flood-tide eddy area upstrez- from DeeFriter Point was completely

eliminated by the plan 2 shore line and ebbin currents were also

brought into excellent alignment in the vicinity of the two outfallpoints. Simlar effects may be noted on photographs 4-05. which show

current directions for the base test and plan I and plan 2 shore lines

with the anehoraceg rege. Appretly the plan 2 shore line alsocaused an increase In velocities at the outfall, points accompanied by

•, Incresed turbulence and more rapid mixing and dispersion of the dye.

. • These -factors would result in values of dye concentrations for test. 17being lower than correspohding values for ,test 14. H~owever; it does

.:-" . . . .... :: i••se m•-i~e•y-f~l t~~e. ged f--e~e ceindicated by eom ai'• of

the curves_ ola-Plte 30 wol be caused by the sbore-1,e Charge alone.S•The contours of =xmt= concentr tions, at the end of tests 14 and 1i are

• ,Eff ects-of d edieasing the n;- ae•siMY of, the, •t ,eff•.en~ts; 35. The conditions of test 14 were repeated ýýor test 18 except •

I .•.s4e:ýed... ._Inthel.13robi• a e: The complete results of- to, 1B are in- :•'Ili elJuded In•-tebied Zj, -3: and 4. The d e:oncentrations obkervd at sta- o

44 4

Ste-sts 14 and 17. -donditions at -the end of test 18 a~pp~r to be fairy

•'stiable$ and• -Uttle differne in the "tae of" increase in- dyc- concentra-

tion 4t:t.tatlo= 1704000 is noted betwam•_ test 17 and test 14. he.Sfinal profiles of dy concentrations observed along t-hec cla•nnel center' line for test 18 are shown on Plate 30,r and no slgrn[ficc,.t difference •

Sis aen•rxnt between the rem-lts of tests 3L4'amld 18. anzever, co-,:j,ýr..!•u

of the contours of •mmmmlocal concentrationis an Plate 125 for" tent 114.- and On Plate 32 for test 18 indicates that the- -density dez:re"re rru.t,.•- " • "

!" in the effluý,emt being retained in the r.hallo-.,-wte; areas., or in dapth

•. •equal to or less than the- depth of the outfall. The heaviar effliient•:•.used for all t-ests except test 18 had been Observed to flow from the "

cr{ utfall,_Pint with the slopm. of the- bottom which -is genearel]Z towa~rdThe elood-tdere ehygher velocities and inc asmeeter uoint c pete3$"

theli -ated by the plan 2s•h•ore lWI e Ad atbb urbulent ere also.

brought into excellent alignmen T7i h iiiyo h w ufl

Page 20: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

I ~~and where larger volumes of weter for dilution of ti ef fuetee

i ~available. Thin p~henomenon was particularly aippmrenit d~uring times of

03slack current. This resulted in a rapid dislersion rates, accorDxuiedl by lesser concentrations locally and in gemeral. Th downslope migra-

! i tion of plant effluent did not occur when the density difference betVieen

:• Iit and river vater was reduced to zero. The plant effluent týeW to•i iremain in the vicinity of the outfall, points in higher concentrati•ons than

Sh~~ad been obser--ved- for test Ap• and the area where concentrations exceeded

36. The results of observations nade at -selected cbmaralstations I

during the 17th cyle of model opernatio..n, after release -of. t p;&# I

i effluent was started for test 18j.'are, included'in table 4 along with |

, ~similar obDservati-ons for tests 15 and 16 which were for conditions of

hg and low fresh-water dischar~ze. respectively. The test 18 obsezxv&-tions at stations 1404000. 1704000., and 2254000 are shown on plate 33whbem dye concentrations •exe plotted againut time in hours, The 'vaeria-w_tions in concentrations occurrimg during a tidal eycle C=u be seen from

an exmition of plate 33- Yxi~mn concentrations in the ehannal., Inand upstre=n from -tha lproblem area., occur during the Portion of" tb:e tida°l

cycle w~hen currents are flooding as illustrated. by observutions at sta-tions 1404000 and 170+000. Yaximum-concentrations do,,.-stre=-am t -station

225+000 occu-r during the ebbing, portion of the tidal cycle. Da-ta con-

• ~tainued in table 4 and on plate 33 do ndt re:;rcscnt final •valur.s but are

S• included to chow the variation that can be exIccted at selecte loa--

• tions within a tidal cycle.

*-

V :

'1,I'r-PA-, -- ! - n-17

Page 21: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

18

PART V: CO4CL=I0XIS

"37. The follcivng general cor'clusions have been reached on the

basis of results of model tests reported herein.

a. DefinIte. benefits with respect to reductiorn in =aximum- concentrations near the shore can be expected an a

result of cocverting the intermittent-olulce-gmtetype effluent release now bcing utilized to a continuous-t)-pe release from a pipeline exteuding from the shoretoward the channel. 7he plant effluent would in effectbe released in a larger volume ef vater vhere bettermixing conditions exist vith resultant generally -lowerconcentrations throughout the problem area. The testsindicated that the proposed pipelines preveated con-centrations in excess of about 5 ppm near the shore andat the surface.

b. She minimum length outfall lIne for the Deepvater PointPlant, located on the alignment shown on plate 2, to in-sure a signiricant reduction in concentations at thecable tower and at the power plant intake (locaticns Mand P, respectively, ca plate 2) is 650 ft. Extensionof the Carmeys Point outfall beyond 1500 ft does notappear Justified; however, test results indicate that noshorter length should be used.

c. Effluent concentraticas throuc•hut the problem area willdecrease as the fresh-vater discharge increases and thereverse will accompany any reductions in fresh-vaterdischarge.

a. The prped plan 1 and plan 2 re'visions to the shomre lineas showa on plate 2 will cause reductions in local con-centrations c)lefly because of the elimination of pocbatsan4 projecticns fo-u& alcng the original shore line vhichtend to trap the effluent In sz=ll eddies end createpockets of higher concentratlons.'

* e. No mterial benefit would be derived from measures takento reduce the density difference betvwen the plant effluent"and the river water. Test resulls indicated that the'--avlcr cfflucnt icr,•d ,do'.s-lopc, particularly ncor andduring times of slack currentp vhich materi&•aly aLded thedispersion process. ,

38. It should be pointed out that the above conclusions refer en-

tirely to the effect of the various factors tested on the ability of the

model currents to disperse and dilute the dye which was used to s4Milate

Page 22: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

w

19

Point Pleats. These resultr. M-1 t be interpreted by erigineers Vithkl awlV

edge Of the chrmirnth w.St17imroes nte Po

totype and vho are aware off the con~eentrtatiewl vhich can be tolerated &t

39. Conclui5ons reques~ted regard3 ml the effect of the Plan I n

pin2 shore lines on shore erosion ca=iot be drs."' f rom, the results Orf

ayof the tests reported herein. Erosion of the shore bve h w

plant- sites probably us not the result primrilYoftdluresbt

of vash frC~MPa~sing ships. The scale relvptionshipB to which the existý-

ino Delavare River model Is constructed mBe the =alnn4is of problems

ii of this type impossible. I'

iiw

N7 ,17

Page 23: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

C',.'.. C' I- o. -

A g,

1q~ 38 8 8

88 8 8 8 888 8 4kAo uco^ 'ftNW% %C D ,c0 0 o -t-t t- 0 10 t- 0 t-0 1-

A4 ... M1

0,r'.A 4 )

cr0

.1 o A0 e0 A

4~~- ifU LINrU' 'F'. if V% 6 U 6 * * 6

$ a 3 4 41 p4*

~.4 .44JU888888

co C. N . A44 . C . 1 .

t1. r- I- rAt -T -t-t - U. 4. 44 St t i. -:, -2t 1, -t AL S

clcj4~ 84 'A~ 'A 84 ýR 'A %A g0.j£2. : . - .. .

140 m2 14 fl).4 4 4 4 0 .2 C -i 00 H. C, 44)').

0..43 100 4 4 . ' -46C 'S.* . . 0

0 )4,

44 4. 0 0% m 4 ri 0 j1 n . 0N0 I

I)1 CI LA 4 Cy C4. %4 r44U.C

61~~ 11 1. CO 4

I244 10 14

C6 L

4.-.".if t, '

t- 4o o

*4~434

Page 24: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

Ask Ttrfit a luet iA ?twrpeikie 7"t4 :

.1 -. U- - .- Z

I'1gh-vato r-j" k Ccjimentait?1.

... .. -... .. 1..9. -.

155 0.37 0.80 1.07 1.10 1.3 ............ 1.53 ............. -.6 -.... . -.. 1.61 1.59

16o .0.2.. ... 0.5 1 . .. .1.."9 .. ........ . . .... . .... . .... ... . .... .6 I. 5165 ........................................................ .... 1.69 --26S10 0.26 .... 0.650.90 .. 'A ,.29 .... .... .... 3.17 .... .. ..... 1.0 ........ 1.61 1.6? ....

75 . .... .... .... .... .... .... ............ .... ............ ..... .... .... 1. 5 .190 0.15 ... 0.1.7 0.69 01e q.&. ... ..- .. 1.17 --- --- -- 1.50 --- --- -- 1.620 1,.6200 ............................ .... . ... .... . ..... ..... ..... ...

20D....................................... ...... ........ .. ... 0.9 --.250 ................. .. ............. ............... .. ......... 0.6

.' .. . .0.. . . .6 5 .250 0; .... 0... 0... 0... 0.0 ...... ...... 0..... ....... ... .. .... 0 .

15 P~ .01, ---- 0.0T 0.21 0.05 0.0 .... .. .. .... O,.B .. ......... 0.,D9 .... .... ..... 0..0 1D.03 ..... . . .0 ......................................................... ..... ....

15 n ..... .....- ... .......... o. . .... .... .... ........ ........ .... .... ... I"." 0.• ...170 .. ... v.. 8 0.27 0.26 0.27 -........... . 77..... .. 0... 0.30 . 0.36 0.33

in .~~~. 0.... .69

. .. .......... . .... .. ............. .... ................. .... A...................... .

S: 180 o.13- .... ¢.61o o.*rt 0.82• 0. . ..3 o..•o. -. ...... . .. . . .. . .. . . .... . .. . 0... . . ..5

190 0.1 -.... . 1.05 1.18 1. 35 ....... . - ......... 36 2... .. ,15.......... ....... . 58:

"250 ........ o. ... .........................

00 ..................................... ........ ..

20.50 .. .. ............. .........

230 0... .... . .... ........ . . .. .. .. ....... .... .... .... .... . . .. ... . ... ... ..... .1o0 .. ... .... 0. 0.... ........ o.0.62.............................................. ....... . .121 . .... .... 0o. . 1 o.... ......... C- 3 : ----.... . .. ".. '... . ...................... ...10. 0... - 1........ 1 .0..5 2. ......... .. . --.. . ........................ ..............

145 ~~... .. 06 - . 5. .... .~t I. ...... .... .... .... ..... ... .... .... ....150 .9 .... , .... ... . ,' ... .... .... 1C.... .... I... .... .... .... ... .... ....... .... .•

1 0.. . 1.21 1..08...... .... ........................................ .... .... ..... "...270 0.61. .... . 1... 0 1.36............. 1.(2 ................... .... ................... ............6zo 0.4.8 .... 1.13 1.23 1...9 ........ 1.70. .... .................... ... . .... .195 ..... .... .- ........ .... o."q ................................... . ......215 .............. ... 71 ........ G. .c........................ .... .................250 .... .... .... "........... 3.'. ........................ .... .. ..........

iow-vater Clark Cor-entrat~~ 4160. .............. .o . .............. C.00 ......................................................10 ............... 01 ............ .. "o " .... .... .... .... .... .... ".... .... .. ..... ......

- 01 .............. .7...................... .... .... .... .... .... ........ . .... ......... .... 0.... 0.7............ 0.6. O....... .... .... .... .... .... .... ".".".:.."."...290 0-47 ---- V.75 1.6T e................ ............................ ........... ....J2I5 0.1.3 ... 0. U C0,9 1.09 ............ 1.ý9..................................

2100 0.ý5 . t.. 3 1.F3 LEO......................................................................205 0.9 ---- .0 .... ..ý3.... ..... 1.~... .... .... ................... .....................21 ---.-- -- ................... ........................ ................... ............~~.6 --- --- ~ 1~.............. ........................ ................... .....

.~ -........ 4....... ... '. ........ .... ......................

250..............cL...............1;...................................... .....

32.........-- 0............C..0.8.... .. ..... .... .. ............. ....... .....

W2............ o..........cs........................ ........................ ........135.. ..... .... .. .. 3 .. .. .. .. .. . . ... .. . . . . .-.. . . .. . . . .

1.07~~~,ý .... 2.t1~33............. .... .... .... .... .... .... .... .... ... ..............70..... ...................... .... ... .... .. . ..... . . ... .... .......

175.................2!.(l .......... .... ............... ...... .... .... ....... ..

1115................... . ... 1.... .............. ........................ ..............35 0..5. .... .,1. 1A1................. ...............................................

0,50............. 1.9............. .....................................-................................................ ........................ ........................

.7 .A................ ~........................ .................. ... .....-2 .... .... .....---.----.----.......... . . . . . ..... . . . ... . . . ..

. . . . . .. .

--- -- -- --

Page 25: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

Ter

tcv.vatar Sl~ult Comer~tr-tio

....... ... 0.6o............ 1.63 ... .... ..-- 2.53 3 -0 .. . - .93 .... ..

ag . 3 . .. .. ,.6 .-... I... ..... 1,- .. ... .. .. .. ... .. .. ..53.113-143.:r

34 1. C.6 .... .... 4.W ............ ....-

210 To• -- 2.28 3. 3.60

2 15 . ... ..2 b 2 . . . .. ... -... . .........

2?0 0.....(.5 0.0 179 - 02

I~tgh-vw~2.e S1Aek Conecatjtilol5

3-....... ...

1t3 0.7 --- 0.89 0.71, 1.10 .... . . ...- . ... .. . ... - . . . . . . .11 .. ...... ( 0 1 9........ ........ 2 - .. ................ .27 .. ... ... .. .. .. .. ... •... .... ... .. . . . ' '

• . ..... ~ ~. 0 .. . ........ ..... 0.2 .... ..... .... ... .. . .. "" .. ..

\3 0. .. •.ote .48 ........ . . ... ... "• .. . .

180 0.66 .... 1.0 7 1-.51 ............ -.

'/ .... _. -.. --

10 0.3 . . k o.07 .... ..... ... ... ......

0 ..3 .. . ... . ..... ....1.2.... - -. ... ... .. ... ....... -. --

210 0.•1 .... 0.,0 .... 0.69 -I ....... .... ..

.. .. .

. .4• -.- -- -... .... ....

' ..160 0.T 9 .... 0 .•.0 .1. .

--. . .. . .. . ..

17w .... .

1.. . 5.. .... .. 3 --

180 0.35 .... o.21 0.61 3.72 ..... .... o. -- -- . ........ ... ..

00 . ... .... 1. 7 .......... . . .

910 21• .... 0.10 •.•"... 0 . ... .... ...- --- -- -'' :7.

225 00 1.6.3.. ... ........ ... .... ...

250 ..... .. .o 0..2 (.. 0. .. ...

170 --- o..1 0.0 . . .... .... 0"49 ----.- --

0-6 .... . . " --.

----... .. 2.35 ---- - - - .- --

i.5 0.39 ..... c-.7.' . 1.03 .o . .. ... .. ....... .. . .. ... .. . . . . ....

165 0.35 . ... o. . .9'....1.. ... . .. . -. .... .

i' 0.3.. 0.. . ... o . 0o . . .- 1... .... . ...

• ~ •--•. r. ... o -.. ... .. . ..-- .. .. .. .. .. .

0.97O o .. 0 . . . . o .-

--o .' 8 0. 1 - . . . . .

18s 0..3 .... o.98 .•0.9 " . ... 0.• --- ... ... . . .. . ...... ~..... .. .. ..

05 0.32 ..... 0. 1.%o 1. 13 ... 1.3 .... . ..

2 o- ... .° 6 .3 .... ..25-- - - _" -1..

. .. .

270 ..2 .... . .. I ..l. .10

250 0.7 ..--- 0.7 0.3 C. ... o.- -- .0.- .-...-. ..

P7 0:3 . . 0 -. . : .• .... o... . . .. .. . . . . " .. .. . .. .. .. .

22 .71101 .1 ..01:40 o.3'. .... 0.6 0.70 1.03 0. . 0 ----f -.... . . . .. .. . ....

3- - -

0.2 0 2 (,39 .5'

-1 95. 0" o L O c- -- - ... . . . .. . . . . ... ... . . . .. .

"" ' " M.,i 0.- 44 1* .56t 1.7. •. 13 1- ý2 --- ::: -. I " • "" • " "

21 0

Page 26: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

4 v-

7 4•vTable 2 (6Co~nuti

22 0.00 .... 0. 1 2 0.13 0.. - . 0.0- .0 - .......... - .. . ... ..........

AD0 O.P; .... 0.53 0540660. -. 6 . . . . 0..53 .0.8 3..8 .... o.61 0.8 o.8 ..... ... . . ......

175 031 - 0.70 1.03 - 1.01 . . .... . ....15 O.23 0-o.1 0.74 1.. -.03- . . 1.01 ................. .........200 0.11 .... 0.25 0.52 0.55 .... .... 0.70 ..........2 o.0 0--o.32 0.P9 0.1..1 ....- 0.6 .... .....................2o 0.03 0-0 o. 1.8 0.3 ----.- .3 1 ..-.-.

2.ov.vater Slack Concentration170 o.07 o.22 o.Z o. .. . 0.16 ----. .----... ... .. ----. .185 0.25 ---- o.56 v.62 0.63 ----. .... 0.49 . .. .. .. .. . . .. .. .. .. ..395 0.39 *-0.76 0.86 0.96 -..-... - ....7............20 0.52• -- 1.10 2.15 1.24 ----. ... 1.1o0 . .. .. . .. . .. . . . .. . . .210 0.• - . 0.97 0.99) 1.11, ... . 0 .6 .. . . . .. . .. . .. .. .. ..225 0.50 .-. 0.91 1.C21 1.23 ...... 1.23 .......M 0.42 -- 0. t7 o.96 2.14 .. . .o6 .... ... . . .. . .. .. .. . .. ..250 0oU Q.- .%2 0.o.i 0.63 ........ 0.69M7 0.03- 0.16 .30 0.45 0.55

"0 .0.01-D. 170.37 OA 0.17 .......................................... -^1.0 0.21 --. 0.51 0.32 0.46 0... -.-2 .. -.. .. ....--- - -----.. ................15o 0.29 .... 0.55 0.55 0..0 . 1.1 ..... . ...... .........160 0.63 .... 0.72 0.59 1.01 - . .---- 35 --- -- --- -- --- -- --- --- -- --- --130 C.25 0..o6 0.63 0. 76 --- ----. ............. . .......

Igo 0.25 .. - 0. 46 0.60.63 ...... 0--.08.05 0.29 .... 0.21 0.38 0.-3 ---- . 0.51 .........................-. ....... ........ .--250 0.29 -- 0.13 0.;5 0.38 ...... 2.5 ....---- -------..............................

1 -v. tt..r £Slack Conetttr.tton2' 170 0. .-- 0.13 .1 3 0.o7 .-. • ........

260 0.17 --- 0.17 v. 2. 0.29 ... . 0.5 ..... ...... ....... ...... ....*............ ...0• 0.51•-0.59 0.76 1.09 13......... .......200 0.51 .... 93 0.0 2.98 . ........ 2.2 .................................10o 0.80 .... 0.59 1.05 . ... ... 1.-. - --.

2 215 0.45 ....-.- 0 1.(* 0.97 ....... 1. 35 ---- ..... ... .. .... .. ... .. .. ...-250 0o.1- - 0.350o.55 0.67 --- -- .05250 C. e5 0. 0. o. o. ---........- .---- 0 . ......... .

125 0.12 ---- 0.... C.'.. .. 6 0.2 --- o.-- ....---- ---.. .... .... ....240 0o.- .--- 66 o.'. 0.81 o.e2 . ........ ....... .... o. - -............... .... ... .. |

250 0.69 -.. 1. 1 . 4.1.- 1.34 - ............ . ....... ...........................1160 0.65 .... 1.0 .-L3 1.55 2.55 --................-. 2 .............170- 0.5 2 - = 22 1.50. 1 0.................50 . .9 ..........................f10 O.O 0.. .. 0.702 .30 .L4.7. ........... o.23 -...........................190 0.21 --. 0.52 C.5 0.92 1 .10 .. ..... ... ......... o- --...........................;05 0.10 ... 0.37 0.51 0.70 0.85 . ....... . .. ... ... 0.9 . ....... ........... ......

o50 0.-0 - 10-03•0 0.0 0... ....7.. .. 0.3 .........................1av-vater Slack Comz.tratlob.

170 0. 3. ---- .. 0 -3.7 0. 1 7 0. 9 2.0........................ 2.1 ........ .................. .170 0.0 .... 0.17 0.73 0.68 01o .6.0... ..... 21.. .......19o 1. 1.... 1.301-•3 1.1 -.... ................ . .65-'-- -....................200 1.27 . 72. .7 1.93 2.C0 1.76 .... ..... .................... 1.9ý. .. .... ..............21 0,1. .... 1.67 MA.3 0.85 - -0. -...................... .......1. -.-.................215 0.%5 ---- L 1-2 I5 2.61 1.69.............-. .- --6 . - -. . . ..-

2m5 0.2 .... 0.9K 1.;2. .10 1.4.7.................-......:' ... .....9250 0.12 --- 0.37 0.63 0.71 0............9. --.. .. .. ...... ----............. ............

Tr±fg4wate? Clac10rk .orcazt on22-5 0.19 .... D. ,2 0.190.11 0.29...0..."5-.-..'a.........22. 0. ! .--.--0.~ 0.2i's 0.690O.L2 ........ C..............---,50 C.5X -.-.. O.9S 1.1-3 1.,9 1.35 -....... -. -............... - ... -. .16o .0 16 L... .. ? 1.3r1.29 r 2.4 ..P.......51.s....... 2.9...............170 0.2. .-4 . 0.9 1.2r2 2.2o 1.55 1.7p ............. 1.,5.180 0.39 -.. 0.99 1.13 1.!5 .1.43 . - - 1.53 -.... .A/, .... .. ..190 C. 0....50.3 C.O o. 1.15 1.. .......... A 1......5.........#05 0.10 -.-- o.A 0.M3 0.70 0. .9 -... o 2.2 ... ..... 1.2M ... .... ...........Po o.09 -- 0.13 0.3 0.36•0.6 ............. oC. .............. .71.. ...

Page 27: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

N

Aq

7.2.2* 2 (Cottitt"Od)

Chamnel ______________60___ 7~~~ Cu'ls Arts P.1.6.er.t f t 1 )

lov-vater Slack Cor¢centrtlon

170 0.09 .... 0.09 0.15 C.o1, o. .... ... ....... 20 .... .. 3.... 0.3 - --. ....180 0.39 ---- 0.6 0.51 O.AC 0.C9 ... .... .... . ... 0.73 ... . 0.190 1.17 .... 1.13 1.38 1.23 1,.25 .... .... ........ 1.40 .... .... .... 1.67 .... *.... .... .... ....200 .33 --- 1-49 1. 1.66 1.9• ................. 1.!6 .............. 2. -..................20 1.32 .... 1.62 1.93 2.13 2.09 .... 2.1 .......... 2.:215 0.59 ... 1.23 1..31.7 .43 3 .1. ... . ...2 .......... -225 0.hh - 0.93 1.-3 1.45 1.55 .... ... . 1.69 ---- -. 7 .2,50 0.1-o.,045 0580•80 097o - -............... 2...-.-. .- 1.8.275 0.-6 0.2-U3 0.- 0.56 0.68 ....... . 0.90 L............1.0 .............- ....

To at 12

.. 1,2v0t. 1 s$ak Concam.tSon 0.9325 0-o3 0... o.] 0.09 o -...............--- 0..1 - ..............

120 0.21 .... 0.47 0.39 o..5 0.-5. ..... 0,57 ........ o.- .o45155 0o.3 ---- 0.68 0.72 0.C7 0.78 ----............... 1.9 ......... 0.72 ...................165 0.23 .... 0.71 0.78 0.85 0.69 ............... I.o6 ---- ..... 0.81 .... .............175 0. .0.63 083.83 0.88 ..........--.-.. .......... .0...-.............

200 O.08 •- 0.35 0-47 0.51 0-68 .. .. . ".... 0.68 ... ... .. --- -- o.60 . .. .. .. .. '

225 0.04 .... 0.15 0.27 0.3 0.21 ............... 0.53 .... 0.... - o..7 ................. -250 0.03 ..... 2 0.23 o,9 0.33 ... ... . 36 ......... 0.3 ........................ -I -vte Slack Coacantration170 3 -. 0. .......11 ...............185 0.3 0.- 2 0.41o 0.o 0.52 0.48 ................. 0.56 -195 0.40 .... 0.57 o.62 0.63 0.69 0.. ..... 0.7 .............. 0.65 .-.....205 0.62 -0.78 0.95 o.9521.07 1.09 -........... 1.01................210 0,•6 .-. 0.830.910. 089 0 .......... .... ............... .. 98............215 0.65 - 0078 0.91 0.91 0.91 .0 - -- ---- 1.01 ..-... 1.03 ..................225 0.44 2 0.78 0.9 0.950.9 ....... .... 1Cl -.......... 1.10....-...............2"0 0.32.---0.)50.480.5 0.56 . 0.66 ............... 0.60 .....................275 o.o0 .... 0. 1A 0.32 0.o. .0. 0.50 ........... 07 .................

Zi -vater Slack Coqene•-ation122 5 -- 0.17 0.25 0.12 OA7 0.31.. ...... 0.20 ............-- 0.21 ..................1.0 .... 0.62 0.6.9 0.67 1.61 1.31 .. .. .. .... -.0 ............- 0,65 --..-..........

155 .... 0.78 1.03 1.15 1.38 2.90 .......... ....... 1.59 ... ....... 1.17 .... .... ..... ....365 .... 0.65 1.04 1.20 1.4.1 2.17 1.90 .......... -2 ................175 .... 0.72 1.07 1.25 1.2.7 2.07 .. ... .... 1.85...............7. ................125 .... 0.69 0.60 L4 L42 2.10 .. . .. . ....... .... I.e .............. 2..0 .................185 .... 0.69 0.6,•0,• 0,0l .2 210.......................i.exk•........... 1..1.................. .200 .... 0.26 0.A7 0.67 0.85 1.05 6 ...... ...... 1. 3.1............. . ..................225 .... 0.10 0.25 0.3? 0.53 0.69 ---- - -- -- . . . .1-90.-- ............90 ---- - - C ................

Iov-vater Slack Concentration170 .... 0.09 0.10 o.16 0.17 0.32. - ---.................... 0.23 ............- 0.15 ..................Ie5 ---- 0.68 0.59 0.72 1-00 1.38 ... .. .. .... .... .... o.93 ---- .. .. o---- ----. .... .... ....--

19 5 ---- O , O o .3 1 -0 0 1 - 3 0 -7-7 .- . . . . . . . . . . . . . . . . . 1 ... . . . . . . .. .- - ... . . . . . . . .. . . . .

2D ---... 1110 1.30 1.5t 1.79 2.78 .... -. .......... 1.-9 ............ ...- .................210 .... 0.95 1.21 L.43 1.61 ;.31... -.................... 1.95 ............-- 1.3 .................215 .... 0.,% 1.20 1.36 1.25 2.37 ........................ 2.03 ............... 151 ..................225 .... 0.78 1.15 1.31 1.51 2.27 .. ..................... 2.01 ......... .... 1.51 ............. ......250 .... 0.22 O.L1 0).9 o.85 1.07 . ..-... .... .... .... . . . . . . . . . . . . . . ........

275 ...- 0.11 0.26 0,.23 0.59 0.77 ............... ......... 1 .0- ................ 1.09. .................

?ert A2

Z,2h.vwter S1lck COWnettrat1olo

125 0.12 ---- 0.0 o.2L 0.4,0 0.38 ..... .. .... 0. -- ........... -... 0.3r ......... 0.7

325 1.05 .... 2.16 2. c, 2.16 ----................ 2.05 ........... 2.. ...

Ifo 1.29 .... 2.S2. _0••.C2 .6..........2.78 ....-.............. 3.-'1 .......... 3.--170 1.19 .... 2.30 2A 2.,6 P .............. 3.0 . .. ...... 3.1 3........ .,180 1.VI1 .... 2.09 2.68•2.12 ..... ................................... 03.............3."2

90 0.68 -.... 1.23 2.C1 2.26 ......-. 2.56. ......................... ......... ..20D 0.38 .... 1.19 1.51 1.83 I .. 2 .p.. . ... - -............. ......... 2.3 .......... 2.70225 0.10 .... 0..0 0.91 1.17 1. t .............. .1.9 ............... . 2..07 ........ ... ,250 0.18 .... 0.22 0.70 0.87 1.07 -.............. 1,49 .. ........... 1.57 ........ 1.- .75

&av-vatetr MlcU Coctorentation170 . .... 032 0.22 0.23 0.32 .......... 0.30 ...... ........ 0.7 . .. -3105 1.23 .... 2.22. 2.81 1.5! '9 2...... .. . 30. ---- .-- -;•o3 .. . ... .. ... ... 2'. -, 4 .... .... ..,',4

S.5 7 --.... 3.46 3. 2 3.30 3.7 ............ 3.C2 . ..................... ,.9 ......... 3.- IP1O 1.67 .... 2-.6 3.16 3.-• 3.6 ... ........ .... 3.72.. --.................... 3,' .. ....... .9-215 L• 1 .... 2.62 3,C2 3.12 3.32 ... ... .. -.--- ---.. .... .... .... ....- - -- -- 3.L° . .... .... 3,87

-25 1.37 Z.. 2. 936 2. 3 .00 32.0•3 .................... 3 ... . .. ,

2.o 0.30 .... o.. l 1. . 1. 93 1. 95 ----........... .... -... .... ............. . ,: .... .... 2.!

(Cortim*IS.,'.

-.. ... .. .

Page 28: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

SCha�a�~eidal al*.ec u ter Aer2 er s

SIgh-vater Slock Comncetrotion1 o3 .... o.06 O 6 0.1o o 0.07 ......... ..... .... 0.10 ............ .....0SDADoo .... o.65 o. 71 0.67 0.60 .................. 0.79 ............... 0.60 ..........260 0. .... 1.24 1.23 1.-c 1.65 .... .... .... .... 2.o4 .... .... .... 1.19 .... .... .... .... ....170 0.67 .... 1.63 2.77 1.32 1.z . .. .... .... .... 1.65 .... *.... .. 1.2. . .... .... ... .... ....1M0 1.11 .... 1. 0: 2.3 1.73 1.61 ................. 1..........72 - . .9. ..............190 0.63 .... 1.,L5 1.77 1._0 1.62 .( .. 1.63 ....

O 0.3 -.... 1.24 1. .6 1.62 1.5? .... .... .... .... 1.4, .... .... .... 1.56 .... .... .... .... ....225 0.13 .... 0.63 1.21- 1.31 .40 .... .... .... . 1.35 .... .... .... 1.35 .... .... .... .... ....m50 0.05 .... 0.16 0.78 1.09 1.19 .. ... ... . 1.30 .... 1.3 .... ....

lowvoster Slack Coneentration170 o.0o .... o.C3 o.06 0.03 0.C3 ................ o.* .... .... .... .... . ..

-' 185 0.59 .... .03.3 OM.6 0..7 .. . -- 0.60. .... 0.92 .. ..193 0.68 0.?1 O.a 0.62 0.69 ... .. .. .. 0.76 ... .. .. 0.83 -- -- -- -- --205 2.07 2. 5 . 1.93 2.V. ................ 2.39. .... ... .... 1.85 ..... ................210 1.61. .76 2.26 1.70 1. ................. 1.93 ............- -1.61 ........................215 LO .... - .- 8 2.23 1.86 1.8 ........... 2. 217 ............ 1 .9 . ................225 .37 -. ..-.- 11 ).% 1.61 56 ................ 1.6275 0.36 .... 1. 2 L4. 1.•16 L5 --...........-.. 1.- -.............16 ..............4.

Sr4 U•tt blk Coneetroti275 013 ---.-.--........... 0.......... 038 ...... 1. .1.................... .205 .. 69 .............. 0-.7.o...........................

10 ... .... 0.3D 0." 0.55 ...................... ....................... ....... .......2. o0.52 .- 9. 0.9 L.39 1.23 .4 ............................ 1. ...................... ......11 .. ......... .691.98 2.16 2.40 ........................... 2 .73 ... ....... ................11.5 L9 ........................................

* 260 0.'7.----1. L3 2.78 2.04 2.17.............................. 2.541..................-.---.- -. 170 0.73 .... 1.19 1.57 1.69 ....................................................... ........

160 0.79 ---- 1.04 1.18 1.66 1.2 .... ......... ...... 21..................................S•,20 0.23 .... o.1.1 0.70 0.91 1.07 ........................ 1•0.......1.2................... •

)go " 0.... 0-"501-23.I30.7.. .... ............. ...... ........................2 :'o0.08 .... 4.42 0.70 0.1.7 0.3 - -........... 2.C . ....................

lovw-wte Elack CrcnmtyatloD

2 1. 0-17 ..................... o -. ..................... ..1.0 0.... . 1.........- ................. 6.4..................................:60 .... .... .... ..... ..... 1.07 .... ................... ......31170 0.6.. 1..C L.23 1.10 ............................... ........ ......... .... ..... ..... ....2s ------.... .. ... -- -....... 2.... -........... ...........xLs 10.6 L.. 3 1.66 2.40 1.- -...................... -- . - ----..........2o 0.2... .... ..... ........................... %.01 ...........................

95 1.%3 ---- 1.61 2.87 2.23 .... .... ....................... .... ....... ..................20D 1.6o ... 1.93 2.20 2.38 2.50. .... .... .... ..... o..9...............................20,5 1.53 1.-- 219 2.2 . 16.... . ...... ... ........ . ...................... ........2125 .C3 .... 1.4.3 T.7 ---- ............ 2.-- ..............................-

20 O.M.9 .... o.13 2.74 L 21.97 ............ .. .... .......... ... .. ...250 029 0... . 7 C. G5. 9 1.z c... .......... .... . ........ I.• 1 .............................275 0.10 .... .27 .0.C)6 0.59 .-•4 ...................... .............................99

* fliI-water ElAck Cancer.%rati1cr.

125 3.10 ---- 0.13 0.30 0.33 0. A -................- .--.... .. ....... ........................11.5 0.61 ... o.19 ..1. 1. ......................... 7 ................. ........36 0.63 .... 0.79 1.41 1.0:. 2.20 .... .... ....... ... 1. .- ....... .. ....... ..............170 0.63 .... 0.9, 1. (Z2.9 .2.39.......... ............... .(A............. ......... ........

1go 0.-8 .... c.3 2.0•2.0 .13..... .................... (* -.-................200 0.15 ---- 0..3 0.72 1.11 125................ . 1.66 .. ...... .. .....225 0.210 --. 0t.L22..-A 0.68 L. 7....................... .... ...............250 0.0 ---- o. 0.33 .9 0.66. .------...... ....o.99 ." ....................-.....

170 0.06 .... 0.20 0.201 0.33 0.50.........................5.-37............................-1285 0.62 .... 0.70 1.1.5 1.5 2.05 ................... ...... 1.4.7............................I9- 0 --- C-1-5 I.• •. •. 2.1.C........-....................... .... ...............-.......

2 05 9 0. --- .... 0.90 2.3 2.L.. 2-W ---.......... ---.. . . .2.77 . . . . . . ."1.. 0.83 ---- 1.12 2.21 2.50 2. -. . ........................... p.8215 0.06f.. 1.22 1.93 P.31 2.3.................----..........................2215 0.75 .~.1.05 1.61 2.21. 2.'......... . . 1...........................250 0.21 6.0 (1.1 fl'I. C Cý81.1 -... ... 1...5Ž2................ ............ ..........

* 275 0-13....o 31 0-44 0:73 0-94 . .. . . . .

-(Cconttv.a)

Page 29: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

!~I Table 2 (Continued)

195on :1-07ME Z 2L U: -2.l-I-1-AL -YA. Z 2.10

ZI#A.Wt4, SlacO Counc~,trstionS1 0 022 .... 0.14 0.28 0.1.5 0.15 ---- -- ----.. .... .... 0.21 .... .... .... 0.30 --. . . ..

210 0.51 .... 2.7, 1.C 1.3. 3 .25 3 .. .. ... ... . . ...1.81 .... ... ........•.160 2~t 2 .. 2.15 2.51 P•.67 2.8•0 ... .. . .. .. 2.85 .... .... .... 3.11 .... ... .. ..

1S O 1.7 193 2.51 245 3.08 .. ...... ...... 2.. - 333.022o 5 .60 2 2. 15.. 2.67 . .2 .923.250 0.32 -... 0.92 1.56 1.85 2.9 -.---.........-- ---- 2.11 ............ 2.56 ............225 0.20 .... o.L6 0.92 1.23 1.67 .... .... .... .... .... 1.94 .... .... .... R,2'3 .. .. . . .250 O•.o ---- 0.... 0. 65 0.9.o. 1.28 .... .... .... .... .... L. 57 ... ... .. --- -- .88 .... .... ... ....

i 1•ow-vte~r Black C~owntrsatiton

270 O.11 .... 0.14, 0.21 0.20 0.17 --.. .... .... .... ....-- 0.2B . ... . 0.37 ----. ... .... ....--S1B5 1.33 .... 2.,$7 1.37 2-58 2.73 ----. .... .... .... ....-- .48 .... .... .... 2.54 .... .... .... ..

S195 1.07 ---- 1.5•9 1.87 2•.W 2.28 --.. .... ... .... ....-- 2.16 .. . . .. .9 . . .. . ..20 2. .. 3:21 3.54 3.70 3.34 -- .. ... ... . .. ---- . .. .. .. 4.09

::210 1:1624 ... 74 3-31• 3.-50 3.6> 3.48 .... o .... ... . ..

215, 1:3 - 2 .46 3.o1 329 3.59 .... ... ....... .. .• ...... ... 3.51329 ----. .... .... ....-25 2.o 2.25 2.67 . 3.01 3 . .. . .. .. 3.8 ..... .... 3.29 .. . .. .M .1 0.59 0.9T L33 78 .. ... .. . .. 1.90 ...... ....

1*1

;I

.1

Page 30: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

14C 44C 4I (V- CCC..-A I. CYVV N N C4 C 1CC a a C.; ~ I C .

I •• I o cn t 1 1 .0 4 m I a 0 0 A i I

S-7C' I I .

SI....... .. .. C. CC . .. •, 1,

CC....C...... *,CCC : CC : :: CI;N:,

8 0.CCC C 1 1 a ..C . .C . .. : C. C n . 1 : : . : h

•w . • 0 6C

v. C D w 1 1 f I I 7I t CC|o e C I I 4 . .•. . .!IS

'l 1C S 1,DC-

(C

i .... .. . .... ........ .C CCCI ,.•:• : :

It 1. 1 1 1,k ,1 ,•

,I IC .C C .a I C1,,,, ,, 4 , C ), V . . ..

C.C.. ... . ... .. C.CCC... . . . . .. . ....C ,C$. ... .. C- C

C I I 1"C

C.'C C C C : , : l w w w: m : 1 1 : I l ': ::I l CCCI l0 ¢,

CCCI C.C, C, C. . U ... ..C,,.. ,• C.. .. . CCC:C ,, .... CC ,CC

ti C 1 CC C :, CCCCCC C C IL

U CC I CCV4C C +,C CC•-.SC-CI.,C C" C +. CC CC... lCCC'• rC .. .IC , + +•+ ++ ,69 C 1 C CCC CC II C A C CCCC .CCCCCC aC

I,,CCCC.. CC.CC*C. CI, 0 C• "I;.• ." " CCIMC.O CCIipC 'C

CI ~ ~ ~ ~ ~ ~ L .C Cg" CC C C CC C CI C CI C I CC CI' CMCC N.

CA C C I CCCCN~*CCVCC1 C ~ t N . C

Al m CCCCCI CCA CI*C CC CC CCC

Page 31: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

.4 .1 33 4 *,,, 3 13 6 33.,3,, . 6 13,

II .1 0 401 1 60 0 4 09

.0 In1 0 0 1 .. .f f 0 f %03~ 1 6 1 06a0aC

33,3 .3.3. . 3. 33..3..3

IC 33 *'*C'3'3I4q t 0 1 43 4 , 2: 33 ,3 3 4 4, 's I1 040 1

4*. 6 4 4 1a0 1 0 1fII

.. 33 ,,3 33** *3 .33 33,~,~63 CP.3

a~I . .. .. . .v , . . s,.

33 33 3 333 0. .*333II3I C VI 4.

f I Y ý4i 10 14. II I 13003..10 1~4 4 33363 33I I

* ~ 9 . .3 3 .. 3.33.3.

CY CY1 . A N N Cd.13

1^1 &dcc4 Pl.x :,

77333"

333 33 S*33

Page 32: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

. .. . .-

. . . .

I

•; ." I• I +- I',m 1.gee gee,. ... .Iin . . ~*

e I eI . e ll g...,.,O•' eeel ,t O gI I 11+. * 11 I.'4.I *g IilI lI

*l:+ i +I en ., .. .n ge...g , o, o,., t- , . . -, . . egg,0ri.etg, e -, *1

geee*,,,e~~~V I D ~~e~t, , , , , , o ,, + , * , o •:i , * ,*, , ,, , ge, ,• ,,,. , e,€; eD, e, , * , 1

It

C4I A 'A• It 1: )

. .. . . , , ., , ,oo ,,0,, ,, e, , ,,,,.;.,,0 . ... *

, . 1 .. .. . ..gne *. .. ..

, : .: : .:: to, ::: :' IV. r t I. :1:4:R S:SP..4w-d .4 I

0 -,+, ,i in

, ... .f, l o ~.... . , , ., ,, e,,.. ,,,, , . . .+i *: ''ci '. .4, C : "'1 .'." . .n.e.ee.. , .e.... .... eel.. 4 ..: Cgg: eege..l,

e e e gOt,4 , ..-a.. gee, gree-, ge .. ... ga-. , . ,

S ..

• IliO O I0O 1 I,-i,4 s I o

, '4 :: ,s e C . . . . . .g e ,e , n . . . . ., , , aI , e . . . . C e. . , 4 . .<* S . gCee....a 4 . .e g 4, n , egg,, , , g, g g g , g, O .. <, , ,, , cegee, ,~.. , n , , a ee , ,, ,n

" • e" g n. .a .. ....... C *g g, ,, .. ..-e : , * ,.'ge..g.. .... . aJ :

e ,n ,g I .e ......... g~ ,e..,i *g'•ie ..i.. ee.. gnue.- a,.o ~ eg ,, g • .ge , , :..; , c $, ... n I: g,~. gg,

enge+ " .t.ee gai ggg Cg-,~

a.CC , ., g+ o, , C eel, ,i.eeen, l,,*C o~ lecega *cie.CIeeee,..,"

C'i.r Ci~ *l , *+ i+ g ." ge-l . -e. e• a:. a• e. e 5.-ni,: e.: , . . . *• + * .- li .i l < .ip l , .- i. g n go+. C.•. _.+.4p.4 p* l e'' '

> -s",-x,. e. o. Ccc...,,,,, ge . .. .. ... .. ... cb g e I a, O t e e.+ e.e..... en. +++.++.+:. < ..I+., 9+gaae g,

5e e e*e.,

.9 e g . g e , , l e eelg e e e . g ~ ~ ~ , .

Page 33: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

*1 $1~S C *A. C4 4'' 0* * 0 G * I I i C4 Il C

0! . * * e s ) . * g . i * . .. . . .e " '

- 1 .4., geeg , SNN 0 gp .4-4 tvN**eege ~s .1 4t'

h ,,,e,, I I I . . .

S...... .... . *. e . ... . . . ....... . .. . ... . .. .

.1 -e ,geege*, .t ,,g ,.o g...,t €i ,,e.g.. .,, e .g o

.. .. ... ee ee, r . ge ,,•,,, ..- . .

o f en I , a.-ee e.em .4 1 1 m . I -e e e -

f Y -n I 141 1 gee,., , 1 e 1 : :::: 1t 4* 1 4 W 1 01

'A- o a

m ,4 4 I I •I 4 • I I I I l I O 1 1 ý .c I 4 iD 6

0 .. e e , , s. . . , • . e. * . . . g. . . . . . . . . , t . . . . .e'

v M I I I tI I 4 1 * 1 1 1 1 w M 4 1 -. i

,t ',7,:., ,, ,g ,. 4,%, , ,, . . ,,, ,,, . , ,e es,

....... .... .. , .. ... ... eefl 0.4 e . ,,- ,

r, 'n "o

g..7t . r1 1~ e1 c v I~' e or

S e,' g• • . . . . ..e e . .e . . , e e . .. * .e . . .. . . . .I I ,e , *.. . e" .* *I: l 5,,A , ;; .,Oe e *o o,,: g g g Is~ 4 r

*, . . .. ,. . . *eg g€. . . ... g,- i. ... .• g.

l *I~ IIl *l II*CJ | I I, e * e{ eoe.Ite * , *u~, eel 4

* ..e :e g •. e e: : -.e , -. . e... ee ,• ".ei 5 . . .. ..eI e .. . .g.e .

e , e e , - -, ..I .•e :, • e , c e ,., e ," g . r ' .. . .~ , g .. N g

Nii

Page 34: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

i ;V

It 1ý11 l :l 6. f .4...1~ 1e1 1 g1 6 11 14 f6 1 C c

a 1.49 InN f * C I g(C. fa 11 4 .0aI aIC a ee 1 l.6

e.o , .~ : : . . q .. .C :C . . , :: II

Itg .411 61 e 10wI Wý 0~~I g CCC w~ I~ I I C I . u1 , I II

el1 1 0 I # I I I IC~ l l Cyl, . I 1 0 cli 091 1 AZ

0 gl e ,. .6c-.t. 1 0 a 440 1#10 c loI G . i .09c ee. , ta,

1 g. I.. NNI PiI I iegOC.4..' II I.ree .c N Ie I: I I I

c14. S l1.. 1 41 1111 000IC ell f4 I IN Ce, .4I l C

C91 '9t -* 1 .4 1 1 6 1 1

8t 1r~ 91 'C., I 9 I~. cC 1 V' II C.

e~~~ : :~ * .. . . I .. . I .e~l i. -4 9 .

.4 cý4_2~g *VlI i It94 1 g 0 el dl 6 1 ýsC.. C

0r.. 0 v I I Ic I9 aI C19 4,.. , I i l C l . .gII

I.~~ ~~ l9l~ .I~ ~ g I.-9% . i.. .. V, c IN I , 4 g CC g (0

.. Ic .4 . . . I .

IIIC m 9,.1 1 I . I I . .c .c~ e C. Ie Cv 11 CIj

.gc~ Ceý L. it.. V-1lc 9 .. ~. CCIICCCI

Cv .4911111.4.6 eO4t .4.96CCII - 199'N 19 I Ccl ,.. C 4f9,,gc

CCII 9*C. e gCC9 199C g. IiCC C 9CglC .9 IV9C*.. k 11 W I i .C. cCC .. 4,CiC r**c , C

4 I04 N.e.~ ~lCeOARN 9 . *94,.~N~

Page 35: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

i'A

IC n*( 1 1A 4 4 1 s 4 1 1 9CY04 1.e 1 Vm M VI 411

I1 40 441aIf%. 4 1fa 1 4 gq) k, t 44 4 44 4 1'4~' 9 CIA 9 1 f4 c

i 1 6 1 1 1 6 1 InI 4

.4. P. -

a 9 4.*C I44 I 1 .4. Is II.

0 m a1 0 111A 41111 4, 14144(44Y444 coI If4 II4 4.4 444t .4f 494 .4

01 41 it4 MV4 4

Ty I4 .5444 41 11 W

* 0 4 4 44a 10m I4 * 4t444 I ~ I en ~ ao 4 4 0 1 CY N44 C4

C.I a f,. - , = , . ,o:2• • ' :• • 1 1 , . , , I I I I 1 4. 0 0 1 1 N, I . I .C 4 I

II

C . .- 2 *, : * 4.... .. .. I I I . I I I .4 I ....

. ,, 4 ~ 4 4 . 4 . . . .4i4 ! ! : 1 2 : .. 8 4 4 4 * 4 4 4 * 4 4 * . 4 4 * * 4 4 4 4,I4 4a.4 4 . . . . . ..4'1 *. . . , , o i.4i4 Ni iC. i

-44

i I I•i i22 . C.. . .... 22•2,, ........ I, .N...... C I II

ro -

, a. 2, , ,• i iii . *,, 4... 4,, 4,o ,, 4 .. . . . . . ..

.4 .4i' ".,.. ::.€I2..~ ...• . .,u 2: e . .* .. 44..' 44 ,4 ..4 ,,.

44,.44 4' .. 444 44 4 *,, i i !, ; ,.4,, ,. ..

444*4~ ,4 c.2. *.. ... 4 I.. 22I22 H 22 2 2•,44

2 . . ..., 2•-22,, , 2 ",22,,,A......• , , ,• , , • , ,. ..4 . ."4444 '*-44

H * '-4• ii;'

* .1 4 444.44 ..... 4. ...........:: 4:444 I: I: : ...44. :. : :444 4fl~t4 44444444 )441 44 444 444444444444.4~44 44 4,- 4fl

Page 36: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

. . . .I . . I I . . I

Iy I I eI C

. .. . . . t7.

4 I tI"". ... .I , I Nl . . • II. .I I II I i .Il ..C, I I•IbC Ipi #lv•lI , I flNC C S S 1 ,-, I%S I CI I S I * I | I eN SI C 0•I

t~ P7CC

II

a55 C *(gN Sv S4f 1S C 1r~D 1 s CI 4I CS C1 CIC *NftI I 1 ii i 6 ,• I 'C II • 1 1 C0 I I I I N I0I I" I m 8 1 c

4 ' vt- V C I

cu.I* s ; a I 1:**1C1*1*1*1*zII, I 1,1.4C

. ISN . .CIC .t,. ..CI C

. .;~. C

.C C

A , C

SCC,..SS **C C C I I * m I 0 * I a I C. I Ca I mm I CCCI I . CI I IC

Y. 41 (v.'. I II II C• I CIC.CCSI I S C S C . *II CS S C .ICCC ICIC CCI I. . . . CS*C I S, CC CI

S~~C C, II S I C

C ,A 4 , t 1 .C I , C, CI*, * .4 , ,, , ,, I, S,) 1 , 1

,, CCI e S C I II I .N .l . .I . C .C . . . .. I .- . C.CC . CC

C .C

N A • : 4• ,1 1 Cl I- ... .,, ....

C. d4*CSI II I Q.- | Ir* I C ' S I 4| | CS •I I S :' C °4 S C C I. C OI CCCI I 44 I Il -

0 I

P. W. I LK. ý , f- t

r.. .. e.. .*". . . C C I (fl"*t C S I C " C-.• C C I C I, C I C'.C; ' C I :

**' I : ' I I £ .. t•.,*,' '' " C• ' '.... .('4 .•'40 I

1111111••' ' " :• ... .: *• .... .. " ICC4 , .C4....... ° .. C....... . 45I" "44 , ~ ..C C C4 'S.. I

t.C.... .5C . C . 4 C

,,n"• . , . j CCC CCC4,4 N'VC N C4.4C CC CIt'4 IrS C5C"C1.C CC..C.C 4C

Page 37: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

-n I t* 44~ -, '414

Its ::' So 4,0 04 14 4. .

1 0 cu SD . .' .41 (-- -. . n - I

10 01 9 4 t0.19 44 .2 .

t6 4Y to I 4c o 9SC I

* 9 44401...044., 4 .9. 4 1 4

In 1-1 .4 . 9 4 4 . ~ . 40 4 9

nO*0 ~ ~ ~~~~I *% % 9- 4 9 9 1 04 9 4

u4 1N .401 9 1 . 49 1 4 4

i~~!l V4~99,l~9O4% '.. 4C4.44 9 91990 ,-V

Page 38: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

%4

Table 1,

do Pont EflJ•4'nt S..ron Tfl,.f.

Efflurnt Cycle Concentratlons in pp

Teto 215, 26, and 18, Saq~le. T-ken during Vycle 17

Time Tes. t- Teso .6 1.in Chmnnel Sthtions Charnel Stations Channel Stntlc'nn

Hr 5~2 owo 2V4 G 152 140 loo -I7 -22 ý2-0

0.0 0.82 --- 1.58 ---- 2.05 ---- 0.97... 0.97 ----.---- 1.39 ---- --

0.5 --- 1.33 --- 1.09 ---- 1.77 -.-- 0.44 --. 2.32 ----.---- 0.97 ----

1.0 - 2.58 0-81

S1.5 --------- 1--179 ------------------- --- -- --------------------1.28 -

2.0 0.56 ---- ------- 1.88 ---- 1.19 --- 0.85 --- -74 ----

S2.5 ---- 1,16 .... 5.8 .... 1.88 ---- 0.77 ---- 1.51 . . .. z6 ---- 1.6

30 -- - 2.30--------1.4

-3.5 -- - -------------------------- ----------- --- -- 1.86----4.o 0.10 --- 2.11 -- 1.36 ---- 1.72 -- 0.16 --------- 2.88 ----.----

4.5 ---- 0.25 --- 1.88 ---- 1.81 ---- 1.27 -- 0.52------ 2.36 ----

"5.0 ..---...-.-.-.-.--..--------- -- -- -0.82. ... 1.51

5.5 2.76 ----

S:6.0 o. o5 ...- 1.93 ---- 0.68 ---- 2.o05 .. 0.03 - -3.67 --- --

6.5 ---- 0.05 .... 2.20 ---- 1.10 -- 1.75 ---- 0.10--- -- ---- .83 ----

7.0 o---0.15 ----.---- 1.29

7.5 ..... .----.----.----------.--- P.63-

8.0 0.01 ---- 1.66 0.47 ---- 2.1.6 ---- 0.03 ----.---- 2.9.9 ----.----

8.5 - 0.05 --- 1.77 - 1.13 o. 0.84 --- 0 o.o9 ----.----- .78.

9.0 o- .-------0.92--

9.5 1.49--

10.0 0.05 ---- 2.03 ---- 0.85 --- 1.78 ---- 0.07 ---- ------. 86-........

10.-5 ---- 0.73 ---- 1.6 - 1.89 - 0.59 5--- .57---- ----- 1. .

U-110 ---- -2.C1 ----. ..... 077

11.5 ....--------------------------- .... 3 -..

12.0 --- --- ------ ---- ---- ------ -- --

Note: Times are exprer.ced in how-- after moon'n tV t of 75th Lneridlai-.

O -tq

Itz.

Page 39: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

-ltý Id - -s

., I,

4W P

Vn

' A~W';4

rip

N'or

KjyO~r~ E A

pr- a,"

tk~ t t

.2 7MLwW--

~IL~-~ -w

Strength of ebb

du Pont E fluent Dispersion Tests, suirfce current direct~iom-,at streng~h of~ flood and~ ebb tides, exi:;ting shore line (bttsc

test), anchora~ge not drechycd

q,

X~O ~l\I

Page 40: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

A-- g, I'd

F . A.Ami

-ýatz Irak ½ _ ~

L iy P

9),Aif~..i' ~ ~ ~

jj*~ ~ ~ ~~e 7 j * ... ~~-- vwv

~ ~ .~ "~ ~4*

e

1ý~~ 1"W4L t

-:AA ___z bMIkM

-9u Zi.

Strength of flood

IMO A

~.v. "' I"

Strength of eb

du Pont Efflunt Dispr,;Io Tests, surac curen

a g n o t d v c -d.c -H T

IN.>

Page 41: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

JIa.

4444ý t

Strength of flood ' i-• • t 2m -ro''". " " ••

r I

PI f•, " ., ..

P:. ofQ 5 4b """z• -p. A

'Fe'

5-55

Strength of foodtA4$b.' .

du Pont Effluent Diuqv.rsion Testsa, surfacf- c~uxrernt d Ire ctj onsat strength of flood and ebb tides, Plan 2: shore line, anvchor-

age not dredged

A.4

PH ' mn'.

•-,4 ,;-•, & .--: r, • 7••,• • ,•_• • -. : ,,••-- " •'.t• .•? .ris• •*-.4

- .-. , ' O:at.•S....CJ *tt . .. . t-•' .' . • a . .... "' .. .' •v .,;- 0>- ,e.',5• - " '';- " ' '"=" . .

Page 42: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

IJ,

Strength of flood

at Strength offloan ebb tds xsigsoeln bs

test), anchorage dredged

PHOTOGRAPH 4

5~ 7

Page 43: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

Rw I

~t4X4

4.I

On R, PYi&

~'Ai

;.i ~12. ~ t~- s~-i

Strength ofi ebbood.

'- i. -..-

duPntEfuetD Ir;on~tS, V7rc urntdrcin

Sttrtrengt oc ebb ideb iePnn1soQlie nh

aedredged

PHOl ()PAI-H~ r

Page 44: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

0.. N-7=>Ii ý. . L

tA, 47

2OZ

0.

z% -E

LJ'-

4I-

z / cxUI

I~l -

z f

tAJI-w _j-~s& -i'

~ .h

S.-i

'-I-

~ ~ix~co

12 J ~

-5-..

US0

..5 4N

*p~

Page 45: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

4 -6

.1.

I-It

Page 46: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

~CL

b4

0.

0 •

I

CL

o r8

L Li

. .... ..

o ,+,, ,• p,+; , + .+

_ ..'// '/

"--"+•~I*e ... .. . ... ..

L

Page 47: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

STATION X

4-.- -- 40

-200

j-~.. 10

t1 _

W30 T- 3

0 1 2 3 A 5 6 7 1 9 t0 11 12 0TIME - HOVRS krTCR MOON'S I RANSIT OF ISI-t! MERIDIAN

STATION Ysos

U -. -.-. L..-7

l m 1. .t

- - Li1 ~ _

4i20 TPo:L ~ ~ J C3 K

I 0 30- I -

w 0 5 3 4 5 6 7 10 9 wI /> ~ TIME H OURS AFTERV MOON4'S 1iVA.N~T or 7sl fARI')I A >IAf~~SA 1.'DL NES Z~

& I 0A AN

L0 40c

1~ 0 -

Page 48: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

-Jz0 b2-

1'W D

Uj co.J

if I I N

1I -

iij I 14. It

w u

't-1, l it 1,10 111

I~ ~ ijjI -.

fld.~ flit3YN~

77rjtnTF1IFT- A,1A11 14

)Z

Page 49: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

1A,1

4.0

3.0

2.0

.0.6

z0

~4.0TESTS~ &t a¶]

11t0H

3.0

o! ijJATt:+1~V i- h4_

1.0 ~ii

0O 10 z 1 40 so 60

TIDAL CY C LE A rT 1-: RELEASE

1NOTE: SIC T't;LE I FOR TE~STCOND1ITION", EFF.:LUENJT CNCNOENT;ATION'SAtdPLE!, TAKLN AlT AT STTION 170+ 0k10HIGH-WATERi SLACK. DEEPWATER POINT PLANT UDIZCH~ARGF

PLATE 5

Page 50: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

ItI

I.-10~

j 0

ot0

I) Ww

Lii

a.a

0e0,I l

1:Ifo 9It

/ 2r

5I

~3A)~P L AT E 6L

Page 51: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

Q2x

z

U

000N

'd3N' VNILS~dH) t-

kzw C

"oo

dVs

occ

ii ~PLATE 7 ~ -

Page 52: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

f_ ."A -Ml

$ 0

Lii

-'1CL

.1 0

ot

0C

00ao.

.0D 4

-L W-- -

>

Lod

j I 00

Page 53: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

LJj

iLI7

'44

00

CIS)

w. LIla

Page 54: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

- ug,

-4 a

Inn

a.

Page 55: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

4, ZI

4,10

A. 2 2

-1 --

3 4 01

in 9-I-.! HOURS 1AV7ER MOON'S TRANsir OFT 751-" MERIDIAN

10 STTO

7 -

0 4 5 iii 7 a tiTIME -siouJIs AF'TEP MOON'S TRlANSIT OF 752-" .. IrnIOIAtl

STATION L

400

1~~ 11 .5t..

TIM -IAUE 4~~t 0N! TA-4i.4IT OF 75=1± mu(4lIi; 2

EFFE':c7 OF Pi'L""' LSTfi c- - ~~OW LOCA^L C~.>T,.(Ch

THROUNG::OU A 'TIDJAL CYCL1E

-~ D~PWAI ;.PUINT PL.'\NT

PLATE I I

Page 56: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

ozoz-

< Do

iT-i

b-2 f- L

. .. . .. 4 5..a1 - O

a~~ w

I ILI TIT,

4 ~ - < -. .L6

Page 57: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

I-

Izu LJ

ixI

44-V 7.

to

I ,- Cl.

U2 U

'ý 5,1 f

PLATE 1

Page 58: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

AA~- I I 1 1111J

I T_

iti4.0

03.0

z0

TT -4-H11

TAIDLE CTrLE AFE'3LAr

EF0UEN4CoITLTONIO

AT STATIOll 170-L000CARNEYS PC, T PLANT Dlý3CHARGcE

P L,'A:rE I

Page 59: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

1~-30 Mz

LL. Li

v Q. Z

III I.

IrIfil I I.

t T~ I a,

Tj d

~ PLATE 15

Page 60: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

TIME -HOURS AFTER MOON'S TRANSWlOF t.S!= MERIDIAN

STATION NR1026~

_ -~ Vf-i/" -

Ia 2 - - 1 1 1

II ~ ~ ~ TATON LOA CNETRTO

N~tt TIMEI HOR AFE UZON TRANSITC% OFO 751!! D EIISC ARG A

T~ E4. -'T

EFETO IEIELNT

Page 61: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

Icc

I ~z

j 1

0

u

I I- J

ILCI

j-.4

'L , 1I

1' <0

Page 62: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

L.

V. z

0j

Iid

II 0

Ivi

V '~7777c~ 'e ~ , CE

**..'4 ~ *.r- ; w***-,*~'.-z - - - * -l -

I-4iL

Page 63: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

CD UJ

U '

100

fn!L -O

0zI

44 u'rr

Page 64: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

0

CI

w ;I

2 u

44

I,.-I Bo (Lfir 0 I

r go I-I

LF)*INV

'I1.

Ua CL 9

a$2.. ccit

PLATE 20

Page 65: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

71 JRP$4

1~T4 - .-

.22.0

- --- - - -LEGEND r

a. TET 5&1 140-O -- O

-0.0

z0

I-T

04 - -- - - - -

0.0 i . Tlim0. 10E

W a .. * ..... r v.aI. -

~~T= T j'0. L: 2--

0.. .. ..0... ... .. .. .. .. ... .. .. .. Go

Page 66: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

it

IIi4~~h I

U---0

I- IH 3u

tHfb11 11 - IT

~ ~ PLATEi 22.

Page 67: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

* i2

hr

TIME HOURS ArTER MOON'S TRANSIT or 7s_- MERIDIAN

STATION K

00 1 3 A 1 6 7 a to 10 12 0TIME, - HOURS AFTER MOON'S TRANSIT oF 757" MERIDIAN

LSTATION T

hl d TLCI IP "ts CII ,4 I LI' 1 TiUG OU A.,. T.,.,_,.,.L.-I _...IDA.L,. c..- L,.-rcAIADION AU L ll 5T II % .

,,:, ,oi I I :• -SC-. fGE AT- 3OTH 4r--I AN-!i1 ~~TIME, - HOURS AFTER MOONh'S TRANNýIT OF 751-". MtR ,IDIAN

PDITCHIRGE DNI

141E S JL I FPItS " LI T. AL C N EN R T OFOP~~~f I.•oooi_]r_].,IZ_-|lmm

_____ i • i _L ._.., •] .•- ] T.. _

I~ ~ ~ ~ ~ DSPfG AT BOT I FL _L-]!-/- --

i!~PAT 23ICAREO

Page 68: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through
Page 69: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

t~t

tC,)

0~

w 4 0*

4CLti

00

zz

kz

tifl

00

ti-O

'40

~~:-0 z( Ix

( i n~~UI- '

... .. .. .... .. .. .. ..

..............

59,

Page 70: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

---------------

mwo-1

In i

Mao

. I l UI Y1

1 14

I 'Ii'

H-A.... --

Page 71: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

~J8cA.o

00

LnU >

1*.

OA ~ -j

L,

W4 0

00X

u If i

t o

ojo

24 c

~ --. -k

J

PLATE 27

ahF-

_ _ . .. .... .. . .. ....

Page 72: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

z0

u'Co

cr t

-0

I-1O

a.-g

l• 000

o • • " CC

i.il

PLATE 25

Page 73: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

6.0

5.0

+4+4

z

10 2030.00

'TIDAL CYCLES AFTER RELEASE

LEGEND

14 4 -----

*170 - -

* NOTE' SEE TABLE I FOR TESTCONDITIONSSAMPLES TAKEN ATHIGH.-WTER $LACK~

EFFLUENT CONCENTfV<ATIh'

AT STATION 170 00

TESTS 14 17 AND I.

- '-f~ r. * ; . .........

PLATE-29

Page 74: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

~1 (n - z

K0

Hill w

LL..L. <

USX

-I ity/

zi02;9

A ji I I*R /

-IH

-$-

1111 T P

PLATE~ SO

_7**.*. .i'

Page 75: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

zo

ppa

w a0,

LL

a-.o

xC,

~3N~ 4ILSW~ IL

00

PLATE -

Page 76: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

VMOM--

lp

W C

U _ _ _

0n

d

cc:

S Ub 0

-J Owl 0L0 ý z f-

w V)

0-X

asus(Is CL

PLAT 32 t1

Page 77: i¢• DU PONT PLANTS EFFLUENT DISPERSION IN DELAWARE RIVER · a Beckman model DU spectrophotometer. The spectrophotomater used seas-urec light transmission (or extinction) through

~I .

CHANNEL STATION 140+000

I A1

1 • 4 9 I 7 I - 1- 0 It la 0

TIME - HOURS AFTER MOON'S TRANSITCF 7511r 14ERIOIAN

CHANNEL STATION 170+000

_..

4----.A0

to

0 2 3 4 5 6 7 9 to to 1 i .TIME - HOURS AFTER WOON'S , ;,Ns$T or 7,.1-" MERIDIAN

CHANNEL STATION 225+000

-TI M1 I hOI I .TC i I ~' r NIr orm IR

NOTE: SAiE TAKEN I? CYLE AFTER • }

" IS --

T II M HO R , FTE Io 1' .. A s IF I.l- ML--I..

Or l . E

__... ...... .._"_.. .._'TEST 1a