I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w...

24
20 2 1 2 1 2 1 I. THE FORMATION OF PROTOPLANETS o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o o o o o o o o o o We c nsider several pr cesses perating during the late stages f planet f rma- ti n that can affect bserved rbital elements. Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, are reviewed. Recent results n phen mena caused by the tidal interacti n f an rbiting c mpani n with a central star, such as rbital circularizati n and spin syn- chr nizati n, are reviewed and applied t extras lar planets. Dynamical pr cesses that c uld pr duce sh rt-peri d planets r planets in highly eccentric rbits, such as l ng-term rbital instability and the K zai mechanism, are discussed. [1111] M o o o o o o o o o o o o oo o o o o o oo o o o o o o o o o It is generally accepted that the planets in ur s lar system were f rmed in a flattened gase us nebula centered ar und the Sun. In typical star- f rming m lecular cl uds, dense c res are bserved t have specific an- gular m mentum greater than 6 10 cm s (G dman et al. 1993) such that their c llapse leads t r tati nally supp rted disks anal g us t the prim rdial s lar nebula (Terebey et al. 1984). Between 25 and 75% f the y ung stellar bjects (YSOs) in the Ori n Nebula appear t have disks (Pr sser et al. 1994; McCaughrean and Stauffer 1994), with typical mass 10 M , temperature 10 K, and size 40 20 AU D DR.RUPNATHJI( DR.RUPAK NATH )

Transcript of I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w...

Page 1: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

20 2 1

2 1 2 1

I. THE FORMATION OF PROTOPLANETS

o o o o oo o o o

o o o o o o oo o o o

o o o o oo o o o o

o o o o o oo o o

We c nsider several pr cesses perating during the late stages f planet f rma-ti n that can affect bserved rbital elements. Disk-planet interacti ns, includingrecent w rk n the fl w induced by embedded pr t planets and gap f rmati n,are reviewed. Recent results n phen mena caused by the tidal interacti n f anrbiting c mpani n with a central star, such as rbital circularizati n and spin syn-

chr nizati n, are reviewed and applied t extras lar planets. Dynamical pr cessesthat c uld pr duce sh rt-peri d planets r planets in highly eccentric rbits, suchas l ng-term rbital instability and the K zai mechanism, are discussed.

[1111]

v

v

v

Lick Obser atory

Queen Mary & Westfield College, London

Lick Obser atory

Lick Obser atory

Tokyo Institute of Technology

M �

ORBITAL EVOLUTION ANDPLANET-STAR TIDAL INTERACTION

� � �

� � �

o o oo o

o o o o o oo oo

o o o o o o o oo o

o o o o oo

D. N. C. LIN

J. C. B. PAPALOIZOU

C. TERQUEM

G. BRYDEN

and

S. IDA

It is generally accepted that the planets in ur s lar system were f rmedin a flattened gase us nebula centered ar und the Sun. In typical star-f rming m lecular cl uds, dense c res are bserved t have specific an-gular m mentum greater than 6 10 cm s (G dman et al. 1993)such that their c llapse leads t r tati nally supp rted disks anal g us tthe prim rdial s lar nebula (Terebey et al. 1984). Between 25 and 75%f the y ung stellar bjects (YSOs) in the Ori n Nebula appear t have

disks (Pr sser et al. 1994; McCaughrean and Stauffer 1994), with typicalmass 10 M , temperature 10 K, and size 40 20 AUD

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 2: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

Jup

1/3

3/2

2

2

Jup

2

2

8 1 1

6Jup

Jup

�� �

��

.

.

.

1112 D. N. C. LIN ET AL.

��

� �

r , R q r q M M

M M r M M ,M r r r

,M .

M

HH

M

MM

� � �

oo o o o

o o o o o oo o o o o o o

o o o o o oo o o

oo o o

o o o o o o o oo o o o o o o

o o o oo o

o o o o oo o o o

o o o o o o oo

o o o o oo o o o

o oo o oo

o o o oo o o

o o oo o o o o o

o o o o o oo o o o o o o o o

o oo o

o o o oo o

o o oo o o

o oo o o

oo o o o

o oo

o o o oo o

o o o o o oo o o

(Beckwith and Sargent 1996; see als the chapters by McCaughrean et al.,Calvet et al., and Wilner and Lay, this v lume). The c mm n existence fpr t stellar disks ar und YSOs, with pr perties similar t th se expectedf r the s lar nebula, suggests that the c nditi ns f r planetary f rmati nmay be generally satisfied.

Recent bservati nal breakthr ughs have led t the disc very fJupiter-mass (M ) planets ar und at least a few percent f nearby s lar-type stars (see chapter by Marcy et al., this v lume). With the presentdata, we can assert that planetary f rmati n is r bust.

In c nventi nal planetary f rmati n m dels, the first stage f pr t -planetary f rmati n is the rapid buildup f s lid c res thr ugh the c ag-ulati n f planetesimals (Safr n v 1969; Hayashi et al. 1985; Lissauerand Stewart 1993). When the c re mass increases ab ve a critical value( 15 M ), quasistatic ev luti n is n l nger p ssible, and a rapid accre-ti n phase begins (Mizun 1980; B denheimer and P llack 1986), leadingt the f rmati n f gase us giant planets (P llack et al. 1996; als see thechapter by Wuchterl et al., this v lume).

The details f this m del are n t yet fully w rked ut, but if we sup-p se that the pr t planet can accrete gas as efficiently as p ssible, it willfirst take in gas in the neighb rh d f its rbit, assumed circular at radius

until it fills its R che radius ( /3) , where / isthe pr t planet central star mass rati , while rbiting in an empty annulus.The mass f the pr t planet is then given by 3[4 ( )/3 ]where ( ) is the characteristic disk mass within radius , with

being the surface density. At 5.2 AU and 200 g cm this gives amass 0 4 M .

Further mass gr wth n w depends n whether the disk has a kine-matic visc sity capable f pr ducing a mass accreti n rate nt thepr t planet. If is finite, then all f the mass fl w thr ugh the uter disksh uld g t the pr t planet. T m del the disk visc sity, we ad pt the pre-scripti n f Shakura and Sunyaev (1973), in which , whereis a dimensi nless c nstant, is the disk semithickness, and is thedisk angular vel city. The m st likely mechanism f r pr viding an effec-tive visc sity in stellar accreti n disks is MHD turbulence (Balbus andHawley 1991), which pr duces 10 in a fully i nized disk. N te,h wever, that may vary thr ugh ut the disk and be much smaller in itsintermediate parts (see the chapter by St ne et al., this v lume).

Observati nally inferred values f the disk accreti n rate10 M yr (Hartmann et al. 1998) are m del dependent and highlyuncertain. N netheless, f r such a fiducial , a pr t planet may attaina mass 10 M within 10 yr. The mass f extras lar planets is

1 M (see chapter by Marcy et al., this v lume). Unless these planetsare preferentially f rmed in l w-mass disks, their gr wth needs t be ter-minated r inhibited such that they are unable t accept all the mass thatfl ws thr ugh the disk. In this paper we f cus n disk-pr t planet tidalinteracti ns as a mechanism f r acc mplishing this.

p p pR

p D

D

p

p

D

D

p

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 3: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

y

Jup

0

22 2

2

��

��

� �

� �

�� � � �

� � �

A. Protoplanet-Disk Tidal Interactions

ORBITAL EVOLUTION 1113

� �

� �

� � �

� �

M

m t

l ml m m

e el m

r r l mm

F .

m

dm rF

drm r

F F

m m

mH

b m r H.

L

� �

��

� �

o o o oo o o o o

o o o o o o oo o o o o o

o o o

o

o

o o oo o

o o o oo

o o o oo o o

oo o

o o o oo o o o o o

o o o o o oo o o o o

o o o o oo o o

o o o oo o o o o

o o

o o o o o oo o

o o o o oo o o o o o

o o o o o o oo o o o o o o

oo o o

o oo o o o o

o o o oo o o

A pr t planet exerts tidal perturbati ns that, f r 1 M , may beadequate t induce the f rmati n f a gap in the disk near its rbit andthereby start t limit accreti n fl w nt it (Lin and Papal iz u 1993). Ingeneral, the gravitati nal p tential due t the pr t planet may be F urierdec mp sed in the f rm

c s[ ( )] (1)

where is the azimuthal angle, and the azimuthal m de number areintegers, and ( ) / is the pattern speed, with and

being the angular and epicyclic frequency f the pr t planet, respec-tively. If the rbit f the planet has a small eccentricity , then(G ldreich and Tremaine 1980; Shu 1984). F r circular rbits, nlyneed be c nsidered.

B th utg ing and ing ing density waves are excited in the disk atthe Lindblad res nances, l cated at and where, f r ,

/ (G ldreich and Tremaine 1978). Here is the epicyclic fre-quency f the gas and is the disk angular vel city. In a Keplerian disk,

. The ing ing ( utg ing) waves carry a negative (p sitive) angularm mentum flux measured in their directi n f pr pagati n as they m veaway fr m the pr t planet int the disk interi r (exteri r). The wavesthus carry a p sitive, utward-pr pagating, c nserved angular m men-tum flux r wave acti n In m st cases it is reas nable t assume thatthe waves are dissipated at s me l cati n in the disk, where their angularm mentum density is dep sited (see Lin and Papal iz u 1993 and refer-ences therein). In the limit f a c ld tw -dimensi nal disk, G ldreich andTremaine (1978) f und f r a particular that

2(2)

3 ( 1)

The back reacti n t rque exerted n the disk interi r (exteri r) t the planetis ( ). Thus, the inner disk l ses angular m mentum while theuter disk gains it; hence, the tendency is t f rm a gap. Evaluati n f

the t tal t rque acting n each side f the disk requires the summati n fc ntributi ns fr m all the res nances, which, f r circular rbits, am untst summing ver . As , the l cati n f the res nance appr achesthe rbit.

H wever, f r a n n-self-gravitating disk and large , the waves ares nic in character and thus can exist nly farther than a distance 2 /3fr m the rbit, bey nd which the relative disk fl w is supers nic. Thisresults in a t rque cut ff (G ldreich and Tremaine 1980; Artym wicz1993 ; K rycansky and P llack 1993; Ward 1997) f r / The

p

l,m l,mml

pl,m

pl m

l,m

L

H

m,m m,mH

m,mr r

H H

p

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 4: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

2 4 2 3

2

1/3

B. Embedded Protoplanets and Gaps

.

1114 D. N. C. LIN ET AL.

H

H . q r r H

H

ba

q r

H Rq r .

R

a,b

M

oo o o oo o o o o

o o

o o o o o oo o o o

o o o oo o o o oo o o o

o o o o o o o oo o o o o o

o o o o o oo o o o

o o o o o oo o o

o o oo o o

o o oo o o o

o o o o oo o o

o oo o o o

o o o o o o oo o o o o o

o o o o oo o o o o oo o

o o o o o oo o o o o o

o o o o o o oo

o o o o oo o oo o o o oo o o oo o o o

o o oo o o

o o o oo o o o

o o o o o

dynamics in the c rbital regi n 2 /3 are n t wavelike and are c n-sidered bel w. Summing ver all res nances, the t tal angular m men-tum flux carried by the waves is essentially the same as that given byPapal iz u and Lin (1984), namely

0 23 ( / ) (3)

which was btained by direct calculati n f the t rques f r a m del diskin which the pr t planet rbited in a gap f radial width .

Using equati n (3) t estimate tidal t rques and then c nsideringthe c mpetiti n between visc us t rques, which tend t fill a gap, andtidal t rques, which tend t empty it, Lin and Papal iz u (1979 , 1980,1986 , 1993) f und the f ll wing visc us c nditi n f r gap pening:

40 /( ). They pr p sed that gap f rmati n w uld lead t thelimitati n f accreti n, but they were able t c nsider nly empty gaps.With the intr ducti n f p werful numerical finite-difference techniquesand c mputers, it has recently bec me p ssible t study gap f rmati nnumerically m re fully than previ usly (Artym wicz et al. 1998; Brydenet al. 1998; Kley 1998; and see secti n I.B). The first results f this w rkindicate that there is a transiti nal regime in visc sity f r which a gapexists but s me accreti n still ccurs, which is then essentially switchedff f r small en ugh visc sity.

In additi n, Lin and Papal iz u (1993) p inted ut that in a diskwith very small visc sity, t f rm a gap it is necessary that( /3) This thermal c nditi n can be viewed in several ways. It meansthat the pr t planet’s gravity is m re imp rtant than pressure at a distance

fr m the pr t planet; generati n f large en ugh hydr static pressuref rces w uld require gradients that w uld cause a vi lati n f Rayleigh’scriteri n. Fr m K rycansky and Papal iz u (1996), it is apparent thatthe thermal c nditi n is required s that the fl w in the neighb rh d fthe pr t planet is n nlinear en ugh that sh cks are pr duced, which canpr vide the dissipati n ass ciated with gap pening (see bel w). This c n-diti n was f und f r a simple 2D m del disk with a bar tr pic equati nf state.

With m re c mplicated physics and the intr ducti n f three-dimensi nal effects (Lin et al. 1990 ), it may be p ssible t alter wavedissipati n patterns and, thus, angular m mentum dep siti n. H wever,because f the difficulty f clearing material near the pr t planet (it isdifficult t see h w linear waves c uld be dissipated cl ser than severalvertical scale heights), it is likely that gap f rmati n will ccur much lessreadily if the thermal c nditi n is n t satisfied.

The fl w ar und a partially embedded pr t planet has been simulated inthe l w- limit in a shearing-sheet appr ximati n (K rycansky and Pa-pal iz u 1996; Miy shi et al. 1999). These simulati ns pr vide useful

pT p

p

R

p

R

p

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 5: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

4

3

4 5

3

3

Jup

3

6Jup Jup

� �

.

ORBITAL EVOLUTION 1115

� ��

�� �

��

q H r .

r r

Pr

r r R

r .

qH r .

M MH r

H r .H r . .

M

� �

o o o o o oo o o

o o o

o o o oo o

o o o oo o o

o o o oo o o o

o o o o o o o o

o oo oo o o o o

o o o o oo o oo o o o o

o o o o oo o o o

o oo o o o o o

o o o oo o o o o

o o o o oo o o

o o o o o o o o o oo o o o

o o o oo o o o o o

o o o oo o o o

o o

o o o oo o o o o o

o o o o o o o oo o o o o o

o o o o oo o o

o o o oo o

o o oo o o

o o oo

clues n the fl w pattern near the pr t planet. A gl bal illustrative m delis sh wn in C l r Plate 16, in which we set 10 , / 0 07, and

10 . The fl w pattern can be divided int three regi ns:

1. A circumplanetary disk is f rmed within the R che radius f the pr -t planet, with semithickness . In such a ge metrically thickdisk, the tidal perturbati ns f the h st star induce a tw -arm spiralsh ck wave with an pen pitch angle. Angular m mentum is effi-ciently transferred fr m the disk t the star’s rbit ar und the planet(equivalent t the planet’s rbit ar und the star) s that gas is ac-creted nt the c re f the pr t planet within a few rbital peri ds

2 / .2. An extended arc is f rmed in the c rbital regi n near , with gas

streaming in h rsesh e rbits ar und the L and L p ints. Becausethese are l cal p tential maxima, visc us dissipati n leads t the de-pleti n f this regi n (Lin et al. 1987).

3. In th se regi ns f the disk that have , the pr t planet’stidal perturbati n results in the c nvergence f streamlines t f rmpr n unced trailing wakes, b th inside and utside These high-density ridges have been identified by s me as “stream accreti n,”thr ugh which material fl ws fr m the disk t the pr t planet (Arty-m wicz and Lub w 1996). H wever, the vel city field viewed in aframe r tating with the c mpani n (C l r Plate 16) clearly indicatesthat gas in the p stsh ck regi n al ng the ridge line is m ving awayfr m the pr t planet.

Simulati ns f gap f rmati n need t c nsider m del ev luti n vermany rbital peri ds and have t deal with a large density c ntrast betweenthe gap regi n and ther parts f the disk. Special care is needed t min-imize the tendency f numerical visc sity t pr duce spuri us diffusi nint the gap regi n and thus significantly affect the results. In C l r Plate17, we illustrate the excitati n and pr pagati n f waves and the existencef a clear gap f r a planet (with 10 ) interacting with a disk (with/ 0 04 and 10 ).

In Figure 1, we pl t the gr wth timescale / as a functi n fand / f r pr t planets f mass 1 and 10 M . We c mment that it is n tnecessary f r accreti n t st p entirely f r gap f rmati n t affect the finalmass f a pr t planet. All ne needs is that the mass d ubling time sh uldbec me l nger than either the disk lifetime r the time f r the interi r diskt accrete. In the latter case, the planet w uld appr ach the central starbef re it c uld increase its mass significantly (Ivan v et al. 1998). Fr mFig. 1 we see that, f r 10 and / 0 04, the mass d ubling timef r 1 M is 10 yr. F r 10 M the same results apply f r / 0 07The results in Fig. 1 thus suggest that the tidal truncati n pr cess peratesduring planetary f rmati n and is imp rtant in determining the final massf the planet .

p

o

p

p R

p

p p

p

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 6: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

4

12 12

2

��

���

II. PROTOPLANETARY ORBITAL EVOLUTION

A. Eccentricity Evolution

o o o oo o

o o o oo o o o o

1116 D. N. C. LIN ET AL.

Figure 1. The mass d ubling timescale as a functi n f visc sity parame-ter f r ne Jupiter mass with / 0 04 (left) and 10 Jupiter masses with

/ 0 07 (right). As the gas visc sity is decreased, the accreti n rate ntthe pr t planet dr ps ff sharply until reaching a numerical limit f r 10

��

e a

r

m d dT

dr dr

e

d d ra

H r .H r .

.�

g

C

� � �� ��

��

o o oo o o o

o o oo o o

o o oo o o o o o o

o o o o oo o o o o o o

o o o oo o o

o o o o o o oo o o o

o o oo o o o o o o o o

o o oo o o o o o

o o oo

oo o o o

o o o

Res nant interacti n between the disk and the planet can lead t changes inthe rbital eccentricity (Lin and Papal iz u 1993; Artym wicz 1993 ).The way in which Lindblad t rques cause a small eccentricity t gr whas been reviewed by Lin and Papal iz u (1993). If nly the Lindbladt rques are c nsidered, the disk matter is able t pump eccentricity tidallyin a similar way t a rapidly r tating star (see bel w). H wever, c r tati nres nances in the disk (at which the pattern speed f a F urier c mp nentf the tidal perturbati n c r tates with the disk) als need t be c nsidered

(see secti n I.A). When these res nances exist, a t rque is applied t thedisk at the c r tati n radius , where at a rate given by

( ) (4)2

where /(2 ) is the v rtensity. The r le f c r tati n res nancesdepends str ngly n the distributi n. When vanishes at s me diskedge, r when there is a gap near a l w-mass perturber, G ldreich andTremaine (1980) sh wed that the acti n f t rques due t c r tati n res -nances damps m re effectively than effects due t Lindblad res nancesexcite it. H wever, this result d es n t apply t the situati n where a pr -t planet is embedded in a disk with n edges r gap and where tidal inter-acti n is linear.

Assuming ln / ln 1 in the unperturbed disk, Artym wicz(1993 ) suggested that the eccentricity f l w-mass embedded pr t plan-ets w uld be damped by tidal interacti n. H wever, in the minimum-mass

C l,m

Cl,ml,m

r r

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 7: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

3/2

2 2 1

5 1

� �

� �

B. Orbital Migration

ORBITAL EVOLUTION 1117

r r

ee de dt q M M P

e e re

re

e

e

eM M e

e, M

T

dr Tdt r M

T

Mr R M

o o o oo o o o o o o

oo o oo o o o o o oo

o o oo o o

o oo o

o o o o o o o oo o

o o o oo o o o o o

o oo o o o o o o o

o o oo o

o o o oo o o o o o o

o o o o o o o oo o

o o o o oo o o o

o o o o

o oo o o o

o

o o oo

o o o o o oo o o

o oo o o o o oo o o o

o o o o o o o oo o o o o

o o o o oo o o o o o o o

oo o o o

o o o o

s lar nebula m del where , v rtensity is independent f , andthen all c r tati n t rques vanish (Ward 1993), alth ugh the t rque ass -ciated with c rbital Lindblad res nances may persist. F r a planet witha sufficiently large mass t pen a wide gap, b th c r tati n and c rbitalLindblad res nances w uld be severely weakened and c uld then in-crease n a timescale /( / ) ( / ) (Lin and Papal iz u1993) which, f r massive planets, can be sh rter than the inferred diskev luti n timescale.

If the gr wth f pr t planets is limited by the f rmati n f a gap fwidth , tides may cause t increase until / when a p tentialexpansi n valid f r small assumed in the ab ve analysis breaks d wn. Ina c ld disk, the pr t planet’s angular vel city at peri-apheli n w uld thenbe greater/less than ( ), resulting in a t rque reversal. Such a pr -cess c uld pr vide a limit t the gr wth f . H wever, a pr t planet’s in-creased radial excursi n may als cause the gap t widen, in which casemight increase t yet larger values. Analytic treatments and self-c nsistentnumerical simulati ns in the large- limit have n t been carried ut s far.

The characterizati n f extras lar planets’ rbits fr m f rthc mingbservati ns will pr vide s me useful c nstraints n the rigin f eccen-

tricity. The c existence f several planets with similar but very different( r similar but very different ) is n t a natural utc me f the ex-

citati n f eccentricity by disk tidal interacti n, because this w uld tendt pr duce an ( ) relati n (Artym wicz 1992).

Planetary rbital migrati n is induced by the difference between the innerand uter disk t rques, , which react back n the planet, assumed tremain in a circular rbit, such that

2(5)

Based n recent w rk indicating that is alm st always negative, Ward(1997) suggested that embedded planets migrate inward n a timescale

10 ( /M ) yr. If this pr cess ccurs in pr t stellar disks, pr t plan-ets w uld migrate t wards the stellar surface at nce 1 M ,because their gr wth timescale (Lissauer and Stewart 1993) w uld thenbec me l nger than this migrati n timescale. Res luti n f this rapid mi-grati n dilemma may require the c mplete and n nlinear analysis f thedisk resp nse t the pr t planet in the c r tati n regi ns which may bequite c mplex (see C l r Plates 16 and 17). H wever, supp sing that mi-grati n ccurs and can be st pped near the star (see bel w), a scenarileading t the f rmati n f sh rt-peri d planets has been pr p sed (seechapter by Ward and Hahn, this v lume).

After gap f rmati n, there may still be s me residual accreti n de-pending n the value f (see secti n I.B). T rques are still exerted

od

g g p

p g

p p

p

p

p p

p

p

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 8: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

11

III. PLANET-STAR TIDAL INTERACTION

1118 D. N. C. LIN ET AL.

b

M

in situR

R

P

r P

r

P

R

o o o oo o o o o o o

o o oo o o o o

o o o o o o oo o o oo o o o o o

o o o o oo

o o o o oo o o o

o o o oo o o o o oo o o

o o o o o o oo o o o o oo o

o oo o o o o o

o oo

o o o oo o o

o o o o o oo o o o o o

o oo o

o o oo o o o o o o o

o o o o o oo o o o

o o oo o o oo o o o

o o o oo o o o o o o

o o o oo o o o o o

o oo

o o o o o oo

between disk and pr t planet, and the imbalance due t differing pr per-ties f the disk n either side f the pr t planet causes rbital migrati n(G ldreich and Tremaine 1980; Lin and Papal iz u 1986 ; Takeuchi et al.1996). The estimated effects f advecti n f angular m mentum thr ughthe accreti n fl w n this pr cess are usually f und t be small. F r small

, the pr t planet behaves like a disk particle and s migrates t wardsthe star. F r larger masses, the ev luti n is sl wer. N netheless, the pr -t planet is always expected t reach the star bef re it has time t d ubleits mass (Ivan v et al. 1998).

The ab ve discussi n naturally leads t the suggesti n that sh rt-peri d planets were f rmed at several AU away fr m their h st stars andsubsequently migrated t their present l cati n (Lin et al. 1996). H wever,

f rmati n cann t be c mpletely ruled ut (B denheimer 1997).A pr t planet’s migrati n may be terminated near if (1) the disk

d es n t extend d wn t r (2) the h st star induces angular m mentumtransfer t the pr t planet’s rbit via tidal effects (see secti n III). F rthe first p ssibility, interacti n between the disk and an intense ( 1 kG)stellar magnetic field has been suggested (K nigl 1991) as the cause f rthe m dest bserved r tati n peri d ( 8 days) f classical T Tauristars (B uvier et al. 1993; Ch i and Herbst 1996). Such a magnetic fieldstrength may be c nsistent with recent measurements (Guenther 1997).In this scenari , the stellar field is assumed t induce a cavity ut t themagnet spheric radius ( a few 10 cm) where is equal t the l calKeplerian peri d f the disk. When a pr t planet migrates interi r t the2:1 res nance f the gas at , the pr t planet is dec upled fr m the disk,and its migrati n is stalled. The main uncertainties here are in the bserveddistributi n f (Stassun et al. 1999).

As the planet appr aches , the tides raised n the star r planet by itsc mpani n bec me str ng en ugh that their dissipati n leads t rbitalev luti n. If the distributi n f mass f the perturbed bject has the samesymmetry as the perturbing p tential, n tidal t rque results fr m the in-teracti n. H wever, in general, dissipative pr cesses (e.g., radiative damp-ing r turbulent visc sity) acting n the tides pr duce a lag between theresp nse f the star r planet and the perturbing p tential, enabling me-chanical energy t be l st and angular m mentum t be exchanged be-tween the r tati n f the perturbed bject and the rbital m ti n. Only ifthe system is circular, synchr n us, and c planar (i.e., the spin f the bi-nary c mp nents and that f the rbit are parallel) d es the tidal t rquevanish (Hut 1980). H wever, such an equilibrium state is n t necessarilystable (C unselman 1973; Hut 1980, 1981).

The resp nse f a star r planet t a tidal perturbati n is the sum ftw terms: an equilibrium tide and a dynamical tide. The equilibrium tide

p

m

m

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 9: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

ORBITAL EVOLUTION 1119

g

g

b

gb

b

o o oo o o

o o o oo o o o o oo o o o

o o oo o o o

o o oo o

o o oo o o o

o o o o o oo o

o o o oo o o o o

o o oo o o o o o

o o o oo o o

o o o o oo o o

o o o oo o o

o oo o

o o o o oo o o

o oo o o o o o

o o o o oo o o o o

o o o oo o o o o o

o o o o oo o o o

o oo oo o o o o o

oo o o o o o

o o oo

o o o o o oo

ooo o o o

(Darwin 1879) is the shape that the perturbed bject w uld have if it c uldadjust instantly t the tidal p tential; it is btained by balancing the pres-sure and gravity f rces. The dynamical tide c ntains the scillat ry re-sp nse f the star r planet. It takes int acc unt the fact that gravity rm des can be excited in the c nvectively stable layers f the star r planetand that res nances between the tidal disturbance and the n rmal m desf the star r planet can ccur (C wling 1941).

In massive cl se binaries, which have a c nvective c re and a ra-diative envel pe, the dynamical tide cann t be neglected, because tidalfricti n is caused pred minantly by the radiative damping f the tidallyexcited m des (Zahn 1975, 1977; Sav nije and Papal iz u 1983, 1984,1997; Papal iz u and Sav nije 1985, 1997; G ldreich and Nich ls n1989; Sav nije et al. 1995; Kumar et al. 1995). In that case, m des,which are excited mainly near the c nvective c re b undary, pr pagateut thr ugh the envel pe t the atm sphere, carrying energy and angular

m mentum. They are damped cl se t the surface, where the radiativediffusi n time bec mes c mparable t the f rcing peri d, thus enabling anet tidal t rque t be exerted n the star r planet.

In the case f s lar-type binaries, which have a radiative c re and ac nvective envel pe, it was th ught until recently that tidal fricti n c uldbe well described by the the ry f the equilibrium tide, in which nlyturbulent dissipati n f the equilibrium tide in the c nvective envel pe istaken int acc unt (Zahn 1977). H wever, recent studies have indicatedthat this is n t the case. Even if radiative damping can be ign red, thet rque derived using nly the equilibrium tide is 4–6 times larger than thattaking int acc unt the dynamical tide f r binary peri ds f several days(Terquem et al. 1998 ). The reas n is that the the ry f the equilibriumtide can in principle be applied nly when the characteristic timescales fthe perturbed bject are small c mpared t the f rcing peri d. In a s lar-type star, h wever, the c nvective timescale in the interi r regi n f thec nvective envel pe is as large as a m nth. Furtherm re, because f theuncertainty ver the magnitude f the turbulent visc sity ass ciated withc nvecti n, it is n t clear that the t rque due t turbulent dissipati n actingn the full tide in the c nvective envel pe is m re imp rtant than that due

t radiative damping acting n the m des that pr pagate inwards in theradiative c re (Terquem et al. 1998 ; G dman and Dicks n 1998). Here,we f cus n the case f a planet rbiting ar und a s lar-type star.

Tides raised n the star by the planet can be analyzed in the limitthat the r tati nal frequency f the star is small c mpared t the rbitalfrequency. Then, as a result f tidal fricti n, the star spins up, the rbitdecays (the planet spirals in), and the rbit’s eccentricity, if any, decreases.T calculate the timescales n which this ev luti n ccurs, we need tquantify the dissipative mechanisms that act n the tides. Recent studies(Claret and Cunha 1997; G dman and Oh 1997; Terquem et al. 1998 )have f und that the turbulent visc sity in the c nvective envel pe that is

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 10: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

o

5/3 13/34

rb

2 36

sp

2/3 13/35

circ

1120 D. N. C. LIN ET AL.

��

��

��

b

b

M M Pt .

M M

M M Pt .

M

M M Pt .

M M

P

I I I I

I I .

� �� �

� �

� �� �

o o o o oo

o o o o oo o o o

o o o oo o oo o o

o o oo o o o

o o o oo o o o

o o o o o o oo o o o o

o o oo o o o o o

o oo o o o

o o o o oo o o o o o

o o o o o oo o o o o o oo o o o

o

o o o oo oo o o o o

o o o oo

o o o o oo

o o o oo o o o o o

o o o oo o o o

o o o oo o o o o

required t pr vide the bserved circularizati n rates f main-sequences lar-type binaries (Mathieu 1994) is at least 50 times greater than thatsimply estimated fr m mixing length the ry f r n nr tating stars. This in-dicates either (1) that the bservati ns are questi nable, (2) that s lar-typebinaries are n t circularized thr ugh turbulent visc sity acting n tidalperturbati ns (see Tass ul 1988 and Kumar and G dman 1996 f r thersuggested tidal mechanisms), r (3) that dissipati n in the c nvective en-vel pe f s lar-type stars is significantly m re efficient than is currentlyestimated (see Terquem et al. 1998 f r a m re detailed discussi n fthe uncertainties inv lved). Here we assume that circularizati n f s lar-type binaries d es ccur thr ugh the acti n f turbulent visc sity n thetides, and we then calibrate its magnitude s as t acc unt f r the bservedtimescales. Under these circumstances, when the resp nse f the star is n tin res nance with ne f its gl bal n rmal m des, the tides are dissipatedm re efficiently by turbulent visc sity than by radiative damping. In a res-nance, radiative damping d minates and limits the resp nse f the star at

its surface. Alth ugh the planetary c mpani n may g thr ugh a succes-si n f res nances as it spirals in under the acti n f the tides, f r a fixedspectrum f stellar n rmal m des its migrati n is c ntr lled essentially bythe n nres nant interacti n. F r a n nr tating star, and with the calibrati nmenti ned ab ve, the rbital decay timescale, spinup timescale f the star,and circularizati n timescale, in Gyr, are (Terquem et al. 1998 ):

/ 1Gyr 2 763 10 (6)

/ 1 day

Gyr 1 725 10 (7)1 day

/ 1Gyr 4 605 10 (8)

/ 1 day

where is the rbital peri d. This circularizati n timescale is valid nlyif the initial eccentricity is n t t large. If nly the c nvective envel pe fthe star, where tidal dissipati n ccurs, is spun up during tidal ev luti n,then the spinup timescale has t be multiplied by / , where andare the m ments f inertia f the c nvective envel pe and the entire star,respectively. F r the Sun, / 0 14.

Tides are als raised n the planet by the star. In c ntrast t the giantplanets f ur s lar system, Jupiterlike planets n a cl se rbit are expectedt have an is thermal, and thus radiative (c nvectively stable) envel pe(Guill t et al. 1996; Saum n et al. 1996). F r these planets, b th turbulentdissipati n in the c nvective c re and radiative damping in the envel peact n the tides. S far it is n t clear which mechanism is m re imp rtant.

p o

p

p o

p

p o

p

o

c c

c

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 11: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

321 13

sp

51 14

circ

1circ

1sp

5 6

13

2 2sp circ

ORBITAL EVOLUTION 1121

Q

M P at . Q

P P M R

R a P

M P at . Q

M R

Q

tQt

QaQ

Q

Q

Q

t t

� �

� �

� �

� �

o o oo o

o o o oo o o o o o o o

o o o o o o oo o

o o oo o o o o

o o o o oo o o o

o o o o o o o oo o o

o o o oo o

o o o o o o oo o o

o o o o oo o o

o o o oo o o o

o o o oo o o o oo

o o o oo o o o o o o o

o o o o oo o o o o

o o o o o oo o o o

o o oo o o o o o

o o o o oo o o

o o oo o o o o

o o oo o o o

We express the timescales ass ciated with turbulent dissipati n f thetides in terms f the parameter , the inverse f which is the effectivetidal dissipati n functi n (MacD nald 1964). Damping f the tides in thec nvective c re f the planet leads t the synchr nizati n f the planet r -tati n with the rbital rev luti n n the f ll wing characteristic timescale,in Gyr (G ldreich and S ter 1966):

1 day 1 dayGyr 4 4 10 (9)

1 day

where is the planet radius, is the semimaj r axis f the rbit, and isthe initial value f the planet r tati nal peri d (when it first underg es tidalinteracti n with the star). Because the r tati nal angular m mentum f theplanet is in general small c mpared t its rbital angular m mentum, syn-chr nizati n f the planet ccurs bef re any significant rbital ev luti ncan take place. Once synchr nizati n is achieved, damping f the tidesraised in the planet always leads t the decay f the rbital eccentricity na characteristic timescale, which is, in Gyr (G ldreich and S ter 1966),

Gyr 2 8 10 (10)1 day

The tides raised n the planet d n t lead t the decay f the rbit ncethe planet is synchr nized. We n te that may depend n the tidal fre-quency as seen by the planet, and theref re n the r tati nal frequency fthe planet. Since is calculated assuming synchr nizati n, the value f

in the ab ve equati n may be different fr m that used f r calculating. Orbital ev luti n and tidal heating f Jupiter’s satellites leads t an

estimate f 10 –10 f r this planet (G ldreich and S ter 1966; Linand Papal iz u 1979 ; Gailitis 1982). H wever, it is n t yet underst dwhere this value f c mes fr m, because turbulent visc sity arisingfr m c nvecti n w uld pr duce 5 10 (G ldreich and Nich ls n1977; see Stevens n 1983 f r an alternative). There is, f c urse, n rea-s n t assume that the values f the extras lar planets are similar tthat f Jupiter. First, s me f these planets rbit very cl se t their parentstars and theref re are much h tter than Jupiter. Als , may depend nthe magnitude and the frequency f the tidal scillati n, in which case itw uld be different f r Jupiter if this planet were synchr n usly r tating na cl ser rbit. Theref re we can nly speculate when applying the ab vef rmulae t extras lar planets.

Radiative damping f the tides in the envel pe, as described ab vef r massive binaries, gives rise t the synchr nizati n and circularizati ntimescales and , respectively. These timescales have been eval-uated (in particular f r 51 Pegasi) by Lub w et al. (1997). H wever, asthey p inted ut, the asympt tic analysis they use is valid nly if the

p op,

p o p

p p

p op,

p

p,

p,

p, p,

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 12: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

o o

o o

sp

circ circ1 2

circ circ circ 1 1rb circ rb circ

1 2circ circ circ1 7

circcirc 1circ

circ

circ

rb rb

1122 D. N. C. LIN ET AL.

�� �

a,b

t

t tt t t

t t t t

t t tt t Q

tt P

t

Rt t

P

� �

� �

� � �

� �

��

o oo o o o o o

o oo o o o o

o oo o o

oo o o o oo o o o o

o o o o oo

o o o o o o o oo o o o o o o

oo o o o o o

o oo o o oo o o o o o

o o o o oo o o o o o o o oo o o o o o o o

o o o o oo o o

o o o o oo o

o o oo o o o o

o o oo o

o o o o oo o o

o o o o oo o o o

oo o o o

o o o o o oo o o

o o o o oo o o o

o o o o o o oo o

o o o o oo o

o o o oo o

o o o o o

initial spin rate f the planet is less than half that f Jupiter. Besides, thisanalysis neglects the effect f r tati n n the tides, which is imp rtant f rnear-synchr n us planets.

In the c ntext f extras lar planets we first c mment n the magni-tude f the perturbed vel city induced by the tides at the stellar surface.Terquem et al. (1998 ) have f und that, in the case f 51 Peg, this vel c-ity is t small t be bserved. This result is insensitive t the magnitude fthe stellar turbulent visc sity and is n t affected by the p ssibility f res -nance. It als h lds f r the ther extras lar planets that have been detecteds far.

As indicated ab ve, the r tati n f planets n a cl se rbit is alm stcertainly synchr n us with the rbital rev luti n. F r the star t be syn-chr nized in less than 5 Gyr (i.e., 5 Gyr), a 1-(3)-Jupiter-mass planetw uld have t be n an rbit with a peri d less than 1.4 (3) day(s). We n tethat in the case f B tis, the r tati n f the star may then have been syn-chr nized as a result f tidal effects. If nly the c nvective envel pe f thestar is spun up, these peri ds have t be multiplied by ab ut a fact r f 2.Theref re, the bservati n fan mal us rapidr tat rsc uldgivefurtherev-idence f the presence f cl se planets and pr vide s me indicati n n h wthe dissipati n f tides affects the r tati n f the star (Marcy et al. 1997).

The circularizati n timescale f r the rbit is such that 1/1/ 1/ 1/ . We n te that, acc rding t the expressi n f thetimescales we have given ab ve, 6 and 10 , s thatcircularizati n can be achieved with ut a significant rbital decay takingplace (in c ntrast t the statement by Rasi et al. 1996). S far it is n tclear which f the timescales , , and is the sh rtest. F r 51 Peg,

requires 2 10 (see als Rasi et al. 1996 and Marcy etal. 1997 f r estimates f ). We p int ut that f r a Jupiter-mass planet,

5 Gyr f r 3 days. Theref re, all the Jupiter-mass planets r-biting with a peri d less than ab ut 3 days sh uld be n a circular rbit.This cut ff peri d is a l wer limit because is an upper limit f thecircularizati n timescale.

Planets f und n eccentric rbits at smaller peri ds are indicative thatthe stellar r tati n frequency (assumed zer up t n w) is large c mparedt the rbital frequency. Indeed, in that case, tidal fricti n in the star pumpsup the rbital eccentricity, pp sing the effect f tidal fricti n in the planet.H wever, the ab ve calculati ns indicate that the planet may have t ben a very cl se rbit f r the tidal fricti n in the star t be able t increase

the rbital eccentricity significantly. Whether the planet can get t such acl se rbit is questi nable if the disk in which the planet f rmed did n textend d wn t .

The timescale n which the rbit decays is . The c nditi n 5Gyr requires 2 days f r a Jupiter-mass planet. If a planet has n t beenable t get t such a cl se rbit (e.g., because the inner parts f the disk

p, p,

p, p,

p, p,

p,

p,

o

o

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 13: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

6

Jup

Jup7

2

��

ORBITAL EVOLUTION 1123

�R

r

a

� �

o o o o oo o o ooo o o o o

o o oo o o o o o o

o o o oo

o o o oo o o o o

o o o oo o o o

o o oo o o

o o o oo o o

o o o o o oo o o

o o o o oo oo o o o

o o o oo

o o o o oo o o

o oo o o o oo o o o

oo o o o

o o o oo o o o o o o

o o o o oo o o o oo o o o o o

o o oo o

o o o oo o

oo o oo o o o o

o oo o o o

o o o o oo

were truncated), rbital decay may n t ccur as a result f tidal fricti n,and the planet may n t plunge int its parent star. N te t that a giantplanet that spirals in t wards the star may l se mass thr ugh R che l beverfl w (Trilling et al. 1998). Apart fr m reducing the planetary mass,

c nservati n f angular m mentum results in an utward t rque n therbit, which sl ws the inward migrati n. A l w-mass planet in a very smallrbit may result in this way.

H wever, several planets may attain sh rt peri ds. After the firstb rnpr t planet emerges and migrates t a few , subsequently f rmed pr -t planets (beginning farther ut because the f rmati n timescale increaseswith ) may migrate inward, pushing pr t planetary c res ahead f theirinward path, until they bec me trapped at Lindblad res nances. Such res -nant trapping is f und f r the Galilean satellites (e.g., G ldreich and Peale1966; Lin and Papal iz u 1979 ) and it ccurs if the migrati n rate is suf-ficiently sl w. It raises the intriguing p ssibility that planets temp rarilyparked cl se t the star because f absence f disk material c uld be f rcedt plunge int the h st star.

On the ther hand, if the star is a rapid r tat r (with peri d sh rter thanthat f the rbit) and has a weak magnetic field, tidal effects transfer angu-lar m mentum fr m the star t the rbit, with increasing efficiency as therbit is pushed ut, until a tidal barrier is pr duced such that the migrati n

time and inverse rbital decay time balance. Tentatively, using estimatesderived fr m equati n (7), an inward migrati n time f 10 yr c uld bebalanced by tidal effects acting n a 1-M planet nly if the peri d were

0.3 days, which increases t 0.7 days f r a 3-M planet and a migra-ti n time f 10 yr. If planets can survive at such sh rt peri ds (m re likelyf r massive planets and sl w migrati n rates) and if eccentricity gr wthis suppressed by tides within the planet, tidal effects might temp rarilycause the halting f migrati n by transferring angular m mentum fr mthe star t the inner rbit and fr m there t any residual disk material viaLindblad t rques and s n t uter planets (cf. the situati n f r Saturn’srings). Such pr cesses have n t yet been w rked ut in detail. H wever,a s lar-type star is likely t have a small am unt f angular m mentumin c mparis n t the disk/planet system in t tal, and nce the star sl wsd wn sufficiently, the inward migrati n must c ntinue.

As a planet eventually bec mes engulfed by the h st star, it is dis-rupted by tidal breakup, heating, and ram pressure stripping (Sandquist etal. 1998). Supp rting evidence f r such phen mena may be f und in thesupers lar metal abundance f 51 Pegasi (G2 V), 55 Cancri (G8 V), and

B tis (F7 V) (Butler et al. 1997; G nzalez 1997, 1998). The c nvectiveenvel pe f r each f these stars c ntains a few 10 M . The mixing f10–40 M f planetary heavy element material within the stellar envel pe(Zhark v and Gudk va 1991) w uld lead t a significant metal enrichmentthere. Because the depth f the c nvecti n z ne f main-sequence starsdecreases significantly with increasing stellar mass, the r utine engulfing

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 14: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

Jup

12 18

8 12 5 8

Jup

10

1/3 3 1/6 1esc Jup

1/3 1/2esc Jup

Jup

Jup

4

4 2

��

��

IV. LONG-TERM STABILITY OF PLANETARY SYSTEMS

1124 D. N. C. LIN ET AL.

M a

M

ae

VV M

e V a M a

Me . a .

a Me . r

rr V

r r

e . ae

��

�� �

� �

� �

� ��

o o o o o oo o o o oo

o

oo o

o o oo o o o

o oo o o o o

oo o o o o

o oo o o o o o

oo o o

o o o o o o oo

o o oo o

o o o oo o o o

o o o o oo o

o o oo

o oo

o oo o

o oo o o o

o o o o oo o

o o o o oo o o o o o

oo o o o o o

o oo o

o o o o oo o

o o o o o

f planets by their h sts might lead t a tendency f r h tter planetary h stst sh w a general verall metallicity enhancement with respect t c lernes.

In a relatively massive disk, several giant planets may be f rmed with1–3 M and 1 AU (Lin and Ida 1997). Their l ng-term r-

bital stability determines the dynamical ev luti n f the system. After thedepleti n f the disk gas, mutual gravitati nal perturbati n between theplanets may gradually increase their eccentricities until their rbits cr sseach ther n a timescale . Extrap lati ns f existing numerical results(e.g., Franklin et al. 1990; Chambers et al. 1996) give 10 yr f rthe s lar system. H wever, w uld reduce t 10 r 10 yr if allthe gas giants had 1 r 2 M , respectively. M re recent simula-ti ns and cr ssing times f r subsets f planets, c nfigured as in the s larsystem but with a reduced s lar mass, are given in Duncan and Lissauer(1998). These auth rs find that the rbits f the giant planets remain stableunder the expected s lar mass l ss f r up t 10 yr r m re. The m re thecentral mass is reduced, the sh rter is .

Since systems f massive planets f rmed with similar values f andsmall eventually suffer rbit cr ssing (Lin and Ida 1997), massive eccen-tric planets may have acquired their rbital pr perties as a c nsequence frbit cr ssing (Rasi and F rd 1996; Weidenschilling and Marzari 1996;

Lin and Ida 1997; Levis n et al. 1998). Once rbit cr ssing ccurs, cl seenc unters eventually take place. When these inv lve equal-mass plan-ets, they pr duce a vel city perturbati n with magnitude limited by thesurface escape vel city 60( /M ) ( /1 g cm ) km s ,where is the planet’s internal density (Safr n v 1969). This results in

/( ) 2( /M ) ( /1 AU) . Thus, bserved eccentrici-ties can be acc unted f r.

Supp sing that giant planets f rm at 1 AU, massive planets (5 M ) with m derately high 0 3 and m derately small 0 5 AUcan be acc unted f r by rbit cr ssing and merging. Eccentric planets with

1 AU and M can be pr duced by rbit cr ssing f ll wedby ejecti n. Merger, resulting in 0 5, is fav red at small , whereasejecti n ccurs preferentially at large , because the cr ss secti n f r directc llisi ns is independent f whereas that f r cl se enc unters is( ) (Lin and Ida 1997). Lin and Ida (1997) find that the rbitalpr perties f a merged b dy are c nsistent with th se f the planets ineccentric rbits ar und 70 Virginis and HD 114762.

Numerical simulati ns f systems with many planets indicate that al-th ugh s me may be ejected, a residual p pulati n f eccentric planets( 0 5) may remain b und t the central star at large distances (100 AU). Cl se enc unters als excite the relative inclinati n up t /2

p

x

x

x

p

x

p p

p

p

p

p

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 15: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

V. EFFECTS OF SECULAR PERTURBATIONSDUE TO A DISTANT COMPANION

A. Kozai Effect

ORBITAL EVOLUTION 1125

v

e .

MM

a

i

M M rM

��

o o o o o oo o o oo o o o

o o o o oo o o

o o o o o o oo

o o o oo o o o

o o

o o o oo o o o o

o o o oo

o o o o oo o

o o o oo o o o

o o oo o o o o o

o oo o o o

o oo o o o o

o o oo o o o

o o o o oo o o o o

o o o o oo o o o

o o o o o oo o o o

o o o o oo o o o o o

o oo o o o o

o o o o oo o

o o o o o o o

radians. Detecti n f additi nal c mpani ns ar und stars with an eccentricplanet w uld pr vide tests f these scenari s.

Rasi and F rd (1996) suggested that the sh rt-peri d planets weredynamically scattered int a regi n cl se t the central star. Alth ugh thesh rt-peri d planets may be circularized (see secti n III), numerical sim-ulati ns indicate that the scattering scenari w uld lead t a p pulati n fplanets with high eccentricity at large distances (10–100 AU) fr m theircentral stars. A c mprehensive search f r these planets w uld pr vide auseful test f this scenari as against that f disk-planet interacti n, whichpr duces rbits with smaller eccentricity.

S me extras lar planets are f und in binary systems. F r example, a planetis f und ar und 16 Cyg B that rbits at a distance f 1.7 AU fr m thecentral star, which is kn wn t have a binary c mpani n, 16 Cyg A. Ithas been suggested that the high eccentricity ( 0 67) f 16 Cyg B isexcited by the gyr sc pic perturbati n due t 16 Cyg A (H lman et al.1997). A similar effect may be caused by the gravitati nal perturbati nsfr m ther planetary b dies. Here we discuss the effect f secular perturba-ti ns n a l ng timescale such that a time average may be perf rmed. Therbiting b dies may then be c nsidered as having their mass distributed

c ntinu usly ar und their rbits as in the classical the ries f Laplace andLagrange (see Hagihara 1972 and references therein). Semimaj r axes dn t change under secular perturbati n. H wever, changes t the eccentric-ity and inclinati n may be pr duced.

If rbits are c planar, in general nly m dest changes t eccentricitiesare pr duced if the perturbing b dies are widely separated. An excepti nt this might ccur if secular res nances sweep thr ugh the system be-cause f a changing gravitati nal p tential due t disk dispersal r chang-ing stellar blateness (e.g., Ward 1981). H wever, if rbits are all wed thave high inclinati n, large eccentricity changes can ccur t the rbit fan inner planet perturbed by a distant b dy r binary c mpani n.

T c nsider this gyr sc pic perturbati n effect, let us c nsider the sim-plest case f the m ti n f an inner planet with mass perturbed byan uter c mpani n with mass assumed t be in a circular rbit withsemimaj r axis . The uter c mpani n is assumed t c ntain sufficientangular m mentum that its rbit remains fixed, defining a reference planet which the inner planet rbit has inclinati n . We n te , the l ngitudef the apsidal line measured in the rbital plane fr m the line f n des.

If the distance f fr m is , its speed is , the angle betweenits p siti n vect r and that f is , and nly the d minant quadrup le

p

a

p

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 16: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

y

22 2

3

222 2 2

3

2

23

3

0 0 0

0

2 20

2 20

20

20

2 30 5

� ��

�� �

1126 D. N. C. LIN ET AL.

v�

� �

� �� � �

��

GM M GM M rH M

r a

GM MH

a

GM M ai e e i

a

HL i GM a e i

ie

dL dt H

de nM a e idt M a

n M .e

e

H L i ie i i e e ,

e

i ee i

e

i

i

,

i

� �

� �� �

� � �

� � �

� �

� �

� �

� �

o o o o o oo o o

o

o o o o

o o

o o o o o oo o o o o

o o o o o o oo o o o o

o o o

o o oo o o

oo o o

o o o o o o o oo o o o oo o

o o o

oo

o

o o

oo

o

o o o o oo

o

term in the interacti n p tential multip le expansi n is retained, its m ti nis g verned by the Hamilt nian (K zai 1962; Hagihara 1972; Innanen etal. 1997):

13 c s 1 (11)

2 2

After perf rming a time average, appr priate f r secular perturbati ns,

2

3 c s 1 (2 3 ) 15 sin c s 216

(12)

The fact that b th and the c mp nent f angular m mentum parallel tthe uter rbital axis, c s (1 ) c s , are c nstant en-ables eliminati n f and . A c mplete s luti n can then be f und fr mthe equati n f r the rate f change f , which can be derived fr m thecan nical equati n / / in the f rm

15 sin sin 2(13)

8

with 2 / being the rbital peri d f the planetThe ab ve equati n indicates that can scillate between extremes

ccurring when sin 2 0. There has been particular interest in find-ing c nditi ns under which can start fr m very small values and thenincrease unstably t values cl se t 1. T examine c nditi ns f r this tccur, we use c nst and c s c nst t find and in termsf . Assuming initial values and when , f r in-

finitesimally small but n nzer values f that can be neglected, we find

1 5 c sc s 2 (14)

5 1 c s

Fr m equati n (14), we see that when 0,

1 5 c sc s 2 (15)

5 1 c s

Clearly, f r s luti ns f the type we seek, we require c s 2 1 whichrequires that the initial inclinati n exceed a critical value (see Innanen etal. 1997) such that

c s (16)

p p

p

pa

a

a

a

p

a

a

a

a

a

a

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 17: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

y

y

0

02 2

325

3 3

2

2

2 2 2

20

� �

B. Relativistic Effects

ORBITAL EVOLUTION 1127

� � �

ee

,

ie

i

M a M a

GM GM GMr r rc

cH

GM MH H

a c e

iee

fi

� �

� �

��

��

o oo o oo

o

o oo o o o

o o o o oo o o o

o o o oo o o o

o o o o oo o o o o

oo o o o o

o o o oo o o

o o o o oo o o o o o

o o o o oo o o o

o o o o o o o oo o o o

o o o o

o o oo o o o

o o oo o o oo o o o o o o oo o

o

If this inequality is satisfied (if it is n t, then cann t be neglected),equati n (13) indicates that gr ws fr m a very small value up until thevalue btained by setting /2 namely

1 5 c s (17)3

attained when c s . A range f eccentricities may be generated inthis way. H wever, values cl se t unity may be attained f r initial in-clinati ns cl se t 90 . There are then s luti ns that have large-amplitudescillati ns in eccentricity (K zai effect), and adding the n nsecular terms

back in can lead t cha tic behavi r. The large eccentricity changes ccurindependently f the size f the perturbati n. H wever, the characteristictimescale f r the eccentricity changes t ccur is given fr m equati n (13)as ( )/( ) rbital peri ds f the inner planet, which is l ng f rsmall perturbati ns.

N te, h wever, that the effect requires the m ti n f the apsidal anglebe g verned nly by the perturbati n c nsidered. Other effects may

disrupt this, such as general-relativistic c rrecti ns (e.g., H lman et al.1997) and the blateness f the central star. B th c uld be c nsidered inthe f ll wing discussi n, but here we limit urselves t c nsidering theeffects f relativistic apsidal precessi n, which may lead t c nstraints nthe rbital elements f planets with sh rt peri ds.

T inc rp rate relativistic apsidal precessi n t l west rder, we m difythe Newt nian p tential such that Keplerian elliptic rbits are induced tprecess at the c rrect rate. We m dify the p tential due t the central masssuch that

31 (18)

with being the speed f light. The additi nal term can be added int theHamilt nian and averaged s that equati n (12) bec mes

3( )(19)

2 (1 )

The same pr cedure as described ab ve can be used t find and interms f and hence c nditi ns that must be satisfied in rder that largevalues f might be attained. The c nditi n anal g us t (16) f r the K zaieffect t w rk is

3 2c s (20)

5

a

a

p

a

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 18: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

3

2 3

32

0

2

0

2 2/37

32

2

� �

VI. SUMMARY

1128 D. N. C. LIN ET AL.

��

� � �

��

� �

GM M af

ac M a

f

i

f fe

f . , ei f

Pf .

q P P

P P M Mq M M

f

q ��

� �

� �� �

o o o oo o o o o o o

o o oo

o oo

o o o o

o o oo o o

o o oo o o o o o o o

o o o o o oo o

o o o o

o o o oo o o o o o o

o o o o o oo o o o

o o oo o o o o o

o o o oo o o o o

o o o

o oo o o o o o

o

Here the parameter

(21)

measures the imp rtance f relativistic precessi n relative t the pertur-bati n due t the uter c mpani n. Fr m this, if , the effect is c m-pletely suppressed. When the K zai effect ccurs, the maximum p ssibleeccentricity that can be generated is btained by setting /2 and

90 . This gives

1 4 1 4(22)

2 3 4 3

which indicates that, f r 0 1 as high as 0.99 can be generated f r90 . The parameter may be c nveniently expressed as

1 1 day5 0519 10 (23)

Here, and den te the rbital peri ds f and , respectively,and / .

Planets with peri ds less than 3–4 days are likely t have their rbitscircularized as a result f tidal effects (see ab ve). Fr m the requirement

, we see that f r inner planets with s mewhat larger peri ds (but stilln the rder f days), binary c mpani ns with mass rati f rder unity

need rbital peri ds sh rter than ab ut 40 yr in rder t pump significanteccentricity. If a massive planet with 10 is c nsidered, it must rbitwith a peri d ten times sh rter, 4 yr. Such an bject sh uld be readilydetectable.

We c mment that f r a given distant binary c mpani n with inclina-ti n cl se t 90 t the planet rbit, and n ther perturbers, there is aplanet with a peri d l ng en ugh such that the K zai effect c uld pr duceeccentricities cl se en ugh t unity that the planet has arbitrarily cl seappr aches t the central star. Then tidal effects may act t wards circular-izati n, s decreasing the distance t ap apse until a circular rbit is pr -duced. The final peri d w uld have t be a few days. Alternatively, sh uldthe cl sest appr ach t the star be bey nd the largest radius at which r-bits can be circularized, the rbit w uld retain a K zai cycle with highmaximum eccentricity.

Here we summarize the vari us pr cesses discussed in this chapter, theirinfluence n the ev luti n f planetary systems, and their bservati nalimplicati ns.

a

o

o o

o po

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 19: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

� �

3

6

Jup

ORBITAL EVOLUTION 1129

v

Planet-disk tidal interaction

H . r

e .M e

Stellar tides raised on short-period planetsM

Ptides raised on a slowly rotating star

P

Long-term gra itational interaction between planets

Secular perturbations by distant binary

P

Acknowledgments

o oo

o o o o o o oo o o

o o o o o ooo o o o o o

o o o oo o o o

o o o o oo o o

o o o o oo o o o o

o o o o o o oo o o o o

o o o o oo

o o o o oo o o

o o oo o

o o o ooo o o

oo o o o o

o o o oo o

o o o oo o

o o o oo o o

o o o o o oo o o o o o

o o o oo

o oo o o o

o o o oo o o o

o o o oo o o o

o o o

1. excites p tentially bservable spiraldensity waves and can create clean gaps in the disk, limits mass gr wth,and drives rbital migrati n. Gr wth limitati n by gap f rmati n, t getherwith inward migrati n, may naturally acc unt f r the upper limit in thebserved mass rati distributi n f extras lar planets, pr vided they were

f rmed in disks with 0 1 and 10 . Because the critical massf r gap f rmati n is an rder f magnitude larger than f r dynamical gasaccreti n, a bim dal mass distributi n with a depressi n between thesemasses may be anticipated. After gap f rmati n, massive pr t planetsare expected t migrate with the visc us ev luti n f the disk until theyenc unter a stellar magnet spheric cavity r tidal barrier. The existencef sh rt-peri d planets ar und classical T Tauri stars w uld imply that

the l cal disk visc us ev luti n timescale is sh rter than the typical age( 10 yr). Orbital migrati n may lead t stellar c nsumpti n f pr t plan-ets with surviving planets l cked int c mmensurable rbits. C ntamina-ti n f h st stars (during the latter’s main-sequence ev luti n) by plungingplanets may have led t a relatively high metallicity. Planet-disk interac-ti n is likely t excite nly small 0 3 and lead t a relati n between

and that c uld be bserved. A planet with larger eccentricity w uldverrun the gap and induce n nlinear dissipati n.

2. sh uld rapidly synchr -nize their spin with that f the rbit. Sh rt-peri d planets with Mand 3–4 days (e.g., B ) sh uld have their rbits circularized by

within a few Gyr. In the case f mas-sive planets, the stellar r tati n may als be synchr nized with the rbit.Only very sh rt-peri d planets ( 2 days), h wever, are expected tunderg significant rbital decay.

3. with initiallysmall eccentricity leads t rbit cr ssing n a timescale that is sensitivelydetermined by their masses and initial separati ns. Subsequent cl se en-c unters between c mparable masses can lead t high rbital eccentricityand planets scattered int extended rbits. This mechanism may pr videa supply f planets with a range f sh rt peri ds, s me f which may un-derg tidal circularizati n r plunge int the star, t gether with utlyingacc mplices. The latter c uld be imaged by the next generati n f IR in-terfer meters.

4. , r massive utlying plan-etary, c mpani ns in relatively highly inclined rbits can als excite higheccentricity thr ugh the K zai mechanism. P tentially this pr cess mightpr duce a supply f sh rt-peri d planets ( 2–3 days) that have under-g ne tidal circularizati n. Because f the very high relative inclinati nsrequired, this mechanism is likely t w rk nly in a small number f cases.

This w rk is supp rted by NSF and NASA thr ughgrants AST-9618548, NAG5-4277, and NAG5-7515.

p

p

p

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 20: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

REFERENCES

o o o

o oo o o o

o o o oo o o

o o o o

o oo

o oo o

o oo o o o o o

o o oo o o o o o o o

o o o o o oo o o o o

oo o o o o o o

o o oo o o o

o o o o o

o o

o o o o o oo o

o o oo o

o o o o o

o o o o o o o

o o o o

o o oo o o o

o o oo o o o

o o o o o o o

o o o o

1130 D. N. C. LIN ET AL.

Artym wicz, P. 1992. Dynamics f binary and planetary-system interacti n withdisks—eccentricity changes. 104:769–774.

Artym wicz, P. 1993 . Disk-satellite interacti n via density waves and the eccen-tricity ev luti n f b dies embedded in disks. 419:166–180.

Artym wicz, P. 1993 . On the wave excitati n and a generalized t rque f rmulaf r Lindblad res nances excited by external p tential. 419:155–165.

Artym wicz, P., and Lub w, S. 1996. Mass fl w thr ugh gaps in circumbinarydisks. 467:L77–L80.

Artym wicz, P., Lub w, S., and Kley, W. 1998. Planetary systems and their chang-ing the ries. In , ed. L. Celnikier (Gif-sur-

`Yvette: Editi ns Fr ntieres), in press.Balbus, S. A., and Hawley, J. F. 1991. A p werful l cal shear instability in weakly

magnetized disks. I. Linear analysis. 376:214–233.Beckwith, S. V. W., and Sargent, A. I. 1996. Circumstellar disks and the search

f r neighb ring planetary systems. 383:139–144.B denheimer, P. 1998. F rmati n f substellar bjects rbiting stars. In

ASP C nf. Ser. 134, ed. R. Reb l , E. L.Martin, and M. R. Zapater Os ri (San Francisc : Astr n mical S ciety fthe Pacific), p. 115.

B denheimer, P., and P llack, J. B. 1986. Calculati ns f the accreti n and ev -luti n f giant planets: The effects f s lid c res. 67:391–408.

B uvier, J., Cabrit, S., Fernandez, M., Martin, E. L., and Matthews, J. M. 1993.COYOTES-I: The ph t metric variability and r tati nal ev luti n f T-Tauristars. 272:176–206.

Bryden, G., Chen, X., Lin, D. N. C., Nels n, R., and Papal iz u, J. C. B. 1998.Tidally induced gap f rmati n in pr t stellar disks: Gap clearing and sup-pressi n f pr t planetary gr wth. , submitted.

Butler, R. P., Marcy, G. W., Williams, E., Hauser, H., and Shirts, P. 1997. Threenew “51 Pegasi-type” planets. 474:L115–L118.

Chambers, J. E., Wetherill, G. W., and B ss, A. P. 1996. The stability f multi-planet systems. 119:261–268.

Ch i, P. I., and Herbst, W. 1996. R tati n peri ds f stars in the Ori n nebulacluster: The bim dal distributi n. 111:283–298.

Claret, A., and Cunha, N. C. S. 1997. Circularizati n and synchr nizati n timesin main-sequence f detached eclipsing binaries. II. Using the f rmalisms byZahn. 318:187–197.

C unselman, C. C., III. 1973. Outc mes f tidal ev luti n. 180:307–316.

C wling, T. G. 1941. The n n-radial scillati ns f p lytr pic stars.101:367–375.

Darwin, G. H. 1879. B dily tides f visc us and semi-elastic spher ids.170:1.

Duncan, M. J., and Lissauer, J. J. 1998. The effects f p st-main-sequence s larmass l ss n the stability f ur planetary system. 134:303–310.

Franklin, F., Lecar, M., and Quinn, T. 1990. On the stability f rbits in the s -lar system: A c mparis n f a mapping with a numerical integrati n.88:97–103.

Gailitis, A. 1982. Tidal heating f I and rbital ev luti n f the J vian satellites.201:415–420.

G ldreich, P., and Nich ls n, P. D. 1977. Turbulent visc sity and Jupiter’s tidal. 30:301–304.

Pub. Astron. Soc. Pacifica

Astrophys. J.b

Astrophys. J.

Astrophys. J. Lett.

Planetary Systems: The Long View

Astrophys. J.

NatureBrown

Dwarfs and Extrasolar Planets,

Icarus

Astron. Astrophys.

Astrophys. J.

Astrophys. J. Lett.

Icarus

Astron. J.

Astron. Astrophys.Astrophys. J.

Mon. Not.Roy. Astron. Soc.

Phil.Trans. Roy. Soc. London

Icarus

Icarus

Mon. Not. Roy. Astron. Soc.

Q Icarus

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 21: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

o o o o

o o o o

o o oo o o

o o

o o o

o o o o o o

oo o oo o

oo o o

oo o oo

o

o oo o o

o

o oo o o

o o o o

o o oo o o o

o oo

o o o

o o oo o

o o o o o o oo

o o o o

o o o o

o o o o o o oo o o o o o o o

o o o oo o o o o o

o o o o o

oo o o o o

ORBITAL EVOLUTION 1131

G ldreich, P., and Nich ls n, P. D. 1989. Tidal fricti n in early-type stars.342:1079–1084.

G ldreich, P., and Peale, S. 1966. Spin- rbit c upling in the s lar system.71:425–438.

G ldreich, P., and S ter, S. 1966. in the s lar system. 5:375–389.G ldreich, P., and Tremaine, S. 1978. The vel city dispersi n in Saturn’s rings.

34:227–239.G ldreich, P., and Tremaine, S. 1980. Disk-satellite interacti ns.

241:425–441.G nzalez, G. 1997. The stellar metallicity–giant planet c nnecti n.

285:403–412.G nzalez, G. 1998. Spectr sc pic analyses f the parent stars f extras lar plan-

etary system candidates. 334:221–238.G dman, A. A., Bens n, P. J., Fuller, G. A., and Myers, P. C. 1993. Dense c res

in dark cl uds. VIII. Vel city gradients. 406:528–547.G dman, J., and Dicks n, E. S. 1998. Dynamical tide in s lar-type binaries.

507:938–944.G dman, J., and Oh, S. P. 1997. Fast tides in sl w stars: The efficiency f eddy

visc sity. 486:403–412.Guenther, E. W. 1997. Magnetic fields f T Tauri stars. In

, IAU Symp. 182, ed. B. Reipurth and C.Bert ut (D rdrecht: Kluwer), pp. 465-474.

Guill t, T., Burr ws, A., Hubbard, W. B., Lunine, J. I., and Saum n, D. 1996.Giant planets at small rbital distances. 459:L35–L38.

Hagihara, Y. 1972.(Cambridge: MIT Press), p. 447.

Hartmann, L., Calvet, N., Gullbring, E., and D’Alessi , P. 1998. Accreti n andthe ev luti n f T Tauri disks. 495:385–400.

Hayashi, C., Nakazawa, K., and Nakagawa, Y. 1985. F rmati n f the s lar sys-tem. In ed. D. C. Black and M. S. Matthew (Tuc-s n: University f Ariz na Press), pp. 1100–1153.

H lman, M., T uma, J., and Tremaine, S. 1997. Cha tic variati ns in the eccen-tricity f the planet rbiting 16 Cyg B. 386:254.

Hut, P. 1980. Stability f tidal equilibrium. 92:167–170.Hut, P. 1981. Tidal ev luti n in cl se binary systems. 99:126–

140.Innanen, K. A., Zheng, J. Q., Mikk la, S., and Valt nen, M. J. 1997. The K zai

mechanism and the stability f planetary rbits in binary star systems.113:1915–1919.

Ivan v, P. B., Papal iz u, J. C. B., and P lnarev, A. G. 1998. The ev luti n fsupermassive binary caused by an accreti n disc. ,submitted.

Kley, W. 1998. Mass fl w and accreti n thr ugh gaps in accreti n disks., submitted.

K nigl, A. 1991. Disk accreti n nt magnetic T Tauri stars.370:L39–L43.

K rycansky, D. G., and Papal iz u, J. C. B. 1996. A meth d f r calculati ns fn nlinear shear fl w: Applicati n t f rmati n f giant planets in the s larnebula. 105:181–190.

K rycansky, D. G., and P llack, J. B. 1993. Numerical calculati ns f the linearresp nse f a gase us disk t a pr t planet. 102:150–165.

K zai, Y. 1962. Secular perturbati ns f aster ids with high inclinati n and ec-centricity. 67:591–598.

Kumar, P., and G dman, J. 1996. N nlinear damping f scillati ns in tidal-capture binaries. 466:946–956.

Astro-phys. J.

Astron.J.

Q Icarus

IcarusAstrophys. J.

Mon. Not. Roy.Astron. Soc.

Astron. Astrophys.

Astrophys. J.As-

trophys. J.

Astrophys. J.Herbig-Haro Flows

and the Birth of Low-mass Stars

Astrophys. J. Lett.Celestial Mechanics, Vol. II, Part 1: Perturbation Theory

Astrophys. J.

Protostars and Planets II,

NatureAstron. Astrophys.

Astron. Astrophys.

Astron.J.

Mon. Not. Roy. Astron. Soc.

Mon.Not. Roy. Astron. Soc.

Astrophys. J. Lett.

Astrophys. J. Suppl.

Icarus

Astron. J.

Astrophys. J.

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 22: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

o o o oo o

o o o o

o o

o o oo o o o o

o o o o oo

o o o o oo o

o o oo o o o o o

oo o o

o o o o o o o o

o o oo o o o

o o oo o o o

o o o o o oo o

o o o o oo o

o o o oo o o o o o

o o oo

o oo o o o o o

o o

o

o oo

o o oo o o o o o

oo o o o

o o oo o o o o o o

o oo o o o o o

o o o o o o

1132 D. N. C. LIN ET AL.

Kumar, P., A , C. O., and Quataert, E. J. 1995. Tidal excitati n f m des in binarysystems with applicati ns t binary pulsars. 449:294–309.

Levis n, H. F., Lissauer, J. J., Duncan, M. J. 1998. M deling the diversity f uterplanetary systems. 116:1998–2014.

Lin, D. N. C., and Ida, S. 1997. On the rigin f massive eccentric planets.477:781–791.

Lin, D. N. C., and Papal iz u, J. C. B. 1979 . On the structure f circumbinaryaccreti n disks and the tidal ev luti n f c mmensurable satellites.

188:191–201.Lin, D. N. C., and Papal iz u, J. C. B. 1979 . Tidal t rques n accreti n discs

in binary systems with extreme mass rati s.186:799–830.

Lin, D. N. C., and Papal iz u, J. C. B. 1980. On the structure and ev luti n f theprim rdial s lar nebula. 191:37–48.

Lin, D. N. C., and Papal iz u, J. C. B. 1986 . On the tidal interacti n betweenpr t planets and the prim rdial s lar nebula. II. Self-c nsistent n nlinear in-teracti n. 307:395–409.

Lin, D. N. C., and Papal iz u, J. C. B. 1986 . On the tidal interacti n betweenpr t planets and the prim rdial s lar nebula. III. Orbital migrati n f pr t -planets. 309:846–857.

Lin, D. N. C., and Papal iz u, J. C. B. 1993. On the tidal interacti n betweenpr t stellar disks and c mpani ns. In , ed. E. H.Levy and J. I. Lunine (Tucs n: University f Ariz na Press), pp. 749–835.

Lin, D. N. C., Papal iz u, J. C. B., and Ruden, S. P. 1987. On the c nfinement fplanetary arcs. 227:75–95.

Lin, D. N. C., Papal iz u, J. C. B., and Sav nije, G. J. 1990 . Pr pagati n f tidaldisturbance in gase us accreti n disks. 365:748–756.

Lin, D. N. C., Papal iz u, J. C. B., and Sav nije, G. J. 1990 . Wave pr pagati nin gase us accreti n disks. 364:326–334.

Lin, D. N. C., B denheimer, P., and Richards n, D. C. 1996. Orbital migrati n fthe planetary c mpani n f 51 Pegasi t its present l cati n. 380:606–607.

Lissauer, J. J., and Stewart, G. R. 1993. Gr wth f planets fr m planetesimals. In, ed. E. H. Levy and J. I. Lunine (Tucs n: Univer-

sity f Ariz na Press), pp. 1061–1088.Lub w, S. H., T ut, C. A., and Livi , M. 1997. Res nant tides in cl se rbiting

planets. 484:866–870.MacD nald, G. J. F. 1964. Tidal fricti n. 2:467–541.Marcy, G. W., Butler, R. P., Williams, E., Bildsten, L., Graham, J. R., Ghez, A.

M., and Jernigan, J. G. 1997. The planet ar und 51 Pegasi.481:926–935.

Mathieu, R. D. 1994. Pre-main-sequence binary stars.32:465–530.

McCaughrean, M. J., and Stauffer, J. R. 1994. High res luti n near-infrared imag-ing f the trapezium: A stellar census. 108:1382–1397.

Miy shi, K., Takeuchi, T., Tanaka, H., and Ida, S. 1999. Gravitati nal interacti nbetween a pr t planet and a pr t planetary disk. I. L cal three-dimensi nalsimulati ns. 516:451–464.

Mizun , H. 1980. F rmati n f the giant planets. 64:544–557.Papal iz u, J. C. B., and Lin, D. N. C. 1984. On the tidal interacti n between

pr t planets and the prim rdial s lar nebula. I. Linear calculati n f the r lef angular m mentum exchange. 285:818–834.

Papal iz u, J. C. B., and Sav nije, G. J. 1985. On the tidal ev luti n f massiveX-ray binaries—the tidal ev luti n timescales f r very l ng rbital peri ds.

213:85–96.

Astrophys. J.

Astron. J.Astro-

phys. J.a

Mon. Not.Roy. Astron. Soc.

bMon. Not. Roy. Astron. Soc.

Mon. Not. Roy. Astron. Soc.a

Astrophys. J.b

Astrophys. J.

Protostars and Planets III

Mon. Not. Roy. Astron. Soc.a

Astrophys. J.b

Astrophys. J.

Nature

Protostars and Planets III

Astrophys. J.Re . Geophys.

Astrophys. J.

Ann. Re . Astron. Astro-phys.

Astron. J.

Astrophys. J.Prog. Theor. Phys.

Astrophys. J.

Mon. Not. Roy. Astron. Soc.

v

v

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 23: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

o o o o o oo o o o o

o o o oo o o o o

o oo o o o

o o o

o o o o oo

o o o o o oo

o o o o o

o o oo o o

o o o oo o

o o o o o oo o o

o o

o o o o o oo o o

o o o o oo o o

oo

o o oo o

o o o o o

o o o o o oo o o

o o o o

o o o o

o o o o oo o o

o o oo o o

o o

o o oo o o o o o o

o o o o o o o

ORBITAL EVOLUTION 1133

Papal iz u, J. C. B., and Sav nije, G. J. 1997. N n-adiabatic tidal f rcing f amassive, unif rmly r tating star. III. Asympt tic treatment f r l w frequen-cies in the inertial regime. 291:651–657.

P llack, J. B., Hubickyj, O., B denheimer, P., Lissauer, J. J., P d lak, M., andGreenzweig, Y. 1996. F rmati n f the giant planets by c ncurrent accreti nf s lids and gas. 124:62–85.

Pr sser, C. F., Stauffer, J. R., Hartmann, L., S derbl m, D. R., J nes, B. F., Werner,M. W., and McCaughrean, M. J. 1994. HST ph t metry f the Trapeziumcluster. 421:517–541.

Rasi , F. A., and F rd, E. B. 1996. Dynamical instabilities and the f rmati n fextras lar planetary systems. 274:954–956.

Rasi , F. A., T ut, C. A., Lub w, S. H., and Livi , M. 1996. Tidal decay f cl seplanetary rbits. 470:1187–1191.

Safr n v, V. S. 1969. (M sc w: Izdatel’stvNauka).

Sandquist, E., Taam, R. E., Lin, D. N. C., and Burkert, A. 1998. Planet strippingand stellar metallicity enhancements. , in press.

Saum n, D., Hubbard, W. B., Burr ws, A., Guill t, T., Lunine, J. I., and Chab-rier, G. 1996. A the ry f extras lar giant planets. 460:993–1018.

Sav nije, G. J., and Papal iz u, J. C. B. 1983. On the tidal spin-up and rbitalcircularizati n rate f r the massive X-ray binary systems.

203:581–593.Sav nije, G. J., and Papal iz u, J. C. B. 1984. On the tidal ev luti n f massive X-

ray binaries: The spin-up and circularizati n rates f r systems with ev lvedstars and the effects f res nances. 207:685–704.

Sav nije, G. J., and Papal iz u, J. C. B. 1997. N n-adiabatic tidal f rcing f amassive, unif rmly r tating star. II. The l w-frequency, inertial regime.

291:633–650.Sav nije, G. J., Papal iz u, J. C. B., and Alberts, F. 1995. N nadiabatic tidal f rc-

ing f a massive unif rmly r tating star. 277:471–496.

Shakura, N. I., and Sunyaev, R. A. 1973. Black h les in binary systems: Obser-vati nal appearance. 24:337–355.

Shu, F. H. 1984. Waves in planetary rings. In , ed. R. Greenbergand A. Brahic (Tucs n: University f Ariz na Press), pp. 513–561.

Stassun, K. G., Mathieu, R. D., Mazeh, T., and Vrba, F. J. 1999. The r tati n pe-ri d distributi n f pre-main-sequence stars in and ar und the Ori n Nebula.

117:2941–2979.Stevens n, D. J. 1983. An mal us bulk visc sity f tw -phase fluids and impli-

cati ns f r planetary interi rs. 88:2445–2455.Takeuchi, T., Miyama, S. M., and Lin, D. N. C. 1996. Gap f rmati n in pr t plan-

etary disks. 460:832–847.Tass ul, J.-L. 1988. On rbital circularizati n in detached cl se binaries.

324:L71–L73.Terebey, S., Shu, F. H., and Cassen, P. 1984. The c llapse f the c res f sl wly

r tating is thermal cl uds. 286:529–551.Terquem, C., Papal iz u, J. C. B., Nels n, R. P., and Lin, D. N. C. 1998 . Oscilla-

ti ns in s lar-type stars tidally induced by rbiting planets. In`, ed. L. Celnikier (Gif-sur-Yvette: Editi ns Fr ntieres),

in press.Terquem, C., Papal iz u, J. C. B., Nels n, R. P., and Lin, D. N. C. 1998 . On the

tidal interacti n f a s lar-type star with an rbiting c mpani n: Excitati nf g-m de scillati n and rbital ev luti n. 502:788–801.

Mon. Not. Roy. Astron. Soc.

Icarus

Astrophys. J.

Science

Astrophys. J.E oliutsiia Doplanetnogo Oblaka

Astrophys. J.

Astrophys. J.

Mon. Not. Roy.Astron. Soc.

Mon. Not. Roy. Astron. Soc.

Mon.Not. Roy. Astron. Soc.

Mon. Not. Roy. Astron. Soc.

Astron. Astrophys.Planetary Rings

Astron. J.

J. Geophys. Res.

Astrophys. J.Astro-

phys. J. Lett.

Astrophys. J.a

Planetary Sys-tems: The Long View

b

Astrophys. J.

v

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )

Page 24: I. THE FORMATION OF PROTOPLANETS DR.RUPNATHJI( … · Disk-planet interacti ns, including recent w rk n the fl w induced by embedded pr t planets and gap f rmati n, ... gular m mentum

o oo o o o o o

o oo o

o o o oo o

o o oo o

o oo

o o

o o o oo o o o

1134 D. N. C. LIN ET AL.

Trilling, D. E., Benz, W., Guil t, T., Lunine, J. I., Hubbard, W. B., and Burr ws, A.1998. Orbital ev luti n and migrati n f giant planets: M delling extras larplanets. 500:428–439.

Ward, W. R. 1981. S lar nebula dispersal and the stability f the planetary system.I. Scanning secular res nance the ry. 47:234–264.

Ward, W. R. 1993. Disk-planet interacti ns: T rques fr m the c rbital z ne.675:314–323.

Ward, W. R. 1997. Pr t planet migrati n by nebula tides. 126:261–281.Weidenschilling, S. J., and Marzari, F. 1996. Gravitati nal scattering as a p ssible

rigin f r giant planets at small stellar distances. 384:619–621.Zahn, J. P. 1975. The dynamical tide in cl se binaries. 41:329–

344.Zahn, J. P. 1977. Tidal fricti n in cl se binary stars. 57:383–

394.Zhark v, V. N., and Gudk va, T. V. 1991. M dels f giant planets with a variable

rati f ice t r ck. 9:357–366.

Astrophys. J.

IcarusAnn.

N.Y. Acad. Sci.Icarus

NatureAstron. Astrophys.

Astron. Astrophys.

Ann. Geophys.

DR.RUPN

ATHJI(

DR.R

UPAK

NATH )