I-1 DSP Review_2007

30
1/30 I-1: Review of DT Signal & System Concepts

Transcript of I-1 DSP Review_2007

Page 1: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 1/30

1/30

I-1: Review of DT Signal& System Concepts

Page 2: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 2/30

2/30

Notational Conventions (P-1.2)

Sets of Numbers: R = real numbersC = complex numbersZ = integers ( …, -3, -2, -1, 0, 1, 2, 3, …)

Signals: x(t ), y(t ) = continuous-time (CT) signals x[n], y[n] = discrete-time (DT) signals

DT Convolution: ∑∞−∞=

−=m

mn ym xn y x ][][]}[*{

DT Circular Convolution: 10]mod)[(][]}[{1

0

−≤≤−=⊕⊗ ∑−

=

N n N mn ym xn y x N

m

Recall: We don’t want Circular convolution – it is what we get if we try to implementConvolution in the frequency domain by multiplying DFT’s (but not DTFT’s)But… we can fix it so that it works…. We use proper zero-padding!!!

Proakis & Manolakis

don’t follow this

Proakis & Manolakisdon’t follow this

Page 3: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 3/30

3/30

Transforms (P-2)Fourier Transform for DT Signals

{ }

∞−=

=

=

=

π

π

θ

θ

θ θ π

θ θ

d e X n x

en x

Fx X

n j

n

n j

)(21

][

][

)()(

f

f DiscreteT imeFourierT ransform

Discrete Fourier Transform for DT Signals

{ }

1,...,2,1,0][1

][

1,...,2,1,0][

][][

1

0

/ 2d

1

0

/ 2

d

−==

−==

=

=

=

N nek X N

n x

N k en x

k Dxk X

N

k

N kn j

N

n

N kn j

π

π

Discrete Fourier Transform

Fourier Transform for CT Signals

{ }

∞−

∞−

=

=

=

ω ω π

ω ω

ω

ω

d e X t x

dt et x

Fx X

t j F

t j

F

)(21

)(

)(

)()(

Z Transform for DT Signals

{ }

∑∞∞−=

−=

=

n

n z n x

z Zx z X

][

)()(z

Inverse ZT done using partialfractions & a ZT table

Set z = e jθ

Proakis & Manolakis don’t follow this Notation

Page 4: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 4/304/30

Fourier Transforms for DT Signals (P-2.7,P-4, PM-4, PM-7)

DTFT = “In Head/On Paper” tool for analysis & design

DFT = “In Computer” tool for Implementation/Analysis&Design(In both cases you generally strive to make the DFT behave like DTFT)

• DFT for Implementation:Compute DFT of signal to be processed and manipulate DFT valuesMay or may not need zero-padding (depends on application)

• DFT for Analysis & Design:

Compute DFT of given filter’s TF to see its frequency responseGenerally use zero-padding to get fine grid to get approximate DTFT

DFT/DTFT Properties you Must Know:• Periodicity…………………. (DFT&DTFT both periodic in FD)

…………………. (IDFT gives periodic TD signal)• Time Shift………………….. (Time Shift in TD Linear Phase Shift in FD)• Frequency Shift……………. (Mult. by complex sine in TD Freq Shift in FD)• Convolution Theorem ……… (Conv. in Time Domain Mult. in Freq Domain)

• Multiplication Theorem…….. (Mult. in Time Domain Conv. in Freq Domain)• Parseval’s Theorem…………. (Sum of Squares in TD = Sum of Squares in FD)

Page 5: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 5/30

5/30

Summation Rules (P-1.3)Make sure you are familiar with rules for dealing withsummations, as shown in Section 1.3 of Porat.

In addition, a particular summation formula that shows up

often is the “Geometric Summation” :

⎪⎪⎪

⎪⎪⎪

=−

≠−−

=∑−

= 1 if ,

1 if ,1

12

1

21

2

1 α

α α α α

α

N N

N N

N

N n

n

Special Case: N 1 = 0

⎪⎪⎪

⎪⎪⎪

=

≠−

=∑−

= 1 if ,

1 if ,1

1

2

1

0

2

2

α

α α

α

α

N

N

N

n

n

Page 6: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 6/30

6/30

Euler’s Formulas

)sin()cos(

)sin()cos(

θ θ

θ θ θ

θ

je

je j

j

−=+=

− j

ee

ee

j j

j j

2

)sin(

2)cos(

θ θ

θ θ

θ

θ

−=

+=

θ je−

)cos(2 θ Re

Im

θ jeθ je−− 2 j

s i n ( θ )

Re

Im

θ je

)cos(θ

)sin(θ j

θ je−

)sin(θ j−

Page 7: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 7/30

7/30

Discrete-Time Processing (P-2, PM-5)h[n]

H f (θ) H z( z )

x[n] X f (θ) X z( z )

y[n] = h[n]* x[n]Y f (θ) = H f (θ) X f (θ)Y z( z ) = H z( z ) X z( z )

h[n] = system’s “Impulse Response”It is response of system to input of δ[n]

H f (θ) = system’s “Frequency Response”

It is DTFT of impulse response

H z( z ) = system’s “Transfer Function”It is ZT of impulse response

Page 8: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 8/30

8/30

Difference

Equation

Transfer

Function

FrequencyResponseImpulse

Response

Block

Diagram

Pole/ZeroDiagram

DTFT

ZT

ZT (Theory)

Inspect (Practice)

Inspect Inspect Roots

Unit Circle

z = e jθ

Time Domain Z / Freq Domain

Discrete-Time System Relationships

h[k ]

p p

qq z

z a z a

z b z bb z H −−

−−

+++

+++=

11

110

1)(

θ je z z z H θ H == |)()(f

∑∑==

−+−−=q

ii

p

ii in xbin yak y

01

][][][

Page 9: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 9/30

9/30

Poles and Zeros of Transfer Function

)())((

)())((

)(

)1(

)(

1)(

21

21

11

110

11

110

11

110

p

qq p

p p p

qqqq p

p p

p

qq

qq p

p p

qq z

z z z

z z z z

a z a z

b z b z b z

z a z a z

z b z bb z z

z a z a

z b z bb z H

α α α

β β β

−−−−−−

=

+++

+++=

++++++

=

++++++

=

−−

−−

−−−

−−

−−

Consider Here Only p>q

Numerator Roots define “zeros”Denominator Roots define “poles”

In this case p–q zeros at z =0

Poles must be insideunit circle for stability

Poles & zeros must occur inComplex Conjugate pairs

to give real-valued TF coefficients

Re{ z }

Im{ z }

Page 10: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 10/30

10/30

p p

qq z

z a z a z b z bb z H −−

−−++++++=

11

110

1)(

IIR and FIR Filters

Filter is FIR : If a i = 0 for i = 1, 2, …, p (It is IIR otherwise)FIR : Finite Impulse Response… h[n] has only finite many nonzero values

qq

z z b z bb z H −− +++= 110)(

⎩⎨⎧ ==

otherwiseqnbnh n

,0,...,1,0,][ TF coefficients are theimpulse response values!!

Page 11: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 11/30

11/30

DifferenceEquation

Time Domain

)()1()( n xn yn y β α =−−Input-Output Form

TransferFunction

ZT (Theory)Inspect (Practice)

)1()()( −+= n yn xn y α β Recursion Form

Z / Freq Domain

1

1)(

)()( −

−==

z z X

z Y z H

α

β

Example System

)(1)( 1 z X z z Y β α =− −

Page 12: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 12/30

12/30

Difference

Equation

Transfer

Function

Block Diagram

ZT (Theory)

Inspect (Practice)

Inspect Inspect

Time Domain Z / Freq Domain

)1()()( −+= n yn xn y α β

Recursion Form11

)( −−=

z z H

α β

Σz-1

βα

x(n) y(n)

y(n-1)

Example System (cont.)

Page 13: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 13/30

13/30

TransferFunction

FrequencyResponse

Unit Circle

Z / Freq Domain

11)( −−=

z z H

α β

Ω−−

Ω

==

j

j

e z e z

1

OnUnitCircle

],(1

)(

π π α

β

−∈Ω−

=Ω Ω− j

e H

Ω−− = je z 1

Example System (cont.)

Page 14: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 14/30

14/30

[ ]

[ ]

[ ] [ ]

⎥⎦

⎤⎢⎣

Ω−Ω−=Ω∠

Ω+Ω−=Ω

Ω+Ω−=

Ω−Ω−=

−=Ω

Ω−

)cos(1)sin(

tan)(

)sin()cos(1)(

)sin()cos(1

)sin()cos(11)(

1

22

α α

α α

β

α α β

α α β

α β

H

H

j

je H j

Plotting Transfer Function

Euler’sEquation

Group intoReal & Imag

StandardEqs for

Mag. & Angle

Example System (cont.)

Page 15: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 15/30

15/30

TransferFunction

Pole/ZeroDiagram

Roots

Z/Freq Domain

α β

α β

−=

−= − z

z z

z H 11)(

Pole

Den. = 0When z = α

Zero

Num. = 0When z = 0

UnitCircle

Re{ z }

Im{ z }

If |α| < 1: In side UCIf |α| > 1: Out side UC

Example System (cont.)

Page 16: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 16/30

16/30

TransferFunction

FrequencyResponse

ImpulseResponse

DTFT

ZTUnit Circle

Time Domain Z / Freq Domain

Example System (cont.)

11)( −−=

z z H

α β

n

nh βα =)(

Inv. ZT

Table(See Porat)

],(

1)(

π π

α β

−∈Ω−

=Ω Ω− je H

∫ − Ω− Ω−=π

π α β

d enh j1)(

Inv. DTFT

Page 17: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 17/30

17/30

Review of StandardSampling Theory

P ti l S li S t U

Page 18: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 18/30

18/30

0 0 .2 0 .4 0 .6 0 . 8 1- 2

- 1

0

1

2

Time

S i g n a

l V a

l u e

0 0 .2 0 .4 0 .6 0 . 8 1- 2

- 1

0

1

2

Time

S i g n a

l V a

l u e

Practical Sampling Set-Up

PulseGen

CT LPF

∑∞

−∞=−=

n pnT t pnT xt x )(~)()(~

DAC

)(~ t xr

x(t ) x[n] = x(nT )“Hold”

Sample att = nT

ADC

T = Sampling Interval F s = 1/ T = Sampling Rate

Sampling Analysis (#1)

Page 19: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 19/30

19/30

Sampling Analysis (#1)

Goal = Determine Under What Conditions We Have:

Reconstructed CT Signal = Original CT Signal )()(~

t xt x =

Simplify to Develop Theory: Use )()(~ t t p δ =

Why???? 1. Because delta functions are EASY to analyze!!!2. Because it leads to the best possible case

∑∞

−∞=

−=⇒

n

p p nT t nT xt xt x )()()()(~ δ

x p(t ) is called the “Impulse Sampled” signal

Note: x p(t ) shows up during Reconstruction, not Sampling!!

Page 20: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 20/30

Sampling Analysis (#3)

Page 21: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 21/30

21/30

Sampling Analysis (#3)

ImpulseGen CT LPF

)(t x p )(t xr

DAC x(t )

x[n] = x(nT )“Hold”Sample at

t = nT

ADC

f

X ( f )

B –B

f

X p( f )

F s 2F s –F s – 2 F s

f

H ( f )

f

X r ( f )

X r ( f ) = X ( f )If F s ≥ 2 B

Sampling Analysis (#4)

Page 22: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 22/30

22/30

Sampling Analysis (#4)

What this says: Samples of a bandlimited signal completely define

it as long as they are taken at F s ≥ 2 B

Impact: To extract the info from a bandlimited signal we only need tooperate on its (properly taken) samples

Use computer to process signals

Computer x[n] = x(nT )

“Hold”

Sample att = nT

x(t )ExtractedInformation

Sampling Analysis (#5)

Page 23: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 23/30

23/30

Sampling Analysis (#5)

FT of Impulse Sampled Signal gives view of Original FT

&FT of Impulse Sampled Signal = DTFT of Samples

DTFT gives view of FT of original signalLet’s see this

T en xenT x

nT t F nT xnT t nT x F t x F

n

jn

n

T jn

n en p

T jn

ω θ

δ δ

θ ω

ω

===

−=⎪⎭⎪⎬⎫

⎪⎩⎪⎨⎧ −=

∑∑

∑∑∞

−∞=−

−∞=−

−∞=

−∞= −

][)(

)}({)()()()}({

)() / ( θ θ f F p X T X =

Sampling Analysis (#6)

Page 24: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 24/30

24/30

Sampling Analysis (#6)

f

X ( f )

B –B

f

DTFT

F s 2F s –F s – 2 F s F s /2 –F s /2

θ / π Normalized DT Freq2 4 – 2 – 4 1–1

θ DT Freq(rad/sample)2π 4π – 2π – 4π π–π

f F

T

s ⎥⎦

⎢⎣

⎡=

ω θ

2

Read notes on web on “Concept of Digital Frequency”

Page 25: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 25/30

d

Page 26: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 26/30

26/30

EE521 Case Study: Emitter Location

Radio Freq Transmitter (Tx)• Communications• Radar

Data Link

DataLink

Receiver #1(Rx1) Receiver #2

(Rx2)

Receiver #3(Rx3)

Processing Tasks• Intercept RF Signal @ Rx’s• Sample Signal Suitably for Processing• Detect Presence of Emitter’s Signal

• Estimate Characteristics of Signal• Use Est’d Char’s to Classify Emitter• Share Data Between Rx’s• Cross-Correlate Signals to Locate Tx

Overall Processing Set-Up

Rx1

Page 27: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 27/30

27/30

RFFront-End

Digital“Front-End”

CrossCorrelation

DetectSignal

Estimate

SignalParameters

ClassifyEmitter

Data Link &Decompress

Antenna

RFFront-End

Digital“Front-End”

DetectSignal

Estimate

SignalParameters

ClassifyEmitter

Antenna

Compress& Data Link

Rx2

Rx1

RF Data Link

SamplingSub-System

SamplingSub-System

→ Digital

→ Digital

Analog ←

Analog ←

Processing Tasks Overview (#1)

Page 28: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 28/30

28/30

RF Front-End (Analog Circuitry): “RF” = “Radio Frequency”• Selects reception band; may need to scan bands

• Amplifies signal to level suitable for ADC, etc.• Frequency-shifts signal spectrum to range suitable for ADC

Technology trend is toward requiring less shifting• Unfortunately: noise introduced by analog electronics ( Random Signals )

RF

Front-End200 MHz

1 GHz 3 GHz 4 GHz

Antenna

FT of Signal

Before RF-FE

FT of SignalAfter RF-FE

Topic We’ll Cover

Page 29: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 29/30

Processing Tasks Overview (#3)

Page 30: I-1 DSP Review_2007

8/6/2019 I-1 DSP Review_2007

http://slidepdf.com/reader/full/i-1-dsp-review2007 30/30

30/30

Detect Presence of Signal (Digital Processing):• Has signal been intercepted or only noise in subband ( DFT-Based Proc. )

Estimate Parameters of Signal (Digital Processing) (see also EE522):• Estimate frequency of signal ( DFT-Based Processing)

Classify/Model Signal (Digital Processing):

• What type of signal is it? (Spectral Analysis of Random Signals)

π θ–π θ

σ θ je z

qq

p p

x z a z a z a

z b z b z bb P

=−−−

−−−

++++

++++=

2211

22

1102

1)(

PSD Model

Use PSD Model parameters { bi} and { a i} to classify signal type

Compress/De-Compress Signal (Digital Processing) (see also EE523):• Exploit signal structure to allow efficient transfer( DFT-Based Proc./ Filter Banks / Spectral Analysis )

Cross-Correlate Signals (Digital Processing):• Compute relative delay and Doppler ( DFT-Based Proc.& Multi-Rate Proc. )