Hydrostatic Pressure BSEN lab 3 - Blair Hopwood

9
Hopwood 1 Blair Hopwood Team 3 7 October 2015 Hydrostatic Pressure Abstract: An Edibon Hydrostatics Pressure System was used in order to collect data used in calculating hydrostatic force and the center of pressure for a rigid body when it was both partially and fully submerged. The mass of the weights added to the system and the height of the water in the tank when the mechanism was level were collected and used in these calculations. All of the data collected followed expected trends, which suggests accuracy in the data as well as validates the equations used. Relative error values between the “y” (theoretical) values estimated mathematically and the water height (h) values measured with the system ranged from .129% to 6.6%, demonstrating that there is not a large amount of variance in the data. The height of the water shares a linear relationship with the mass of the weights, estimated y value, and distance to the center of pressure. There is also a linear relationship between the hydrostatic force on the surface, and standard deviation between the y and h values. Introduction: An Edibon Hydrostatics Pressure System can be used to study the hydrostatic pressure on a plane surface (Emaco Group, 2000). The validity of pressure equations that summarize hydrostatic pressure relationships can be tested using this tool. Utilizing a quadrant submerged in a tank of water and a counterweight system, both the resultant of the hydrostatic forces acting on the surface as well as the distance to the center of pressure of a submerged plane surface (! ) can be calculated. When additional mass is added to the counterweight the hydrostatic force became unbalanced and causes the balance bridge arm to tilt. Adding water to the tank exerts a moment in order to counterbalance the resultant moment caused by the hydrostatic forces on the quadrant (Gerry, 2002). Pressure increases with both depth of water in the tank as well as the mass on the counterweight. A height measurement (h) is taken at each weight and this measurement is compared with a theoretical prediction (y). Both h and y increase as water is added to the tank. These values are used in finding the center of pressure (! ) of a submerged body. Figure 1 demonstrates the location of the center of pressure (! ) in relation to the height of the fluid from the body’s centroid.

Transcript of Hydrostatic Pressure BSEN lab 3 - Blair Hopwood

Page 1: Hydrostatic Pressure BSEN lab 3 - Blair Hopwood

Hopwood  1  

Blair  Hopwood  Team  3  7  October  2015  

Hydrostatic  Pressure  Abstract:  

An  Edibon  Hydrostatics  Pressure  System  was  used  in  order  to  collect  data  used  in  calculating  hydrostatic  force  and  the  center  of  pressure  for  a  rigid  body  when  it  was  both  partially  and  fully  submerged.  The  mass  of  the  weights  added  to  the  system  and  the  height  of  the  water  in  the  tank  when  the  mechanism  was  level  were  collected  and  used  in  these  calculations.  All  of  the  data  collected  followed  expected  trends,  which  suggests  accuracy  in  the  data  as  well  as  validates  the  equations  used.  Relative  error  values  between  the  “y”  (theoretical)  values  estimated  mathematically  and  the  water  height  (h)  values  measured  with  the  system  ranged  from  .129%  to  6.6%,  demonstrating  that  there  is  not  a  large  amount  of  variance  in  the  data.  The  height  of  the  water  shares  a  linear  relationship  with  the  mass  of  the  weights,  estimated  y  value,  and  distance  to  the  center  of  pressure.    There  is  also  a  linear  relationship  between  the  hydrostatic  force  on  the  surface,  and  standard  deviation  between  the  y  and  h  values.      Introduction:  

An  Edibon  Hydrostatics  Pressure  System  can  be  used  to  study  the  hydrostatic  pressure  on  a  plane  surface  (Emaco  Group,  2000).  The  validity  of  pressure  equations  that  summarize  hydrostatic  pressure  relationships  can  be  tested  using  this  tool.  Utilizing  a  quadrant  submerged  in  a  tank  of  water  and  a  counterweight  system,  both  the  resultant  of  the  hydrostatic  forces  acting  on  the  surface  as  well  as  the  distance  to  the  center  of  pressure  of  a  submerged  plane  surface  (ℎ!)  can  be  calculated.  When  additional  mass  is  added  to  the  counterweight  the  hydrostatic  force  became  unbalanced  and  causes  the  balance  bridge  arm  to  tilt.  Adding  water  to  the  tank  exerts  a  moment  in  order  to  counterbalance  the  resultant  moment  caused  by  the  hydrostatic  forces  on  the  quadrant  (Gerry,  2002).  Pressure  increases  with  both  depth  of  water  in  the  tank  as  well  as  the  mass  on  the  counterweight.    

A  height  measurement  (h)  is  taken  at  each  weight  and  this  measurement  is  compared  with  a  theoretical  prediction  (y).  Both  h  and  y  increase  as  water  is  added  to  the  tank.  These  values  are  used  in  finding  the  center  of  pressure  (ℎ!)  of  a  submerged  body.  Figure  1  demonstrates  the  location  of  the  center  of  pressure  (ℎ!)  in  relation  to  the  height  of  the  fluid  from  the  body’s  centroid.        

 

Page 2: Hydrostatic Pressure BSEN lab 3 - Blair Hopwood

Hopwood  2  

                                                                             Figure  1:  Center  of  pressure  (ℎ!)  compared  to  depth  of  liquid  (h)  (Gerry,  2002)    

 Objectives:  

The  objective  of  this  research  was  to  measure  the  effect  of  depth  of  water  (that  is  at  rest)  on  the  magnitude  and  location  of  resultant  force  exerted  on  a  partially  and  fully  submerged  vertical  rectangular  surface.  Additionally  this  lab  was  used  to  confirm  the  validity  of  the  theoretical  equations  used  to  estimate  magnitude  and  location  of  resultant  force  exerted  on  a  partially  and  fully  submerged  vertical  rectangular  surface.        Materials  and  Methods:  

Weights  of  different  sizes  were  used  in  determining  if  the  pressure  equations  accurately  describe  the  forces  on  a  partially  or  fully  submerged  body.  At  the  beginning,  no  part  of  the  quadrant  was  submerged;  only  the  lowest  edge  was  in  touch  with  the  water.  As  each  weight  was  added,  additional  water  was  put  into  the  tank  until  the  balance  bridge  arm  was  again  level  and  a  height  measurement  was  taken.  This  continued  until  the  height  of  the  water  reached  approximately  100  mm.  This  same  procedure  was  then  repeated,  but  this  time  with  the  quadrant  starting  submerged  to  the  upper  edge  of  the  vertical  surface  of  the  quadrant  and  finishing  fully  submerged.  In  both  trials,  a  set  of  equations  was  then  used  to  estimate  the  distances  to  the  center  of  pressure  (ℎ!)  and  hydrostatic  forces  (F)  on  the  surfaces  from  the  heights  obtained  at  each  weight.  The  equations  vary  slightly  when  being  used  to  describe  a  fully  submerged  body  compared  to  those  for  one  that  is  partially  submerged.  These  equations  can  be  seen  below.  Equations  (1)  and  (2)  are  used  for  partially  submerged  bodies  in  the  first  trial  set  and  (3)  and  (4)  were  used  when  the  quadrant  was  fully  submerged  in  the  second  set  of  measurements.    

 Figure  2:  Diagram  of  quadrant  used  in  laboratory  exercise  (Fasina,  2015)  

 

Page 3: Hydrostatic Pressure BSEN lab 3 - Blair Hopwood

Hopwood  3  

ℎ! = 𝑎 + 𝑑 − !!                   (1)  

Where  h  is  the  measured  height  of  water  (mm)                        a  is  the  measurement  corresponding  to  that  seen  in  Figure  2  (mm)                        d  is  the  measurement  corresponding  to  that  seen  in  Figure  2  (mm)    𝐹 = !

!𝜌𝑔ℎ!𝑏                    (2)  

Where  h  is  the  measure  height  of  water  (mm)                      𝜌  Is  the  density  of  water  (0.00099795   !

!!!)                      b  is  the  measurement  corresponding  to  that  seen  in  Figure  2  (mm)                      g  is  9810  !!

!!  

 ℎ! = 𝑎 + !

!+ !!

!"(!!!!)                    (3)  

Where  h  is  the  measured  height  of  water  (mm)                        a    is  the  measurement  corresponding  to  that  seen  in  Figure  2  (mm)                        d  is  the  measurement  corresponding  to  that  seen  in  Figure  2  (mm)    𝐹 = 𝜌𝑔𝑏 ℎ − !

!𝑑                                      (4)  

Where  h  is  the  measured  height  of  water  (mm)                      𝜌  is  the  density  of  water  ( !

!!!)                      b  is  the  measurement  corresponding  to  that  seen  in  Figure  2  (mm)                      d  is  the  measurement  corresponding  to  that  seen  in  Figure  2  (mm)                      g  is  9810  !!

!!  

    The  height  measurements  (h)  that  were  taken  after  each  weight  was  added  were  also  used  in  another  calculation.  They  were  used  to  estimate  the  y  value,  the  calculated  height  that  the  water  should  be  at  to  counter  balance  the  mass.  This  measurement  allowed  for  the  examination  of  the  accuracy  of  the  equations  being  used  by  calculating  the  relative  error  by  using  equation  (7).  Low  relative  error  values  between  the  h  and  y  values  at  each  weight  suggest  a  relatively  high  degree  of  accuracy;  i.e.,  the  equations  accurately  describe  the  relationship  given  by  equations  (5)  and  (6).  In  order  to  utilize  these  equations  to  solve  for  y,  the  given  pressure  equations  had  to  be  developed.  Manipulation  of  the  variables  and  their  order  was  crucial.  Equation  (5)  characterizes  the  situation  where  the  quadrant  is  partially  submerged  and  (6)  describes  when  it  is  fully  submerged.      𝑚 = !"

!!(𝑎 + 𝑑 − !

!)𝑦!                (5)  

Where  𝜌  is  the  density  of  water  ( !!!!)  

                   b  is  the  measurement  corresponding  to  that  seen  in  Figure  2  (mm)                      d  is  the  measurement  corresponding  to  that  seen  in  Figure  2  (mm)                      a    is  the  measurement  corresponding  to  that  seen  in  Figure  2  (mm)  

Page 4: Hydrostatic Pressure BSEN lab 3 - Blair Hopwood

Hopwood  4  

                   L  is  the  measurement  corresponding  to  that  seen  in  Figure  2  (mm)    

 𝑚 = !"#!(𝑎 + !

!+ !!

!"(!!!.!!))(𝑦 − 0.5𝑑)            (6)  

Where  𝜌  is  the  density  of  water  ( !!!!)  

                   b  is  the  measurement  corresponding  to  that  seen  in  Figure  2  (mm)                      d  is  the  measurement  corresponding  to  that  seen  in  Figure  2  (mm)                      a    is  the  measurement  corresponding  to  that  seen  in  Figure  2  (mm)                      L  is  the  measurement  corresponding  to  that  seen  in  Figure  2  (mm)        

Imputing  values  in  for  the  quadrant  dimension  variables  (a,  b,  d,  and  L)  and  manipulating  the  partially  submerged  and  fully  submerged  pressure  equations  above  resulted  in  the  equations  (7)  and  (8).    0.000040852𝑦! − 0.0245𝑦! +𝑚 = 0            (7)    𝑦 = 0.272𝑚 + 44.4                  (8)    Results  and  Discussion:     Readings  were  taken  after  each  time  weight  and  water  was  added  to  counterbalance  the  system.  The  height  of  the  water  in  the  tank  increased  proportionally  with  the  addition  of  weight.  These  height  measurements  were  used  in  order  to  calculate  y  values,  or  heights  in  the  vertical  direction  that  the  water  raised  each  time.  Graphs  (1)  and  (2)  both  demonstrate  the  linear  relationship  between  mass  and  the  y  values  generated.  In  both  the  partially  submerged  and  fully  submerged  data  sets,  there  is  a  positive  and  linear  relationship  between  the  two  variables.  As  more  weight  is  added,  more  water  is  needed  to  counterbalance  the  extra  force  being  applied  and  thus  create  a  moment  of  zero.  Force  is  the  product  of  mass  and  area.  The  area  of  the  rigid  body  is  constant  for  this  system,  therefore  it  is  expected  that  as  the  mass  increased  the  force  would  also  increase  proportionally,  as  it  did  in  the  results  form  this  experiment.          

The  calculated  y  values  and  h  measurements  were  compared  to  one  another  for  each  weight  interval.  Relative  error  values  were  relatively  small  ranging  from  .129%  to  6.6%,  demonstrating  that  there  is  not  a  large  amount  of  variance  in  the  two  opposing  value  sets.    Having  little  variation  suggests  that  the  equations  accurately  describe  the  relationships  they  are  intended  to.  Water  heights  (h)  are  plotted  against  the  y  values  in  Graphs  (3)  and  (4).  Both  when  partially  submerged  and  when  fully  submerged,  the  relationship  between  them  is  almost  perfectly  linear.  A  perfectly  linear  relationship  has  an  𝑅!  value  of  1.0,  both  of  these  sets  have  a  coefficient  of  determination  of  about  0.99.  Having  y  and  h  values  that  are  so  similar  demonstrates  that  both  the  data  collection  and  calculation  process  are  valid.           Having  a  coefficient  of  determination  so  close  to  one  also  helps  support  the  accuracy  of  the  pressure  equations.  For  example,  Equation  (8)  is  a  manipulation  of  (6).  This  form  of  the  equation  is  presented  in  linear  form,  following  the  format  of  y  =  mx+b  where  m  is  the  slope  and  b  is  the  y  intercept.  In  this  exercise,  the  x  value  is  the  

Page 5: Hydrostatic Pressure BSEN lab 3 - Blair Hopwood

Hopwood  5  

respective  weight  at  that  data  point.  Thus,  by  y  and  h  being  linearly  related,  the  equation  is  supported  in  accurately  describing  the  pressure  relationship.           As  mentioned  before  relative  error  between  the  calculated  y  values  and  heights  using  equation  (9)  below,  these  values  were  relatively  small  in  this  laboratory  exercise.  Graphs  (9)  and  (10)  plot  this  variable  vs.  height  when  partially  submerged  and  fully  submerged.  In  both  these  circumstances,  there  seems  to  be  no  apparent  trend  in  the  data  showing  that  the  difference  in  the  calculated  height  and  the  measured  heights  were  random  and  the  variance  in  the  relative  error  has  to  do  with  human  error  made  in  the  lab.  This  lab  allowed  for  a  lot  of  human  error  because  someone  had  to  read  weather  or  not  the  arm  was  at  equilibrium  as  another  person  had  to  read  the  height  by  having  humans  read  these  measurements  there  is  room  for  error  in  the  reading  thus  causing  the  variance  in  relative  errors.      𝑅𝐸 = 100 ∗ !!!

!                   (9)  

 The  changes  in  height  of  the  water  were  also  used  to  estimate  the  distances  to  

the  center  of  pressure  (ℎ!)  and  hydrostatic  forces  (F)  on  the  surfaces  from  using  the  heights  obtained  using  the  equations  and  method  referenced  above.  Graph  (7)  and  Graph  (8)  show  the  resultant  hydrostatic  force  (F)  on  the  surface  of  the  quadrant  plotted  against  the  height  of  the  water.  This  relationship  is  positively  linear  for  both  the  partially  submerged  and  fully  submerged  data.  It  is  perfectly  linear  when  fully  submerged,  having  a  correlation  coefficient,  𝑅!,  of  1.0.  The  F  values  are  larger  when  fully  submerged  than  when  partially  submerged  and  linearly  increase  with  depth  from  the  first  to  the  last  reading.  This  trend  is  expected  because  as  depth  increases  hydrostatic  pressure  increases  (Cengel  et.  al,  2014).  

The  distance  to  the  center  of  pressure  plotted  against  the  height  of  the  water  has  a  linear,  but  negative,  relationship.  This  suggests  that  as  water  depth  increases,  the  center  of  pressure  is  further  from  the  bottom  of  the  tank,  this  follows  the  trend  that  is  expected.  As  volume  increases,  the  resultant  hydrostatic  force  acting  on  the  body  also  increases.  The  line  of  action  of  this  force  passes  through  the  centroid  and,  for  shapes  like  that  of  the  quadrant,  the  center  of  pressure  lies  on  the  y-­‐axis  directly  below  the  centroid  (Cengel  et  al,  2014).  Therefore,  as  volume  and  height  increase,  the  depth  of  the  center  of  pressure  decreases,  as  shown  in  Graph  (5)  and  Graph  (6).      Tables  and  Graphs:    

         Graph  1:  Mass  vs.  Estimated  y  Value  when  Partially  Submerged  

Page 6: Hydrostatic Pressure BSEN lab 3 - Blair Hopwood

Hopwood  6  

                       Graph  2:  Mass  vs.  Estimated  y  Value  when  Fully  Submerged                      Graph  3:  Estimated  y  Value  vs.  Height  when  Partially  Submerged                        Graph  4:  Estimated  y  Value  vs.  Height  when  Fully  Submerged                  

Page 7: Hydrostatic Pressure BSEN lab 3 - Blair Hopwood

Hopwood  7  

         Graph  5:  Distance  to  Center  of  Pressure  vs.  Height  when  Partially  Submerged                        Graph  6:  Distance  to  Center  of  Pressure  vs.  Height  when  Fully  Submerged                      Graph  7:  Hydrostatic  Forces  on  the  Surface  vs.  Height  when  Partially  Submerged                    Graph  8:  Hydrostatic  Forces  on  the  Surface  vs.  Height  when  Fully  Submerged            

Page 8: Hydrostatic Pressure BSEN lab 3 - Blair Hopwood

Hopwood  8  

         Graph  9:  Relative  Error  between  Estimated  y  Values  and  Heights  vs.  Height  when  Partially  Submerged                      Graph  10:  Relative  Error  between  Estimated  y  Values  and  Heights  vs.  Height  when  Partially  Submerged      Conclusion:  

Hydrostatic  forces  (F)  and  distances  to  the  center  of  pressure  (ℎ!)  were  calculated  based  on  measured  water  height  values  from  an  Edibon  Hydrostatics  Pressure  System.  The  force  on  the  surface  of  the  quadrant  increased  as  weight  and  water  were  added  while  the  center  of  pressure,  ℎ!,  decreased  in  height.  Both  relationships  were  linear  when  partially  submerged,  as  well  as  fully  submerged.  The  data  collected  and  calculated  supported  that  the  equations  provided  accurately  describe  the  relationships  between  variables.  As  an  example,  hydrostatic  forces  on  the  surface  of  the  quadrant  and  the  water  height  when  fully  submerged  had  a  perfectly  linear  relationship,  a  correlation  coefficient  of  exactly  1.0,  therefore  water  depth  increased  proportionally  to  pressure.  This  validates  the  equation  used  to  calculate  F.      No  relationship  examined  had  a  𝑅!  values  of  less  than  0.97  meaning  all  the  equations  used  were  accurate  and  valid.      There  also  was  very  little  variation  between  the  measured  heights  and  the  calculated  y  values,  as  seen  by  the  lower  relative  error  between  them.      References:  A.  S.  Humpherys.  1991.  Center-­‐of-­‐Pressure  Gates  for  Irrigation.  ASAE  Volume  7(2).  

Emaco  Group.  2000.  Hydrostatics  Bench.:  Edibon,  S.A.  Available  at:  http://www.emacogroup.eu/Fluid%20mech-­‐%20aerodynamic.pdf.  Accessed  6  October  2014.    

 

Page 9: Hydrostatic Pressure BSEN lab 3 - Blair Hopwood

Hopwood  9  

Gerry.  2002.  Experiment  3  Hydrostatic  Force  on  a  Submerged  Surface.  Available  at:  http://web.cecs.pdx.edu/~gerry/class/EAS361/lab/pdf/lab3_hydrostatics.pdf.  Accessed  6  October  2014.  

 K.  M.  Robinson.  1992.  Predicting  Stress  and  Pressure  at  an  Overfall.  ASAE  Volume  35(2).    

Y.  A.  Cengel,  and  J.  M.  Cimbala.  2014.  Fluid  Mechanics  Fundamentals  and  Applications.  3rd  ed.  New  York,  New  York:  McGraw-­‐Hill.