Hydraulics Lesson 2

download Hydraulics Lesson 2

of 16

Transcript of Hydraulics Lesson 2

  • 7/30/2019 Hydraulics Lesson 2

    1/16

  • 7/30/2019 Hydraulics Lesson 2

    2/16

    18.02.2010

    2

    s

    g.Dep.-Hydraulic

    EnvironmentalE

    s

    g.Dep.-H

    ydraulic

    EnvironmentalE

  • 7/30/2019 Hydraulics Lesson 2

    3/16

    18.02.2010

    3

    s

    g.Dep.-Hydraulic

    EnvironmentalE

    s

    g.Dep.-H

    ydraulic

    EnvironmentalE

  • 7/30/2019 Hydraulics Lesson 2

    4/16

    18.02.2010

    4

    s

    g.Dep.-Hydraulic

    EnvironmentalE

    s

    g.Dep.-H

    ydraulic

    EnvironmentalE

  • 7/30/2019 Hydraulics Lesson 2

    5/16

    18.02.2010

    5

    s Flow Regimes

    Laminar and Turbulent Flow

    g.Dep.-Hydraulic

    Laminar Flow

    Turbulent Flow

    The amount of fluid friction, whichdetermines the amount of energy required

    EnvironmentalE o ma n a n e es re ow, epen s

    upon the mode of flow

    s

    Laminar Flow

    Laminar flow is also referred to as streamline

    g.Dep.-H

    ydraulic or v scous ow.

    layers of water flowing over one another at

    different speeds with virtually no mixingbetween layers

    fluid particles move in definite and observable

    EnvironmentalE paths or streamlines, and

    the flow is characteristic of viscous (thick) fluid.

  • 7/30/2019 Hydraulics Lesson 2

    6/16

    18.02.2010

    6

    s

    Turbulent flow is characterized by the irregularmovement of articles of the fluid.

    Turbulent Flow

    g.Dep.-Hydraulic

    There is no definite frequency as there isin wave motion.

    EnvironmentalE

    observable pattern and no definite layers.

    s

    Laminar and Turbulent Flow

    g.Dep.-H

    ydraulic

    EnvironmentalE

  • 7/30/2019 Hydraulics Lesson 2

    7/16

    18.02.2010

    7

    s

    REYNOLDS Reynoldsapparatus

    g.Dep.-Hydraulic

    EnvironmentalE

    s

    Reynolds Number

    The Reynolds Number is important in analyzing

    g.Dep.-H

    ydraulic

    gradient - shear force.

    The Reynolds Number indicates the relativesignificance of the viscous effect compared to theinertia effect.

    The Reynolds number is defined as the ratio of the

    EnvironmentalE inertial force and the viscous force.

  • 7/30/2019 Hydraulics Lesson 2

    8/16

    18.02.2010

    8

    s

    REYNOLDS Reynolds Number can be expressed as:

    g.Dep.-Hydraulic

    velocityV

    lengthcticcharacteriL

    R

    :

    :

    EnvironmentalE

    ityviskinematic

    ityvisobsoluteorityvisdynamic

    cos:

    coscos:

    s

    Kinematic Viscosity is the ratio of absolute ordynamic viscosity to the density, a quantity in which

    Kinematic Viscosity

    g.Dep.-H

    ydraulic no orce s nvo ve .

    EnvironmentalE

    For the SI system the theoretical unit is m2/s orcommon used Stoke (St)St = 10-4 m2/s.

  • 7/30/2019 Hydraulics Lesson 2

    9/16

    18.02.2010

    9

    s

    The flow is:

    g.Dep.-Hydraulic

    laminar if Re < 2300transient if 2300 < Re < 4000turbulent if Re > 4000

    EnvironmentalE

    s

    EXAMPLE1:-

    LaminarFlowExamples

    g.Dep.-H

    ydraulic

    Isthe flow Laminar or Turbulent?

    n o w = . m s ows n a

    10 cm diameter pipe at 0.5 L/s

    EnvironmentalE

  • 7/30/2019 Hydraulics Lesson 2

    10/16

    18.02.2010

    10

    s

    LaminarFlowExamplesEXAMPLE2:

    -

    g.Dep.-Hydraulic

    Below what velocity will the flow belaminar?

    w a nema c v scos y o . x m s

    is flowing through a 0.00762 m diameter pipe.

    EnvironmentalE

    s

    Rh = A/P

    Hydraulic Radius

    g.Dep.-H

    ydraulic h = y rau c ra us

    A = the cross sectional data

    P = wetted perimeter

    Forfull pipe flow with a circular conduit :

    EnvironmentalE Rh = D/4

  • 7/30/2019 Hydraulics Lesson 2

    11/16

    18.02.2010

    11

    s In dealing with a non-circular

    Hydraulic Diameter

    g.Dep.-Hydraulic con u

    Dh = Hydraulic Diameter = 4Rh For example, when using Reynolds

    number to evaluate the flow in a

    non-circular conduit, we have to

    substitute 4Rh for D.

    EnvironmentalE This is known as equivalent

    diameter.

    s

    EXAMPLE3:LaminarFlowExamples

    g.Dep.-H

    ydraulic

    the hydraulic radius of a 300 mm diameter

    pipe and 300 mm square-duct?

    EnvironmentalE

  • 7/30/2019 Hydraulics Lesson 2

    12/16

    18.02.2010

    12

    s

    EntranceRegionandFully

    DevelopedFlow

    g.Dep.-Hydraulic

    EnvironmentalE

    s

    FrictionHeadLossinCircularConduits

    g.Dep.-H

    ydraulic

    EnvironmentalE

  • 7/30/2019 Hydraulics Lesson 2

    13/16

    18.02.2010

    13

    s

    FrictionHeadLossinCircularConduits

    g.Dep.-Hydraulic

    2f

    EnvironmentalE roug e mens ona ana ys s

    Friction head loss

    0 8

    2

    2L

    L vh f

    D g

    s

    FrictionLossinNoncircularConduits

    g.Dep.-H

    ydraulic

    g

    V

    R

    Lf

    g

    V

    D

    Lfh

    h

    f

    242

    22

    EnvironmentalE

    VRVRR hh

    )4()4(

  • 7/30/2019 Hydraulics Lesson 2

    14/16

    18.02.2010

    14

    s

    EfforttoLinkingfandR

    g.Dep.-Hydraulic

    HazonPoiseuillelaw

    g

    V

    R

    Lf

    g

    V

    D

    Lfh

    h

    f242

    22

    )2300(64

    RR

    f

    EnvironmentalE

    VgD

    LV

    D

    Lhf 22 3232

    s

    EXAMPLE4:2

    LaminarFlowExamples

    g.Dep.-H

    ydraulic . .

    in a 100 mm diameter pipe at a rate of 0.64

    L/s. Find (a) the head loss per unit length (b)the shear stress at the pipe wall.

    EnvironmentalE

  • 7/30/2019 Hydraulics Lesson 2

    15/16

    18.02.2010

    15

    s

    EXAMPLE5:LaminarFlowExamples

    g.Dep.-Hydraulic

    distance from the pipe entrance to the first

    point at which the flow is established?

    EnvironmentalE

    s

    EXAMPLE6:Water at 4C(=1000kg/m3 and

    LaminarFlowExamples

    g.Dep.-H

    ydraulic

    =0.001545kg/ms) is flowing through a 0.305

    cm diameter 9.14 m long horizontal pipe

    steadily at an average velocity of 0.914 m/s.

    Determine,

    EnvironmentalE

    (b)The pressure drop

    (c) The pumping power requirement to

    overcome this pressure drop.

  • 7/30/2019 Hydraulics Lesson 2

    16/16

    18.02.2010

    s

    EXAMPLE7:Oil at 20(=888kg/m3 and =0.800kg/ms) is

    LaminarFlowExamples

    g.Dep.-Hydraulic

    flowing steadily through a 5 cm diameter 40 m

    long pipe. The pressure at the pipe inlet and outlet

    are measured to be 745 and 97 kPa, respectively.

    Determine the flow rate of oil through the pipe

    EnvironmentalE

    (a) horizontal

    (b)inclined 15 upward

    (c) inclined 15 downward

    also verify that flow through the pipe is laminar?