Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of...

31
Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material Interfaces: Experiment, Theory and Simulation Singapore 10-14 January 2005 Collaborators: • Jose` Adachi (SLB, Houston) • Rachel Kuske (UBC) • Sarah Mitchell (UBC) • Ed Siebrits (SLB, Houston)
  • date post

    18-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    2

Transcript of Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of...

Page 1: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

Hydraulic Fracture: multiscale processes and moving

interfaces

Anthony PeirceDepartment of Mathematics

University of British Columbia

Nanoscale Material Interfaces:Experiment, Theory and Simulation

Singapore10-14 January 2005

Collaborators:

• Jose` Adachi (SLB, Houston)• Rachel Kuske (UBC)• Sarah Mitchell (UBC)• Ed Siebrits (SLB, Houston)

Page 2: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

2

Outline

• What is a hydraulic fracture?

• Scaling and special solutions for 1D models

• Numerical modeling for 2-3D problems

• Conclusions

Page 3: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

3

HF Examples - block caving

Page 4: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

4

HF Example – caving (Jeffrey, CSIRO)

Page 5: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

5

HF Examples – well stimulation

FracturingFluid

Proppant

Page 6: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

6

An actual hydraulic fracture

Page 7: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

7

HF experiment (Jeffrey et al CSIRO)

Page 8: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

8

1D model and physical processes

FractureEnergy

Breaking rock

Leak-offViscous energy

loss

Page 9: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

9

Scaling and dimensionless quantities

• Rescale:• Dimensionless quantities:

• Governing equations become:

Page 10: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

10

Two of the physical processes

• Large toughness:

• Large viscosity:

Page 11: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

11

Experiment I (Bunger et al 2004)

Theory

Large toughness:

(Spence & Sharp)

Page 12: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

12

Experiment II (Bunger et al 2004)

TheoryLarge viscosity:

(Desroches et al)

Page 13: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

13

The coupled EHF equations in 2D

• The elasticity equation – balance of forces

• The fluid flow equation – mass balance

Page 14: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

14

Boundary & propagation conditions

• Boundary conditions

• Propagation condition

Page 15: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

15

The elasticity equation

x,m,k

y,n,l

z

Page 16: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

16

3 Layer Uniform Asymptotic Solution

-4 -3 -2 -1 0 1 2 3-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6 Sample spectral coefficient for a touching element

log10

(k)

Al=4

,Ps1

(k)

Actual spectral coefficient Uniform asymptotic solution Infinite space spectral coefficient

Page 17: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

17

Crack cutting an interface

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

Nor

mal

ized

cra

ck o

peni

ng d

ispl

acem

ent:

w

G1/p

1

Crack opening displacement comparison with Erdogan and Biricikoglu

Erdogan & Biricikoglu b2/b

1 =0.05

Erdogan & Biricikoglu b2/b

1 =1.00

Erdogan & Biricikoglu b2/b

1 =2.00

MLAYER2D b2/b

1 =0.05

MLAYER2D b2/b

1 =1.00

MLAYER2D b2/b

1 =2.00

Page 18: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

18

A penny crack cutting 2 interfaces

Lin and Keer three layer test

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

y/r

Gw

/(rp

)

MLAYER3D (eta = 2)

MLAYER3D (eta = 4)

MLAYER3D (eta = 10)

Lin & Keer (eta = 2)

Lin & Keer (eta = 4)

Lin & Keer (eta = 10)

Page 19: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

19

A crack touching an interface

0.08 0.09 0.1 0.11 0.12 0.13 0.140.34

0.345

0.35

0.355

0.36

y (m)

wid

th w

(m

m)

ABAQUS 4000 elements ABAQUS 16000 elements DIGSMM linear elements BHP 15 quadratic elements MLAYER2D 20 elements MLAYER3D 20 vertical elements

Page 20: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

20

Eulerian approach & Coupled HF Equations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

23

45

67

9

10

8

11

12

131415

16

17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

23

4

5

67

9

10

8

11

12

131415

16

17

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Page 21: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

21

MG preconditioning of• C coarsening using dual mesh

• Localized GS smoother

i,j

i,j+1

i,j-1

i-1,j

i-1,j-1

i-1,j+1

i+1,j

i+1,j+1

i+1,j-1

12345

112345

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 22: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

22

Performance of MG Preconditioner

0 1000 2000 3000 4000 5000 60000

0.5

1

1.5

2

2.5

3 Cumulative solution times BiCGSTAB vs BiCGSTAB-MG

Number of active elements (N)

Cu

mu

lativ

e S

olu

tion

Tim

e (

ho

urs

)

BiCGSTAB : Total solution time 2.58 hours BiCGSTAB-MG V(0,2) cycle : Total solution time 0.27 hours BiCGSTAB-MG V(1,2) cycle : Total solution time 0.31 hours

1 1.5 2 2.5 3 3.5 40.5

1

1.5

2

2.5

3

log10(N)

log 1

0(Nu

mb

er

of

itera

tion

s)

Average iteration counts for BiCGSTAB and BiCGSTAB-MG

BiCGSTAB with number of iterations ~ 0.69 N0.72

BiCGSTAB-MG V(0,2) cycle BiCGSTAB-MG V(1,2) cycle

~9.5 x

Page 23: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

23

Front evolution via the VOF method

0.75 0.15

1.0

1.0 1.0

0.78

0.3

0.06

Page 24: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

24

Time stepping and front evolution

Time step loop:

VOF loop:

Coupled Solution

end

next VOF iteration

next time step

Page 25: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

25

Radial Solution

Radial fracture ISTEP = 19

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

0 25 50 75 100 125

y (m)

Fra

ctu

re w

idth

(m

)

NumericalExact

Page 26: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

26

Fracture width for modulus contrast

150 200 250 300 350 400 450 500 550 6000

1

2

3

4

5

6

7

8

9x 10

9

y (m)

Youngs Modulus (MPa)

Modulus Changes

Source

Page 27: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

27

Fracture width for stress jump

Page 28: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

28

Pressure and width evolution

Page 29: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

29

Channel fracture and breakout

Page 30: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

30

Hourglass HF with leakoff

Page 31: Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department of Mathematics University of British Columbia Nanoscale Material.

31

Concluding remarks

• Examples of hydraulic fractures

• Scaling and physical processes in 1D models Tip asymptotics: & Experimental verification

• Numerical models of 2-3D hydraulic fractures The non-local elasticity equation An Eulerian approach and the coupled equations FT construction of the elasticity influence matrices A multigrid algorithm for the coupled problem Front evolution via the VOF method

• Numerical results