Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

download Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

of 13

Transcript of Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

  • 7/28/2019 Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

    1/13

    Jornal of Thermal Analysis , Vo l . 49 (1997) 553-565

    A D S O R P T I O N O F W A T ER O N Z E O L I T ES O F D I F F E R E N TT Y P E S

    B . H u n g e ? , S. M a t y s i k ~, M . H e u c h e l 1, E . G e i d e l a n d H . T o u f a rl lnst i tu te of Physical and Theoret ical C hemistry , Universi ty of Leipzig , D -04103 L eipzig ,G e r m a n y2Ins t itu te o f Phys ica l Chemist ry , Un ivers i ty o f Ham burg , D -20146 Ham burg , G ermany3C entrum voo r Opp ervlaktechem ie en Katalyse , Katholieke Universite it Leu venB-3001 L euven (Hever lee ) , Be lg iumAbstrac t

    We have investigated the in teract ion o f water with Na +-io n exchanged zeoli tes of d ifferents t ruc tu res (LTA, FAU , ER I , M O R and MF I) by means o f tempera tu re -p rogram med deso rp t ion(TPD ) . The non- i so the rmal desorp t ion o f water shows , depend ing on the zeo l i te type , d i f fe ren t lystructured desorption profi les . In every ease the profi les have, however , two main ranges. Usinga regu la r iza t ion method , desorp t ion energy d is t r ibu t ion func t ions have been ca lcu la ted . Thedeso rption e nerg y dis tr ibutions betwee n 42--60 kJ mol ~, wh ich can be a t tr ibuted to a non-s pe-cif ic in terac t ion of water , show two clear ly dist inguished energ y ranges. Th e water desorptio nbehav iour o f th is range correla tes w ith the e lectronegativi ty of the zeoli tes and the average charg eof the lat tice oxygen a toms ca lcu la ted by means o f the e lec t ronega t iv i ty equa l iza t ion m ethod(EE M ). Th e part of the desorption energy distributions in the range of 60 -90 kJ tool ~ , ref lect inginteract ions of water with N a + cat ions, shows two m ore or less pronounc ed ma xim a. In agree-ment with vibrat ional spectroscopic s tudies in the far infrared region, i t may be concluded thata l l sam ples un der s tudy possess a t least two different cat ion s ites.Keywords: deso rption energy distributions, EE M calculat ions, far- infrared spectroscopy,N a+- ion exchanged zeoli tes o f d ifferent types, tem peratu re-prog ram me d desorp-t ion (TPD) , wa te r adsorp t ionIntroduct ion

    K n ow l e dge o f i n t er a c ti ons o f w a t e r w i t h z e o l i te s i s o f g r e a t i n t e r e s t fo r t he i r a p -p l i c a t i on a s c a ta l y s ts a nd a ds o r be n t s . F o r t ha t the r m oa na l y t i c a l m e t hods a r e f r e -que n t l y u s e d to c ha r a c t e r i z e t he i r hyd r ophob i c p r ope r t i e s ( e .g . , [ 1 - 3 ] ) . H ow e ve r ,non - i s o t he r m a l i nve s t i ga t i ons a l l ow de t a i l e d i n f o r m a t i on w i t h r e s pe c t t o t hes t r e ng t h o f i n t e r a c t i on o f m o l e c u l e s w i t h d i f f e r e n t a ds o r p ti on s it e s, a s i t w a s s ho w nf o r o t h e r s y st e m s ( e .g . , [ 4 - 6 ] ). T h e r e f o r e , w e h a v e p e r f o r m e d te m p e r a t u r e - p r o -g r a m m e d d e s o r p t i o n ( T P D ) o f w a t er o n N a + - i o n e x c h a n g e d z e o li te s o f d i f f e r e n tt ype s i n o r de r t o c ha r a c t e r i z e the i r a d s o r p t i on p r ope r t i e s w i t h r e s pe c t to w a t e r a sp r obe m o l e c u l e i n m o r e de t a il s. E l e c t r one ga ti v i ti e s a nd pa r t ia l c ha r ge s o f t he l a t t ic eoxy ge n a t om s ha ve be e n c a l c u l a t e d w i t h t he e l e c tr one ga t i v i t y e qua l i z a t ion m e t ho d0 3 6 8 -4 4 6 6 / 9 7 / $ 5 . O09 1997 Akaddmiai Kiad6, Budapest

    John Wiley & Sons LimitedChichester

  • 7/28/2019 Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

    2/13

    5 54 H U N G E R e t al. : Z E O L I T E S

    ( E E M ) i n o r d e r t o c o r r e la t e t h e T P D r e s u l ts w i t h c h e m i c a l a n d s t ru c t u r a l p r o p e r t i e so f t h e z e o l it e s . T h e r e s u l t s f o r t h e i n t e ra c t io n o f wa t e r w i t h th e N a + - c a t i o n s w i l l b ed i s c u s s e d t o g e t h e r w i t h fa r i n f ra r e d s p e c t r o s c o p i c o b s e r v a t io n s .E x p e r i m e n t a lZeolites

    T h e z e o l i t e s we r e c o m m e r c i a l l y a v a i l a b l e m a t e r i a l s s u p p l i e d ' b y t h e B i t t e r f e l dAG ( Ge r m a n y ) . T h e c h a r a c t e r is t i c s a re s u m m a r i z e d i n T a b l e 1 , w h e r e b y t h e z e o -l i t e s a r e a r r a n g e d w i t h d e c r e a s i n g a l u m i n i u m c o n t e n t . T h e p o r e v o l u m e s we r e d e -t e r m i n e d b y t h e g r a v i m e t r ic u p t a k e o f n - h e x a n e a t 2 9 8 K .Temperature-programmed deso rption (TPD)

    T h e t e m p e r a t u r e - p r o g r a m m e d d e s o r p t i o n ( T P D ) w a s c a r r i e d o u t i n a c o n v e n -t i o n a l f l o w d e v i c e w i t h h e l i u m a s c a r r i e r g a s ( 3 1 h - l ), F o r e v o l v e d g a s d e t e c t i o nb o t h a t h e rm a l c o n d u c t i v i t y d e t e c t o r ( T C D ) a n d a q u a d r u p o l e m a s s s p e c t r o m e t e r( L e y b o l d , T r a n s p e c t o r C I S S y s t e m ) w i t h a c a p i l la r - c o u p l in g s y s t e m w e r e u s e d . T h ez e o l i t e s w e r e e q u i l i b r a t e d w i t h wa t e r v a p o u r o v e r a s a t u r a t e d C a (NO3 )2 - s o l u t i o ni n a d e s i c c a to r . F o r e a c h e x p e r i m e n t 2 0 - 1 0 0 m g o f t h e wa t e r l o a d e d z e o l i t e we r eu s e d i n a m i x t u r e w i t h 1 g q u a r tz o f t h e s a m e g r a i n s i z e ( 0 . 2 . .. 0 . 4 r a m ) . A t fi r s ta l l s a m p l e s w e r e f l u s h e d w i t h h e l i u m a t r o o m t e m p e r a t u r e f o r a p e r i o d o f 4 0 m i n .A f t e r wa r d s t h e l i n e a r t e m p e r a t u r e p r o g r a m ( 1 0 K m i n -1 ) wa s s t a r te d . F o r a k i n e t ice v a l u a t i o n e x p e r i m e n t s we r e c a r r i e d o u t u s i n g d i f f e r e n t h e a t i n g r a t e s ( 2 . . . 2 0K r a i n - l ). I n s o m e i n v e s ti g a ti o n s th e a d s o r p t i o n wa s p e r f o r m e d b y m e a n s o f a wa t e rv a p o u r p u l s e a n d a n i s o t h e r m a l d e s o r p t i o n o f t h e wa t e r s u r p l u s.

    T h e a d s o r b e d w a t e r a m o u n t s ( T a b le 1 ) w e r e d e t e r m i n e d a d d i t i o n a l l y b y a s i m u l -t a n e o u s t h e rm a l a n a l y s is a p p a ra tu s ( T G - D T A - Q M S , N E T Z S C H , S y s t e m S T A - Q M S4 0 9 / 4 0 3 ) . F o r a l l o f th e s e e x p e r im e n t s t h e s a m p l e we i g h t wa s a b o u t 4 0 m g . A h e a t -i n g r a t e o f 1 0 K m i n -1 a n d a h e l i u m f l o w o f 4 . 5 1 h -1 we r e u s e d .Far-infrared spectroscop ic investigations

    S a m p l e s w e r e p r e s s e d t o f o r m s e l f -s u p p o r t i n g w a f e r s a n d d e h y d r a t e d i n a f a r - I Rc e l l w i t h p o l y e t h y l e n e w i n d o w s i n a s tr e a m o f d r y n i t ro g e n a t 6 2 3 K . A f t e r c o o l i n gm e a s u r e m e n t s o f th e f a r in f r a re d s p e c t r a we r e c a r r i e d o u t i n a n i t ro g e n a t m o s p h e r ea s we l l f o r s u p p r e s s i o n o f ro t a t io n a l l in e s o f wa t e r v a p o u r . A b s o r p t i o n s p e c t r a a tr o o m t e m p e r a t u r e we r e r e c o r d e d u s i n g a D i g i l a b F T S 1 5 E s p e c t r o m e t e r , e q u i p p e dwi t h a m e r c u r y v a p o u r s o u r c e , a 6 . 2 5 l a in m y l a r b e a m s p l i t te r a n d a l i q u i d - h e l i u m -c o o l e d s i l i c o n b o l o m e t e r ( I n f ra r e d L a b o r a t o r i e s ) a s h i g h s e n s i t iv e d e t e c to r . S p e c t r awe r e t a k e n i n th e r a n g e 4 0 0 - 2 0 c m -1 w i t h a r e s o l u t io n o f 4 c m -1 c o a d d i n g 2 5 6 s c a n st o o b t a i n a n a c c e p t a b l e s i g n a l - t o - n o i s e r a t i o . A t r i a n g l e a p o d i z a t i o n f u n c t i o n wa sa p p l i e d f o r t h e F o u r i e r t r a n sf o r m a t io n .

    J . Therma l Ana l . , 49 , 1997

  • 7/28/2019 Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

    3/13

    Te1Caescoz

    e

    Suue

    Pevume

    Waeaopoc

    ya2K/

    Z

    e

    Cmiccmpo

    SAlao

    tyc

    cm3g

    mmog1

    z

    NaA

    LA

    NxA22

    1

    02

    14

    NX

    FA

    N1A1o9

    11

    03

    15

    NY

    FA

    N33A3337

    26

    03

    12

    NK-eoeE

    Ns9KA2

    3

    01

    88

    Namode

    MOR

    NAsS4O

    5

    01

    70

    NaZM-5

    MF

    NA

    9O

    1

    01

    42

    ~ N

    ,q

  • 7/28/2019 Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

    4/13

    556 HUNG ER et al. : ZEOLITES

    C a l c u l a t i o n sCry s ta l s t ruc ture s

    Cry s ta l s t r uc ture ca lcu la t ions we re ca r r ied ou t on zeo l i t e N aA (S i/A1 = 1), N aX( S i /A I = 1 ), N a Y ( S i / A I = 3 ) a n d N a - m o r d e n i te ( S i/ A I = 5 ) . T h e s p a c e g r o u p s o f t h es t r u c t u r e s we r e r e d u c e d t o F 4 3 c f o r L T A , F 2 3 f o r F A U an d P 2 1 /m f o r M O R i n o r-d e r t o a l l o w t h e i n s e rt i o n o f a l u m i n u m a t o m s o b e y i n g L 6 w e n s t e i n s ru l e . T h e r e s u l t-i n g s t r u c t u r e s we r e o p t i m i z e d u s i n g t h e DL S p a c k a g e [ 7 ] w i t h t h e f o l l o wi n g p a -r a m e t e r s : S i- -O d i s t a n c e = 0 . 1 6 1 u rn , A1 -- O d i s t a n c e = 0 . 1 7 4 n m , O- T - - O a n g l e =1 0 9 . 5 ~ T - - O - T a n g l e = 1 45 ~ T h e c a t i o n s w e r e p l a c e d i n t o th e u n i t c e l l s u s in g l i t-e r a tur e da ta [8 ] in o rde r to ( i ) maximize the in te r - ca t ion ic d i s tance and to ( i i ) maxi -m i z e t h e c o o r d i n a t i o n b y l a tt ic e o x y g e n s . T h e l o c a l p o s i t i o n o f th e c a t i o n s w e r e a d -j u s t e d d u r i n g t h e E E M c a l c u l a ti o n s a t t h e m i n i m u m o f t h e e l e c tr o s t a t ic e n e r g y .E E M c a lc u la t io n s

    T h e e l e c t r o n e g a t i v i t y e q u a l i z a ti o n m e t h o d ( E E M ) a l l o ws t h e c a l c u l a t i o n o f e l e c -t ronega t iv i t i e s and a tomic charges in molecu les as we l l a s in l a rge c lus te r s and in -f i n i t e c r y s t a l s t r u c t u r e s , wh e n t h e s t r u c t u r e a n d c h e m i c a l c o m p o s i t i o n a r e k n o wn .F o r a d e t a i le d d e s c r i p t i o n o f t h e E E M a n d i ts a p p li c a t io n s [ 9 - 1 1 ] , i ts p r e d e c e s s o r s[12] and i ts r igorous de r iva t ion in the den s i ty func t iona l theo ry [13] , we r e f e r to theo r i g in a l l i te r a tu r e . F o r th e p r e s e n t c a lc u l a t io n s a c o m b i n e d M o n t e C a r l o / E E M p r o -c e d u r e [ 1 4 ] wa s a p p l i e d . T h i s p r o g r a m a l l o ws t o o p t i m i z e t h e c a t i o n p o s i t i o n swi t h i n t h e c r y s t a l s tr u c t u r e o n t h e b a s e o f t h e t o t al e l e c tr o n i c e n e r g y o f t h e s y s t e m ,i . e . , inc lud ing the e lec t ros ta t i c in te r ac t ions as we l l a s the charge dependent se l f - en-e r g y o f t h e a t o m s . L o n g r a n g e e f f e c t s we r e t a k e n in t o a c c o u n t b y a T a p e r t y p e s u m -m a t i o n d u r i n g t h e o p t im i z a t i o n . Af t e r t h e e n e r g y o f t h e s y s te m h a d r e a c h e d a m i n i -m u m , t h e c a l c u l a t io n o f t h e re l e v a n t p a r a m e t e r s w a s re d o n e a p p l y i n g a m o r e a c c u -r a t e B e r t a u t t y p e s u m m a t i o n . T h e r e s u l t s we r e , h o we v e r , i d e n t i c a l w i t h i n t h e m a r -g i n s o f t h e n u m e r i c a l e r r o r o f t h e p r o g r a m . T h e z e o l i t e la t t ic e wa s a s s u m e d t o b er i g id d u r i n g a l l co m p u t a t io n s . T h r e e d i f fe r e n t s c e n a r i o s w e r e a p p l i e d f o r t h e c h a r g et r a n s fe r b e t w e e n l a t ti c e a n d c a ti o n s : ( i ) c a t io n s w e r e n o t in c l u d e d i n to t h e E E M c a l -cu la t ions , the to ta l cha rge of the l a t t ice was se t ze ro a rb i t r a r i ly ; ( ii ) f r ee charget r ans f e r w as a l lowed be tw een zeo l i t e l a t t ice and ca t ions ; ( i i i) the charge of the ca t -i o n s w a s f i x e d t o + 1 a n d t h e t o ta l c h a r g e o f t h e l a tt i ce w a s f ix e d t o t h e c o r r e s p o n d -i n g n e g a t i v e v a l u e (qlattiee =--]Eqcation). S c e n a r i o ( i ) a ll o ws t o s e p a r a t e t h e i n f l u e n c eo f t h e z e o l i t e s tr u c t u r e p a r t i a ll y f r o m t h e e f fe c t o f th e c h e m i c a l c o m p o s i t i o n . H o w -e v e r, s i n c e i n p r a c t ic e t h e e f f e c t o f th e c o m p o s i t i o n w i l l a lwa y s b e d o m i n a t in g , t h e s eresu l t s cannot be cor r e la ted d i r ec t ly to exper imenta l r e su l t s . The scenar io ( i i ) i s thep h y s i c a l l y m o s t r e a li s ti c o n e . Un f o r t u n a t e ly , t h e d e te r m i n a t i o n o f a c c u r a t e E E M p a -r a m e t e r f o r a l k a li - m e t a ls i s st il l a n u n s o l v e d p r o b l e m , m o s t l y d u e t o t h e d i s c o n t i n u -i t y o f t h e s e p a r a m e t e r s a t a c h a r g e o f + 1 [ 1 5 ]. T h e r e f o r e , i t i s m o r e s u i t a b l e inm o s t c a s e s t o a p p l y s c e n a r i o ( ii i) a s a f a i r ly g o o d a p p r o x i m a t i o n o f th e r e a li ty . I nt h i s c a s e , E E M p a r a m e t e r s f o r t h e c a t i o n s a r e n o t r e q u i r e d . On l y t h e e l e c t r o s t a t i cpo la r iza t ion of the l a t t i ce by the ca t ions i s t aken in to accoun t in th i s way , whi le the

    J . Therma l Ana l . , 49 , 1997

  • 7/28/2019 Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

    5/13

    Te2Deobweamosndeeempauea

    aeusoEMccao

    37K/

    457K/

    Eeo

    vy

    Avacgo

    Z

    e

    -1

    mmog~

    mmog

    laco

    aoms

    tz f

    NaA

    12

    21

    -37

    -08

    NaX

    13

    25

    -18

    -08

    ~

    NaY

    99

    17

    24

    -08

    " Nrn

    NaK-eoe

    68

    14

    nc1

    nc

    o

    Namode

    65

    20

    17

    -08

    NaZM-5

    28

    12

    nc

    nc

    N

    ncnccae

  • 7/28/2019 Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

    6/13

    558 HUNGERe t a l . : ZEOLITES

    charge t rans fe r pa r t i s ignored . Ab in i t io ca lcu la t ions on a lka l i ca t ion - wa te r sys -t e m s i nd i c a te , how e ve r , t ha t the c ha r g e t ra ns f e r be t w e e n t he c a t ions a nd c oo r d i na t -i ng oxy ge n a tom s i s r a t he r s m a l l [ 16 ]. T h e e l e c t rone ga t i v i ti e s c a l c u l a t e d by m e a nso f s c e na r i o ( i ii ) a nd t he p r e d i c t e d a ve ra ge c ha r ge o f the l a t t ic e ox yge n a t om s a r es u m m a r i z e d i n T a b le 2 .R e m i t s a n d d i s c u s s i o n

    F or a ll z e o l i te s t he de s o r p t i on c u r ve s o f w a t e r a r e s how n i n F i g '. 1 . I n e a c h c a s e ,r e ve r s i b il i ty c ou l d be p r oo f e d by pe r f o r m i n g r e pe a t e d a ds o r p t i on / de s o r p t i on c yc l es .T he m a s s - s pe c t r o s c op i c a na l y s i s ( 1 - 120 : 18 a i nu ; CO 2: 44 a m u; N 2 : 28 a i nu ; 02 : 32a m u) s ho w e d t ha t on l y w a t e r w a s de s o r be d . Ch a r a c t e r i st i c f o r a ll z e o li te s a r e t w oc l e a r l y v i s ib l e r a nge s o f de s o r p t ion , T h e p r e dom i na n t a m oun t o f w a t e r de s o r bs upt o a b o u t 4 0 0 - 4 5 0 K . S m a l le r a m o u n t s d e s o r b b e tw e e n ab o u t 4 5 0 - 5 0 0 K a n d a b o u t7 00 K . T he a m oun t o f w a t e r de s o r b i ng i n t h i s t e m pe r a t u r e r a nge w a s s e pa r a t e df r o m d e s o r p t io n u p t o a b o u t 4 5 0 K b y c o m b i n a ti o n o f i s o th e r m a l a n d n o n - i so t h e r -m a l de s o r p t i on . F o r t h i s pu r pos e , he a t i ng w a s c a r r i e d ou t up t o the f i r s t pe a k m a x i -m u m a n d t h e n t h e te m p e r a t u re p r o g r a m w a s st o pp e d . W h e n n o f u r t h e r d e s o r p ti o nw a s obs e r ve d a t th i s t e m pe r a t u r e , t he te m pe r a t u r e p r og r a m w a s r e s t a rt e d . T h e ob -t a in e d d e s o r p t i o n c u r v e s a r e s h o w n i n F ig . 2 a n d t h e d e s o r b e d a m o u n t s a r e s u m m a -r i z e d i n T a b le 2 . A c om pa r i s on w i t h the a ds o r be d a m o un t s de t e r m i ne d a t s a t u r a t i onp r e s s u r e i n t he de s i c c a t o r (T a ble 1 ) s how s t ha t du r i ng f l u s h ing w i t h he l i um a t r oo mt e m p e r a t u r e a l r e a d y 2 5 - 4 0 % o f w a t e r d e s o rb s b e f o r e t h e T P D w a s s ta r te d . T h e r e -f o r e , t he T P D a l low s i n f o r m a t i on e s pe c ia l l y w i t h r e s pe c t t o l ow i n i ti a l c ove r a ge .T h i s s hou l d be a n a dva n t a ge i n c om pa r i s on t o i s o the r m a l a ds o r p t i on m e a s u r e m e n t s ,

    i i , f300 400 500 600 700

    T / KFig. 1 Desorption curves of water: 1: NaA, 2: NaX, 3: NaY, 4: Na,K-erionite, 5: Na-mor-denite, 6:NaZSM-5

    J . T h e r m a l A n a l . , 4 9 , 1 9 9 7

  • 7/28/2019 Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

    7/13

    HUNGER et al.: ZEOLITES 559

    d

    3 5 0 450 550 650 750T K

    85O

    Fig . 2 D esorp t ion cu rves a f te r iso the rmal desorp tion : 1: NaA , 2 : NaX , 3 : N aY, 4 : N a ,K-e r io n i te , 5 : N a - m o r d e n it e , 6 : N a Z S M - 5

    w he re th i s rang e i s re l a t ive ly d i f f icu l t to inves t iga te , e spec ia lly , becaus e of the v e rys m a l l e qu i l ib r i um p r e s s u r e s.

    I n o r de r t o ob t a i n de t a i l e d i n f o r m a t i on a bou t t he de s o r p t i on p r oc e s s a f u r t he re va l ua t i on o f t he e xpe r i m e n t a l c u r ve s w a s c a r r i e d ou t . F o r t h i s pu r pos e a r a t e l a wof f i r s t o r d e r w i t h a d i s t ri bu t i on f unc t i on f ( E ) o f de s o r p t i on e n e r gy E w a s c o ns i d -e red [17] :

    EmaxdO= A J" 0t (E,T) exp (-E/R T) f(E ) dE= ---~-

    E m i n(1 )

    w h e r e ra i s the ov era l l desorp t ion ra te , 0 i s the ov era l l deg ree of coverag e , and A thep r e - e xpo ne n t i a l f a c t o r. 01 i s t he l oc a l c ove r a ge o f s i te s c h a r a c t e r i z e d by a de s o r p t i one ne r gy E . E m ina nd E m ax a r e t he l i m i ts o f t he r a nge o f de s o r p t i on e ne r gy . T he c a l c u -l a ti o n s w e r e c a r r i e d o u t b y m e a n s o f t h e p r o g r a m I N T E G [ 1 8] , w h i c h in v o lv e s a~ regula r i za tion m eth od for so lv ing th i s in tegra l equa t ion .T h e p r e - e xp one n t i a l f a c t o r A r e qu i r e d t o so l ve E q . ( 1 ) w a s e s t im a t e d by u s i ng

    t h e d e p e n d e n c e o f th e t e m p e r a t u re o f th e p e a k - m a x i m u m o n t h e h e a t i n g ra t e [ 19 ,2 0 ] . F o r N a Z S M - 5 t h e p r e- e x p o n e n ti a l fa c to r w a s d e t e r m i n e d to b e b e t w e e n 2 x 1 0 6a n d l x l 0 7 m i n -1 [6 ] . T he va l ue f o r N a X w a s be t w e e n 7x106 a nd 2x107 m i n -1. Thisr a n g e n e a r l y c o r r e s p o n d s t o t h e a c c u r a c y o f e st im a t i o n o f t h e s e p a ra m e t e r s , O n t h eo t he r ha nd t he p r e - e xpone n t i a l f a c t o r r e p r e s e n t s a n e f f e c t ive pa r a m e t e r c on t a i n i nga l s o c on t r ibu t i ons o f t he m a s s t ra ns po r t [ 21 ]. T h e r e f o r e , a de pe nd e nc e on t he s a m -p l e a m o u n t c a n n o t b e e x c l u d e d . B u t, d i f fe r e n t s a m p l e a m o u n t s w e r e n e c e s s a r y t o

    J . Thermal Anal . , 49 , 1997

  • 7/28/2019 Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

    8/13

    560 HUNGER et al . : ZEOLITES

    ensure, that s imi lar amounts o f water desorb , and the experimental condi t ions couldb e k ep t co mp arab le . Beca u se the shape o f the deso rp t io n en erg y d i s tr ib u t io n i s n o ts ig n i f ican t ly in f lu en ced b y the v alue o f the pre-ex po n en t ia l fac to r [1 7 ] , a co n s tan tv a lu e o f 5 x 1 0 6 ra in -1 was assu m ed fo r a ll zeo l i t es . The resu l tin g erro r i s o f the o rd ero f 7-8 % .

    T h e n u m e r i ca l s o l u t io n o f E q . ( 1 ) b y m e a n s o f th e I N T E G p r o g r a m w a s c a r ri e dout wi thout any assumptions or constraints about the resul t ing d istr ibut ion func-

    Lr2

    I ~ . , [ ! I r , ~3 0 4 0 5 0 6 0 7 0 8 0 9 0

    E / k J m o l 'F i g . 3 Desorption energy distributions: 1: N a A , 2 : N a X , 3 : N a Y

    , i , i i , i ,3 0 4 0 5 0 6 0 7 0 8 0 9 0

    E / k J m o l ~F i g . 4 Desorption energy distributions: 4: Na,K-erionite, 5: Na-mordenite, 6 : N a Z S M - 5

    J . T h e r m a l A n a l . , 4 9 , 1 9 9 7

  • 7/28/2019 Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

    9/13

    HUNGER e t al.: ZEOLITES 561

    t ions . Th us ne ga t ive pa r t s in the d i s t r ibu t ions a re poss ib le . T he y fa il t o posses s an yphys i c a l m e a n i ng , bu t i f t he d i s t ri bu t i on is dom i na t e d by the ne ga t i ve pa r t s , t he u s e dl oc a l m ode l doe s no t de s c r i be a pp r op r i a t e l y t he e xpe r i m e n t a l da t a . T he ne ga t i vepa r t s a r e ne g l e c t e d i n t he i n t e r p r e t a ti on o f t he d i s tr i bu t ion f unc t i ons .T h e c a l c u l a t e d de s o r p t i on e ne r gy d i s t ri bu t ion f unc t i ons a r e p r e s e n t e d i n F i g s 3a nd 4 . T h e e n e r gy r a ng e o f a bou t 42 t o 90 k J t oo l - l a g r e e s w e l l w i t h r e po r t e d he a t so f a ds o r p t i on on c o m pa r a b l e z e o l i te s f o r t he r e s pe c ti ve c ove r a ge w i t h w a t e r ( e . g . ,[ 22 - 24 ] ) . T he r e f o r e , t he d i s tr i bu t ion f unc t i ons s e e m t o be a u s e f u l . m e a s u r e t o c ha r -a c t e r i z e t he i n t e r a c ti on s t re ng t h o f w a t e r ve r y de t a il e d . A s c a n be s e e n c l e a r l y , t hed i s t r ibu t i on f un c t i ons a r e d i f f e r e n t l y s t r uc t u r e d i n de pe n de n c e on t he Ze o l it e t ype .E x c e p t f o r N a Z S M - 5 , a ll e n e r g y d is tr ib u t io n s c o n s i st o f fo u r , d i ff e r e n t s u p e ~ o s e dr a nge s . T h e t w o m a x i m a a t a bou t 47 -- 49 k J t oo l -1 a nd a bou t 5 2 - 5 5 k J t oo l - ' , a p -p e a r i n g w i t h d i f f e r e n t fr e q u e n cy , c o r r e s p o n d to w a t e r d e s o r b i n g u p t o a b o u t 4 5 0 -5 00 K . T h i s w a t e r c a n be a t t r i bu te d t o non - s pe c i f i c in t e r a c ti ons w i t h t he z e o l i t icf r a m e w or k ( l a tt i c e oxyg e n ) . S i m i la r va lue s f o r he a ts o f a ds o r p t i on ha ve be e n f oundf o r w a t e r on s o l i d s w i t h t he s a m e s t r uc t u r e bu t w i t hou t s pe c i f i c a ds o r p t i on s i t e s ,e . g . , c a t i ons ( e . g . , s i l ic a l it e [25 ] ). F o r N a , K - e r i on i t e , t he r a nge w i t h t he h i ghe s t e n -e r g y a ppe a r s on l y a s a shou l de r . T he l ow e s t e ne r g y r a nge f o r N a - m or de n i t e a ls o a p -pe a r s a s a s hou l de r . I n t he c a s e o f N a ZS M - 5 t h i s pa r t o f t he d i s tr i bu t i on f unc t i on i sa v e r y b r o a d p e a k o n l y . S u m m a r i z e d , t h e e n e r g y r a n g e b e t w e e n 4 2 - 6 0 k J t o o l -1s h o u l d i n d i ca t e t h e i n f l u e n c e o f b o t h a l u m i n i u m - c o n t e n t a n d f r a m e w o r k s t ru c t u r eon t he s t r e ng t h o f w a t e r i n te r a c t ion .

    C o n s i d e r i n g t h e p e a k t e m p e r a t u r e o f t h e d e s o r p ti o n c u r v e a s a n a v e r a g e m e a s u r ef o r t he s t r e ng t h o f i n t e r a c t i on a good l i ne a r c o r r e l a t i on w i t h t he c a l c u l a t e d e l e c -t r one ga t i v i t y w a s f ound , a s c a n be s e e n i n F ig . 5 . A s i m i l a r c o r r e l a t i on o f t he pe a kt e m p e r a t u r e w a s f o u n d i n d e p e n d e n c e o n t h e m e a n c h a r g e o f l a tt ic e o x y g e n a t o m s( T a b le 2 ) , w h i c h a l s o m e a s u r e s t he ba s i c i t y o f z e o li te s .

    H ow e ve r , a n e s s e n t ia l p r op e r t y o f the de s o r p t i on e n e r gy d i s tr i bu t ions i n F i g s 3a nd 4 is t he d i f f e r e n t i n t e ns it y i n t he t w o e ne r gy r a nge s at 42 - 5 0 k J t oo l- I a n d 5 0 -60 k J m o1-1 . T he i n t e r p r e ta t i on o f t he r e l a ti ve r a t io o f t he s e i n t e ns i ti e s s hou l d g i ve

    4 1 0"~ 390

    3 7 0

    3 5 0

    1

    - - i t i _ , i

    -4 -2 0 2 4e l e c t r o n e g a t i v i t yF i g . 5 P e a k t e m p e r a t u r e i n d e p e n d e n c e o n t h e e l e e t ro n e g a t i v i ty : 1: N a A , 2 : N a X , 3 : N a Y,5 : N a - m o r d e n i t e

    J. Thermal Anal., 49, 1997

  • 7/28/2019 Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

    10/13

    5 6 2 H U N G E R e t al.: ZEOLITES

    a m or e c om pr e he n s i ve p i c t u r e o f the e ne r ge t i c he te r oge n it y . F o r a l l z e o li t e s d i s ti nc tca lcu la ted charge va lues resu l t fo r oxygen a toms a t d i f fe ren t c rys ta l lographic pos i -t ions . F o r N a A a nd N a X, w he r e e ne r g i e s in t he s e c ond r a nge o f h i ghe r de s o r p t i onene rgy appe ar wi th m ore in tense f requency (curves 1 and 2 in F ig . 3 ) , l a rg e r pa r t i a lcharges predomina te . In cont ras t , l ower pa r t i a l cha rges a re more f requent for NaY.In tha t case , the f i r s t r ange of lower deso rp t ion energ ies (curve 3 in F ig . 3 ) appea rsw i t h h i gh e r i n t e nsi ty . F o r N a - m or de n i t e t he pa r ti a l oxyge n c ha r ge s a r e d i s t r i bu t e dre la t ive ly un i formly . There fore , i t may be supposed tha t a cor re la t ion ex i s t s be -t w e e n t he r e la t ive f r e que nc y o f t he t w o e ne r gy r a nge s o f t he de s o i: p ti on e ne r gy d i s -t r ibu t ions and the bas ic i ty (e l ec t ronega t iv i ty ) o f the zeo l i te s . F or tha t the d i s t r ibu-t ion fun c t ions bew een 40- -60 kJ mo1-1 were f i t ted by two Gauss ian func t ions . F igu re6 shows , tha t wi th inc reas ing e lec t ronega t iv i ty (dec reas ing bas ic i ty of f ramework)t he r e l a ti ve f r e que nc y o f t he low e r e ne r gy r a nge , de t e r m i ne d by t he pe a k a r e as o fthe Gauss -peaks , inc reases .Bo t h c o r r e l a t i ons ( F i g s 5 a nd 6 ) s how t ha t N a - m or de n i t e ha s a h i ghe r ba s i c it yt ha n i t w ou l d c o r r e s p ond t o i ts a l um i n i um c on t e n t ( s e e a ls o T a b le 2 , w h e r e t he z e o -l it e s a r e a r r a nge d w i t h de c r e a s i ng a l um i n i um c on t en t ) . T he e xc e p t i ona l s t r ongba s i c it y o f t h is z e o l i te t ype w a s a l s o s ho w n f o r py r r o l e a ds o r p t i on by m e a ns o f i n -f ra red spec t ro scopic inves t iga t ions [26] .T h e pa r t o f t he d i s t ri bu t i on f unc t i on be t w e e n 6 0 - 90 k J t oo l -1 c a n be a s s i gne d t oin te rac t ion wi th Na+-ca t ions . Typica l ly , the d i s t r ibu t ions show two ex tend ed energyr a nge s w i t h f r e que nc i e s a nd pos i t i ons c ha r a c t e r i s t i c f o r e a c h z e o l i t e t ype . I f t hede s o r p t i on e ne r gy d i s tr i bu t ions a r e c a l c u l a te d w i t h t he de s o r p t i on c u r ve s o f F i g . 2 ,bo t h e ne r gy r a nge s be c om e v i s i b l e a l s o f o r N a , K - e r i on i t e a nd N a - m or de n i t e . T hereason for the resu l t ing he te rogene i ty seems to be the d i f fe ren t loca l i za t ion of thecat ions .

    ~ 0 . 4 I

    0.22 ~ 1 1/ 9o / i

    I ~ 5I fqr1

    a-4 i i i- 2 0 2 4e l e c t r one ga t i v i t y

    Fig. 6 Relative frequency of the low energy range (42 -50 ld mo1-1) in dependence on theelectronegativity: 1: Na A, 2" NaX , 3: N aY , 5: Na-mordenite

    I n f o r m a t i on a bou t t he s e e x t r a - f r a m e w or k c a t i on l oc a t i ons a nd t he i r oc c upa nc yare usua l ly ob ta ined by d i f f rac t ion measurements . However , fo r h igh-s i l i ca zeo l i t e s

    J . Thermal Anal . , 49 , 1997

  • 7/28/2019 Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

    11/13

    HUNGER t al . : ZEOLITES 563

    problems arise due to the low cation concentration. So it seems appropriate to em-ploy other methods yielding additional information on cations in zeolites such assolid-state NMR [27] or vibrational spectroscopic techniques, Vibrational spectro-scopic studies in the far infrared region provide access to the normal modes of thecations with respect to the framework [28-31]. Because zeolites reveal a charac-teristic spectral pattern in the far infrared, several attempts have been made to relatethese features with vibrational modes of cations on distinct sites [30, 32]. Although

    1

    L J ~300 200 100wavenumber / cm'

    Fig. 7 Far-infrared spectra of the dehydratedzeolites: 1: NaA, 2: NaX, 3: NaY, 4: Na,K-erionite, 5: Na-mordenite

    c . )

    C )

    i300 2()0 100wavenumber / cm'

    Fig. 8 Far-infrared spectrum of dehydrated NaZSM-5

    J . T h e r m a l A n a l . , 4 9 , 1 9 9 7

  • 7/28/2019 Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

    12/13

    564 HUNG ER et al.: ZEOLITES

    r e c e n t s tud i e s ha ve t u r ne d ou t t he ove r s i m p l i fi c a t ion o f t h is m ode l , e a c h c a t i on s i teg i ve s a d i s ti nc t s pe c tr a l pa t t e r n be l ow 25 0 c m -1 sum m i ng up t o t he obs e r ve d f a r i n -f r a r e d s pe c t r a [33 - 36 ] .

    a

    9

    3 o 0 2 6 0 i b 0w a ve num be r / c m "

    Fig . 9 Far - in f ra red spec t ra o f NaX : a : hydra ted sample , b : dehydra ted sam ple

    T h e f a r i n f r a r e d s pe c t r a o f de hyd r a t e d N a + - i ons c on t a i n i ng z e o l it e s w i t h qu i t ed i f fe ren t l a t t ice s t ruc tures and d i f fe ren t S i /Al - ra t ios a re sho wn in F igs 7 and 8 . Asc a n b e s e e n , w i t h i n c r e as i n g ca t io n c o n t e n t t h e n u m b e r o f o b s e r v e d b a n d s i n c r e a s e si n t h e r e g i o n b e lo w 2 5 0 c m -1 a t t r ibu tab le to ca t ion v ibra t ions . I n ge nera l th i s ca n ber e ga r d e d t o be i nd i c a ti ve o f a n i nc r e a s ing oc c upa t i on o f d i f f e r e n t c a t i on s i te s w i t hi n c r e a s in g h e t e r o g e n e i ty . T h e o b s e r v e d s p e c tr u m o f t h e z e o l it e N a Z S M - 5 e x h i b i tt w o ba nds ne a r 18 0 a nd 145 c m -1 ( F ig . 8 ) . Re c e n t l y f r om a j o i ne d a pp l i c a t ion o f f a ri n f r a r e d a n d X - r a y a bs o r p t i on s pe c t r o s c opy t w o d i f f e r e n t s it es o f c a t ions w e r e de -du c e d f o r a s e r i e s o f M F I t yp e z e o li te s [37] . Re ga r d i ng th i s, a t l e a st tw o d i f f e r e n tc a t i on s i te s f o r s a m p l e s unde r s t udy c a n be c onc l ude d on t he ba s is o f a l l s pe c t ra .T h i s c on c l u s i on s hou l d be t r a ns f e r a b l e to t he hyd r a t e d s ta t e o f s od i um - c on t a i n i ngz e o l i te s , t oo , be c a u s e no s i gn if i c a n t c ha nge s w e r e ob t a ine d du r i ng w a t e r a ds o r p t i oni n t he f a r i n f r a r e d s pe c t ra . A s c a n be s e e n in F i g . 9 f o r N a X, a f t e r hyd r a t i on o f thes a m pl e t he ba nds be c om e l es s re s o l ve d a nd s om e s h i f ts i n pos i t i on oc c u r . N o ne wba nds w e r e , how e ve r , obs e r ve d . S i m i l a r r e s u lt s w e r e ob t a ine d by a F T I R s t udy o ft he d e hyd r a t i on o f Y z e o l it e s w i t h d i f f e r e n t m o nova l e n t c a t i ons [38 ]. E v e n i f t he a d -s o r p t i on o f w a t e r m a y i n f l ue nc e the c a t i on l oc a t ion r e s u l ti ng i n a r e d i s t r ibu t i on , i ts hou l d no t p r ov i de a de c r e a s e o f he te r oge ne i ty .

    Th e autho rs grateful ly acknow ledge the partia l f inancial support of the Fond s der C hem i-schen Indus t r ie and the Deu tsche Forschungsgem einschaf t , Phys ica l Chem is t ry o f In te r faces -Grad uate C ollege. H.T. is grateful for a Hum an Capita l and Mo bil i ty grant of the Eur ope anCo m m is s io n .

    J . Thermal Anal . , 49 , 1997

  • 7/28/2019 Hunger Et Al 1997. Adsorption of Water on Zeolites of Different Types

    13/13

    HUNGER et al . : ZEOLITES 565

    R e f e r e n c e s1 M . W . A nder son and J. Klinowski, J . Chem . S oc. , Faraday Trans. I , 82 (1986) 1449.2 J. Weitkamp, P . Kleinschm it , A . Kiss and C. H . B erke, Proceed ings of the 9th Internat ionalZeo l i te Confe rence , Mo ntrea l , 1992 , Vol . I I , (Eds : R. von Ba l lmoos , J . B . Higg ins , M . M .J. Treacy) , Butterworth-Heinemann, 1993, p . 79.3 G. D ebras , A . G ourgue, J . B. N agy and G. D e Clippeleir, Zeoli tes , 5 (1985) 377.4 E. Dima and L. V. C. Rees, Zeoli tes , 7 (1987) 219.5 B. Hunger , J . Hof f inann , O. He i tzsch and M . Hunger, J . Thermal Ana l . , 36 (1 99 0) 1379 .6 B. Hunger , M . H euche l , S . Matys ik , K. Beck and W.-D. E in icke , Therm och im . A c ta ,269 /270 (1995) 599 .7 C. Baer locher , A. H epp and W. M . M eie r, DL S-76 : A Program fo r the S imula ton o f Crys ta lS t ruc tu res (ETH Zur ich , Swi tze r land 1978) .8 W. J. M or t ie r , C omp i la t ion o f Ex t ra F ramew ork S i tes in Zeo l i te s , Bu t te rw or th Sc ien t i f icL td . , Gu i ld fo rd , 1982 .9 W. J . Mort ier , S. K. Gh osh and S. Shankar, L A m. C hem . Soc . , 108 (1986) 4315.10 W. J . Mort ier , Structure and Bonding, 66 (1987) 125.11 W. J . Mort ier , K. A . Van Gene ehten and J . Gaste iger, J . A m . C hem . Soc . , 107 (1985) 829.12 R. T . Sanderson , J . Am. Chem. Soc . , 74 (1952) 272 .13 R. G. Parr , R . A . Donnelly , M . L evy and W. E. Paike, J. Chem . Phy s. , 68 (1978) 3801.14 H. Toufar , B. G. Baekelandt, G. O. A. Janssens, W. J . M ort ier and R. A . S choon heydt , J.Phys . Chem. , 99 (1995) 13876 .15 K. D. Sen, T . V. Gayatr i and H. Toufar , J . M ol. Struc. (T HE O CH EM ), 361 (1996) 1 .16 H. K istenma cher , H . Popkie and E. Clem enti , J . Ch em. Phys. , 58 (1973) 1689.17 B. Hu nger , M . yo n Szombathely , J . Ho ffm ann and P. Brauer , L The rma l Ana l . , 44 (1995)293 .18 M . y on Szom bathely , P . Bri iuer and M. Jaroniec , J . Co m put. C hem ., 13 (1992) 17.19 P. T . Daw son and Y. K. Peng , Surface Sci . , 33 (1972) 565.20 B. Hunger and J . Hof fmann , Thermoch im. Ac ta , 106 (1986) 133 .21 E. Tro nconi and P. Forzat t i , Ch em. En gng. Sci . , 42 (1987) 2779 .22 M. M . Dubin in , A . A. I s i r ik j an , G. U. Rachm atkar iev and V. V. Se rp insk i, I zv . Akad . N aukSS SR , Ser. Kh im ., 10 (1972) 1269.23 M. M . Dubin in , A . A . I s i rikyan , G. U. Rachmatkar iev and V. V. Se rp inski , I zv . Ak ad . N aukSSSR, Se t . Kh im. , 4 (1973) 934 .24 P. L . L lewellyn, N . Pei lenq, Y. Gri lle t, F . Rouq uerol and J. Rouquerol , L Th erm al An al . , 4 2( 1 9 9 4 ) 8 55 .25 F. Vign6-M aede r and A . Au roux, J . Phys. Che m ., 94 (1990) 316.26 B. L . Su and D. Barthomeuf, Appl. Catal . , 124 (1995) 81.

    27 G. Enge lhardt , M . Hun ger , H. Koller and J . Weitkamp, Stud. Su rf . Sci . Catal . , 80 (1994)421 .28 I . A. B rodskii , S . P. Zhd anov and A . E . Stanevich, Opt. S peetrosc . , 30 (1971) 58.29 W. M. Bu t le r , C. L . Ange l l , W. McAl l i s te r and W. M. Risen , J . Phys . Chem. , 81 (1977)2061 .30 M. D . Baker , G. A . Oz in and J. Godber , Catal . Rev.-Sci . E ng. , 27 (1985) 591.31 C. Br~m ard and M . L e M aire , J . Phys. C hem ., 97 (1993) 9695.32 J. Godbe r , M. D. Ba ker and G. A, O zin, J . Phys. Ch em ., 93 (1989) 1409.33 K. S. Smirnov, M . Le Maire , C. Br~:mard and D. Bou geard, C hem . Ph ys. , 179 (1994) 445 .34 C. Br6mard and D. Bougeard, Adv. Mater . , 7 (1995) 10.35 K. Krause, E . Geidel , J . Kindler , H. F6rster and H. B6hlig , J . Chem. Soc. , Chem. Com-mun . , (1995) 2481 .36 K . Krause, E . Geidel, J. Kindler, H. F~rster and K. S. Smirnov, Vib r. Spectrosc., 12 (1996) 45.37 H. E semann , H. F6rs te r, E . G e ide l and K. Krause , Mic roporous Mate r . , accep ted .38 W. P. J. H . Ja cobs , J. H . M . C. van Wolput and R. A . van Santen, Zeo lites, 13 (19933 170.

    d . T h e r m a l A n a l . , 4 9 , 1 9 9 7